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Abstract

Diffusion models have emerged as the de facto paradigm
for video generation. However, their reliance on web-scale
data of varied quality often yields results that are visually
unappealing and misaligned with the textual prompts. To
tackle this problem, we propose InstructVideo to in-
struct text-to-video diffusion models with human feedback
by reward fine-tuning. InstructVideo has two key in-
gredients: 1) To ameliorate the cost of reward fine-tuning
induced by generating through the full DDIM sampling
chain, we recast reward fine-tuning as editing. By lever-
aging the diffusion process to corrupt a sampled video,
InstructVideo requires only partial inference of the
DDIM sampling chain, reducing fine-tuning cost while im-
proving fine-tuning efficiency. 2) To mitigate the absence of
a dedicated video reward model for human preferences, we
repurpose established image reward models, e.g., HPSv2.
To this end, we propose Segmental Video Reward, a mech-
anism to provide reward signals based on segmental sparse
sampling, and Temporally Attenuated Reward, a method
that mitigates temporal modeling degradation during fine-
tuning. Extensive experiments, both qualitative and quan-
titative, validate the practicality and efficacy of using im-
age reward models in InstructVideo, significantly en-
hancing the visual quality of generated videos without com-
promising generalization capabilities. Code and models
can be accessed through our project page https://
instructvideo.github.io/.

1. Introduction

The emergence of diffusion models [32, 68, 70, 98] has sig-
nificantly boosted generation quality across a wide range of
media content [34, 40, 62, 76]. This generation paradigm
has shown promise for video generation [5, 33, 34, 76, 79],
despite the challenges of working with high-dimensional
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Figure 1. Overview of the InstructVideo framework. Our
method performs efficient fine-tuning on sampled video-text pairs,
instructed by human preferences in image reward models.

data. While diffusion models are one factor driving
progress, the scaling of training datasets has also played
a key role [66, 81]. However, despite recent progress, the
visual quality of generated videos still leaves room for im-
provement [76, 85]. A significant contributing factor to this
issue is the varying quality of web-scale data employed dur-
ing pre-training [3, 65], which can yield models capable of
generating content that is visually unappealing, toxic and
misaligned with the prompt.

While aligning model outputs with human preferences
has proven highly effective for control [13], text genera-
tion [2, 43, 55, 56, 73] and image generation [42, 87, 92],
it remains a notion unexplored in video diffusion models.
The most widely-adopted methods for aligning models with
human preferences include off-line reinforcement learning
(RL) [4, 44, 56] and direct reward back-propagation [16,
58]. Typically, this entails training a reward model on man-
ually annotated datasets that is then subsequently used to
fine-tune the pre-trained generative model.

Two major challenges arise when seeking to align video
generation models with human preferences: 1) The opti-
mization process for optimizing human preferences is com-
putationally demanding, often requiring video generation
from textual inputs. While video generation pre-training us-
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ing DDPM [32] requires only a single-step inference for ev-
ery iteration, reward optimization requires a 50-step DDIM
inference [69]. 2) The curation of a large annotated dataset
to capture human preferences of videos is labor-intensive,
while the computation- and memory-intensive demands of
utilizing ViT-H [86] or ViT-L [92]-based computational al-
ternatives to evaluate the entire video are high.

To surmount these mentioned challenges, we propose
InstructVideo, a model that efficiently instructs text-
to-video diffusion models to follow human feedback, as il-
lustrated in Fig. 1. Regarding the first challenge of the de-
manding reward fine-tuning process caused by generating
through the full DDIM sampling chain, we recast the prob-
lem of reward fine-tuning as an editing procedure. This
reformulation requires only partial inference of the DDIM
sampling chain, thereby reducing computational demands
while improving fine-tuning efficiency. Drawing inspira-
tion from established editing workflows in diffusion mod-
els [6, 7, 17, 26, 49, 52, 54, 59, 101], where primary visual
content is initially corrupted with noise and then reshaped
by a target prompt, our method focuses on refining coarse
and structural videos into more detailed and nuanced out-
puts. This contrasts with previous methods [4, 16, 42] that
generate results directly from text. Such blurry and struc-
tural videos, serving as the starting point for reward fine-
tuning, are procured by a simple diffusion process with neg-
ligible cost. During generation, the optimized model retains
the capability to produce videos directly from texts. In con-
junction with back-propagation truncation of the sampling
chain, we make reward fine-tuning on text-to-video diffu-
sion models computationally attainable and effective.

Regarding the second challenge (the lack of a reward
model tailored for video generation), we postulate that the
visual excellence of a video is tied to both the quality of
its individual frames and the fluidity of motion across con-
secutive frames. To this end, we resort to off-the-shelf im-
age reward models, e.g., HPSv2 [86], to ascertain frame
quality. Drawing inspiration from temporal segment net-
works [77], we propose Segmental Video Reward (SegVR),
which strategically evaluates video quality based on a sub-
set of sparsely sampled frames. By providing sparse reward
signals, SegVR offers dual benefits: it not only ameliorates
computational burden but also mitigates temporal model-
ing collapse. On the other hand, although LoRA [36] is
adopted by default to retain the capability to generate tem-
porally smooth videos, SegVR still leads to videos with vi-
sual artifacts, such as structure twitching and color jitter-
ing. To mitigate this, we propose Temporally Attenuated
Reward (TAR), which operates under the hypothesis that
central frames should be assigned paramount importance,
with emphasis tapering off towards peripheral frames. This
strategic allocation of importance across frames ensures a
more stable and visually coherent video generation process.

As part of our pioneering effort to align video diffusion
models with human preferences, we conduct extensive ex-
periments to assess the practicality and efficacy of integrat-
ing image reward models within InstructVideo. Our
findings reveal that InstructVideo markedly enhances
the visual quality of generated videos without sacrificing the
model’s generalization capabilities, setting a new precedent
for future research in video generation.

2. Related Work
Video generation via diffusion models. Early efforts at
video generation focused on GANs [24, 35, 47, 57, 67,
74, 84, 95] and VAEs [47, 53, 93]. However, due to the
complexity of jointly modeling spatio-temporal dynamics,
generating videos from texts remains an unresolved chal-
lenge. Recent methods for video generation aim to miti-
gate this by utilizing the de facto generation method, i.e.,
diffusion models [32, 68, 69, 98], for generating videos
with diversity and fidelity [1, 5, 8–10, 12, 19, 25, 28–
30, 33, 34, 37, 48, 50, 51, 60, 64, 72, 78, 80–82, 88–
90, 94, 96, 97, 99, 102–104] and scaling up the pre-
training data or model architecture [33, 35, 66, 81, 83].
VDM [34] represents a pioneering work that extended im-
age diffusion models to video generation. Owing to the
computation-intensive nature of diffusion models, follow-
up research sought to reduce overhead by leveraging the la-
tent space [62], e.g., ModelScopeT2V [76], Video LDM [5],
MagicVideo [103] and SimDA [90], etc.. To enable more
controllable generation, further efforts introduce spatio-
temporal conditions [11, 19, 41, 79, 88, 94], e.g., Video-
Composer [79], Gen-1 [19], DragNUWA [94], etc.. How-
ever, generating videos that adhere to human preferences
remains a challenge.
Human preference model. Understanding human prefer-
ence in visual content generation remains challenging [39,
42, 45, 86, 87, 92]. Some pioneering works target solv-
ing this problem by annotating a dataset with human
preferences, e.g., Pick-a-pic [39], ImageReward [92] and
HPD [86, 87]. Language-image models, e.g. CLIP [61]
and BLIP [46], are then fine-tuned on the resulting anno-
tated data. As such, the fine-tuned models represent a data-
driven approach to modelling human preferences. However,
the annotation process for capturing human preferences is
highly labor- and cost-intensive. Thus, in this paper, we
adopt off-the-shelf image preference models to improve the
quality of generated videos.
Learning from human feedback. Learning from hu-
man feedback was first studied in the context of reinforce-
ment learning and agent alignment [14, 43] and later in
large language models [56, 71], enabling them to gener-
ate helpful, honest and harmless textual outputs. This goal
of learning from human feedback is also desirable in vi-
sual content generation. In image generation and edit-
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Figure 2. The reward fine-tuning framework of InstructVideo. During fine-tuning, we sample video-text pairs and apply a diffusion
process to corrupt the videos to a noise level τ . Subsequently, we perform partial inference of the DDIM sampling chain to obtain the
human preference edited videos. By utilizing SegVR and TAR, we can leverage image reward models to perform reward fine-tuning for
video generation. The VQGAN encoder and decoder are omitted for clarity. In this example, the blurry video z is edited guided by human
preferences, producing a result that highlights the vibrancy and structure of the dogwood blossoms.

ing, a key objective is to align generated images with
the prompt [4, 16, 21, 58, 75, 100], preventing surprising
and toxic results [42, 87, 92]. Lee et al. utilizes reward-
weighted regression on a manually collected dataset, aim-
ing to mitigate misalignment with respect to factors such as
count, color and background. DDPO [4] and DPOK [21]
propose to use policy gradients on a multi-step diffu-
sion model [20], demonstrating improved rewards of aes-
thetic quality, image-text alignment, compressibility, etc..
DRaFT [16] and AlignProp [58] achieve feedback opti-
mization by back-propagating the gradients of a differen-
tiable reward function through the sampling procedure via
gradient checkpointing [27]. However, learning from hu-
man feedback for video diffusion models remains under-
explored owing to its prohibitive cost. InstructVideo
aims to fill this gap, providing a solution for more efficient
reward fine-tuning.

3. Methodology
In this section, we commence with preliminaries. Next, we
delve into the details of InstructVideo, which encom-
passes: 1) A reformulation of reward fine-tuning as editing
that ensures computational efficiency and efficacy. 2) Seg-
mental Video Reward (SegVR) and Temporally Attenuated
Reward (TAR) that enable efficient reward fine-tuning with
image reward models.

3.1. Preliminaries

Text-to-video diffusion models. Text-to-video diffusion
models aim to map textual input into a distribution repre-
senting video data via a reverse diffusion process [32, 68].
These models typically operate in a latent space to handle
complex video data [62, 76, 79]. During pre-training, a
sampled video x is processed by a fixed encoder [18] to
derive its latent representation z ∈ RF×h×w×3, where the
video’s spatial dimensions are compressed by a factor of

8. Next, random noise is injected into the sampled video
by the forward diffusion process according to a predeter-
mined schedule {βt}Tt=1. This process can be described as
zt =

√
ᾱtz +

√
1− ᾱtϵ, where ϵ ∈ N (0, 1) is random

noise with identical dimensions to z, ᾱt =
∏t

s=1 αs and
αt = 1 − βt. A UNet [15, 63] ϵθ is adopted to perform
denoising, enabling the generation of videos through a re-
verse diffusion process, conditioned on the video caption c.
Optimisation employs the following reweighted variational
bound [32]:

L(θ) = Ez,ϵ,c,t

[
∥ϵ− ϵθ(

√
ᾱtz +

√
1− ᾱtϵ, c, t)∥22

]
(1)

During inference, we adopt the DDIM sampling [69]
method for realistic video generation.
Reward fine-tuning. Reward fine-tuning aims to optimize
a pre-trained model to enhance the expected rewards of a
reward function r(·, ·). In our case, we target optimizing the
parameters θ of a text-to-video diffusion model to enhance
the expected reward of the generated videos given the text
distribution:

Lr(θ) = EP(c)EPθ(x0|c)[−r(x0, c)] (2)

where x0 is the video generated from the sampled text c
via the diffusion model through the DDIM sampling chain.
The reward function r(·, ·) is typically a pre-trained model
to assess the quality of the model output.

3.2. InstructVideo

In Fig. 2, we illustrate InstructVideo’s fine-tuning
pipeline and elaborate on the technical contributions below.

3.2.1 Reward Fine-tuning as Editing

Reward fine-tuning with diffusion models is costly due to
the iterative refinement process during generation using
DDIM [69]. During generation, initial steps are crucial
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for shaping coarse, structural aspects of videos, with subse-
quent steps refining the coarse videos. Understanding that
the essence of reward fine-tuning is not to drastically alter
the model’s output but to subtly adjust it in line with human
preferences, we propose to reinterpret reward fine-tuning as
a form of editing [17, 52, 85]. This perspective shift allows
us to perform partial inference of the DDIM sampling chain,
reducing computational demands and easing optimization.

To implement this idea, we first curate a small amount
of fine-tuning data from pre-training data for reward fine-
tuning. For each video-text pair (x, c), we acquire the
video’s latent embedding z as stated in Sec. 3.1. We aim
to smooth out the video to eliminate undesirable artifacts
and distortions [52]. To achieve this, we leverage the diffu-
sion process rather than DDIM inversion [17, 52] to enable
efficient editing. If we denote the number of DDIM steps
as D and the number of pre-training DDPM steps as T , we
define a mapping d : {1, . . . , D} → {1, . . . , T} that maps
DDIM step index to the DDPM step index1, formulated as:

d(i) =
T

D
· (i− 1) + 1 (3)

Given the noise level τ , the targeted diffusion step tnoi for
injecting noise is formulated as:

tnoi = d(τ ·D) (4)

This allows us to obtain the starting point for reward fine-
tuning via the diffusion process:

ztnoi
=

√
ᾱtnoi

z +
√
1− ᾱtnoi

ϵ (5)

Based on ztnoi
, we can perform τ × D steps of DDIM

sampling [69] along the DDIM sub-sequence to obtain the
edited result z0, which consumes τ of the computation of
the full sampling chain. Utilizing the decoder [18], we de-
code z0 in the latent space to x0 in the RGB space.

3.2.2 Reward Fine-tuning with Image Reward Models

Since curating large datasets to capture human preferences
for training video reward models is prohibitively expen-
sive, we resort to off-the-shelf image reward models r(·, ·),
e.g., HPSv2 [86]. HPSv2 is trained on 430k pairs of im-
ages, which are annotated by humans for text-image align-
ment and image quality. Given that videos are natural ex-
tensions of images, we posit that these human preferences
are also applicable to videos. However, initial experiments
with applying dense reward fine-tuning produced degraded
motion continuity. Taking inspiration from temporal seg-
ment networks [77], given a video x0 ∈ RF×H×W×3

generated from its caption c, we evenly divide it into
S segments. Within each segment, we perform random

1For example, if D = 20 and T = 1000, then the DDIM step sub-
sequence is {1, 51, . . . , 901, 951}, i.e., d(2) = 51.

frame sampling, obtaining a sparse set capturing the essence
of the video xg

0 = {xg(1)
0 , . . . ,x

g(S)
0 }. Here, g(i) =

Uniform
(
(i− 1) · F

S , i ·
F
S − 1

)
denotes a uniform sam-

pling of index within ith segment. Utilizing r(·, ·), we com-
pute the reward score R with respect to x0 as follows:

R = Aggi[r(x
g(i)
0 , c)], i = 1, . . . , S (6)

where Aggi denotes the aggregation function along index
i. To consider the impact of all frames in xg

0, an intuitive
implementation of Aggi is the mean function.

However, the simple aggregation function leads to no-
ticeable visual artifacts in the generated videos, such as
structural twitching and color jittering. This issue arises be-
cause the mean function places equal weight on all frames,
disregarding the inherent dynamic nature of videos where
the reward scores of frames can vary throughout the se-
quence. To address this, we introduce TAR that strategically
emphasizes central frames, with the emphasis tapering off
towards the peripheral frames, thereby avoiding uniformly
optimizing all frames’ reward scores to be equally high. We
define the temporally attenuated coefficient as:

fi = e−λtar|g(i)−F
2 | (7)

where λtar controls the degree of the attenuating rate. We
set λtar = 1 by default. Incorporating this coefficient, we
rewrite the reward score R:

R =
1

S

∑S

i=1
fi · r(xg(i)

0 , c) (8)

The optimization objective in Eq. (2) can be rewritten as:

Lr(θ) = EP(c)EPθ(x0|c)[−R] (9)

3.3. Reward Fine-tuning and Inference

Data preparation and evaluation metric. We follow
DDPO [4] to experiment on prompts describing 45 animal
species. In contrast to DDPO, since InstructVideo re-
lies on video-text data, we select video-text pairs as the fine-
tuning data from the base model’s pre-training dataset, i.e.,
WebVid10M, ensuring that no extra data is introduced. It
is worth noting that we do not apply any quality filtering
method to ensure that the selected videos are of high qual-
ity. Specifically, we select about 20 video-text pairs for each
animal species. To evaluate the model’s ability to optimize
the reward scores, we also collect evaluation data compris-
ing about 6 prompts for each animal. We use HPSv2 score
to measure the optimization performance of reward fine-
tuning on the first frames of all segments.
Reward fine-tuning. We adopt the publicly available text-
to-video diffusion model ModelScopeT2V [76] as our base
model. ModelScopeT2V is trained on WebVid10M [3] with
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Figure 3. Comparion of InstructVideo with the base model ModelScopeT2V. ModelScopeT2V utilizes 20 and 50 DDIM steps.

T = 1000 and is able to generate videos of 16× 256× 256
resolution, which we divide into S = 4 segments. By de-
fault, we adopt the differentiable HPSv2 [86] as the reward
model and perform 20-step DDIM inference, i.e., D = 20.
Classifier-free guidance [31] is adopted by default. Directly
back-propagating the reward loss to the diffusion models
can be computationally intensive and risks catastrophic for-
getting [22, 23, 38]. To circumvent these issues, we incor-
porate LoRA [36] by default. To further accelerate fine-
tuning, we truncate the gradient to only back-propagate the
last DDIM sampling step following [16]. Experiments are
conducted on 4 NVIDIA A100s, with the batch size set to
8 and the learning rate set to 1 × 10−5. To strike a cost-
performance balance, we fine-tune InstructVideowith
default parameters for 20k steps if not otherwise stated.
Inference. After reward fine-tuning, we merge the
LoRA weights into the ModelScopeT2V parameters to en-
sure that InstructVideo’s inference cost is identical
to ModelScopeT2V [36]. For text-to-video generation,
InstructVideo uses 20-step DDIM inference.

4. Experiments
4.1. Effectiveness of InstructVideo

Comparison with the base model ModelScopeT2V. To
verify the efficacy of InstructVideo, we compare it
with ModelScopeT2V [76] utilizing 20 and even 50 DDIM
steps in Fig. 3. Examining the examples, we observe that
the quality of videos generated by InstructVideo con-
sistently outperforms the base model by a margin. Specif-
ically, notable enhancements include 1) clearer and more

coherent structures and scenes even if the animal is mov-
ing, exemplified by the walking cat and the swimming fish;
2) more appealing coloration, exemplified by the sunflower,
the bee and the mountain goat; 3) an enhanced delineation
of scene details, exemplified by the rock and grass on the
cliff, and the texture of all the animals; and 4) improved
video-text alignment, exemplified by the distinct portrayal
of sunflowers and the bird’s reflections on the water. Re-
markably, these advancements are achieved without com-
promising motion fluidity and the resultant videos can of-
ten surpass the video quality of the WebVid10M dataset.
Notably, InstructVideo even attenuates watermarks
present in WebVid10M. These qualitative leaps, consis-
tently favored by human annotators, are attributed to the
reward fine-tuning process, which effectively refines the
video diffusion model.
Comparison with other reward fine-tuning methods.
This aims to validate the efficacy of reward fine-tuning con-
ceptualized as an editing process. We compare with other
representative reward fine-tuning methods, including policy
gradient algorithm, DDPO [4], reward-weighted regression,
RWR [42] and direct reward back-propagation method,
DRaFT [16]. For DRaFT, we adopt DRaFT-1 for efficient
fine-tuning. SegVR and TAR are employed for all com-
pared methods to standardize reward signals. The compara-
tive analysis on the evaluation set, presented in Fig. 5(a),
leads to two findings: 1) Both RWR and DDPO exhibit
a performance plateau after about 11 hours of fine-tuning,
with further optimization failing to enhance or even dete-
riorating performance. 2) Direct reward back-propagation
methods, including InstructVideo and DRaFT, ini-
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Method In-domain New Animals Non-animals
ModelScopeT2V† 0.2542 ± 0.0122 0.2541 ± 0.0109 0.2610 ± 0.0158

ModelScopeT2V 0.2506 ± 0.0155 0.2502 ± 0.0138 0.2557 ± 0.0177

DDPO [4] 0.2511 ± 0.0114 0.2524 ± 0.0112 0.2564 ± 0.0171

RWR [42] 0.2550 ± 0.0166 0.2517 ± 0.0101 0.2625 ± 0.0146

DRaFT [16] 0.2584 ± 0.0123 0.2561 ± 0.0098 0.2644 ± 0.0174

InstructVideo 0.2717 ± 0.0137 0.2645 ± 0.0125 0.2682 ± 0.0202

Table 1. Generalization to unseen text prompts. † denotes the
model utilizes D = 50 while others adopt D = 20. ‘In-domain’
denotes in-domain animal prompts from the evaluation data.

tially lag during the first 11 hours but subsequently demon-
strate fine-tuning efficiency, especially InstructVideo.
To further validate the efficacy of our method, we provide
visual comparisons in Fig. 4, where we adopt the optimal
fine-tuned checkpoint for each method in Fig. 5(a). The
examples reflect InstructVideo ’s superiority, evident
in: 1) the clarity and coherence of structural and scenic ele-
ments, 2) the vibrancy of colors, 3) the precision in depict-
ing intricacies, and 4) enhanced video-text alignment.
Generalization to unseen text prompts. We assessed
the model’s generalization capabilities using two distinct

sets of prompts: 1) those describing new animals and 2)
those related to non-animals, none of which are present in
the fine-tuning data. For this purpose, we curate about 4
prompts each for 6 new animal species following [58] and
46 prompts for non-animals. Our comparative analysis of
InstructVideo, the base model ModelScopeT2V and
other reward fine-tuning methods is presented in Tab. 1. It
is worth noting that during fine-tuning, SegVR and TAR
are adopted by default to provide reward signals. Our ob-
servations are threefold: 1) Increasing the number of DDIM
steps enhances the video quality. 2) Compared to the base
model ModelScopeT2V in the second row, all methods im-
prove reward scores for these unseen prompts. 3) Among
all methods, InstructVideo outperforms other alterna-
tives, affirming its superior generalization capabilities. To
further demonstrate this, we provide visual comparisons
in Fig. 6, featuring a set of unseen animal species, vari-
ous sceneries, and human figures. The presented examples
display an enhanced quality and exhibit an improvement in
video-text alignment.
User study. To further qualitatively compare the videos
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InstructVideo Quality Alignment
vs Ours Tie Other Ours Tie Other

ModelScopeT2V 78.7% 13.2% 8.1% 29.1% 57.1% 13.8%
DRaFT 75.7% 11.6% 12.7% 29.0% 52.7% 18.3%

Table 2. User study. ‘Tie’ indicates instances where annotators
think two videos are of comparable quality. ‘Quality’ and ‘Align-
ment’ represent video quality and video-text alignment.

generated by InstructVideo and other methods, we
conduct a user study comparing our methods with the base
model ModelScopeT2V and the reward fine-tuned model
DRaFT in Tab. 2. We recruited five participants to assess
the quality of videos in terms of video quality and video-text
alignment. To simplify the annotation process, participants
were presented with pairs of videos and asked to identify
which video was superior or if both were of equal qual-
ity. To ensure a comprehensive comparison, we chose 60
prompts from the 45 fine-tuning animal species, 20 prompts
from the 6 new animal species, 20 prompts describing non-
animals and 200 prompts from MSR-VTT [91] (300 in to-
tal). More details are presented in the Appendix. We ob-
serve that our method consistently outperforms other meth-
ods. Specifically, improvements in video quality, a noted
shortcoming of the base model, are more pronounced than
improvements in video-text alignment.
4.2. Ablation Study

The effect of varying noise level τ . To determine the opti-
mal choice for noise level τ , we vary its value and evaluate
its impact on reward scores using the evaluation data. We il-
lustrate the results in Fig. 5(b). An increase in τ from 0.1 to
0.5 correlates with a progressive enhancement in the highest
reward scores achieved by InstructVideo. However,
excessively prolonged fine-tuning precipitates a sharp de-
cline in generative performance. This phenomenon can be

attributed to the limited edited space available to the model
at lower noise levels, which constricts its ability to find
the optimal output space as directed by the reward scores.
When we further increase τ from 0.6 to 0.9, we observe
that the reward score enhancement per hour becomes mi-
nor, suggesting challenges associated with generating from
an extended sampling chain. Optimally, a noise level of
τ = 0.6 strikes a balance, providing a feasible starting point
for editing that still allows for a substantial exploration of
the edited space. After 20k steps, more optimization leads
to over-optimization [58], meaning that further steps can de-
grade the visual quality of the output despite potential in-
creases in the reward score. Thus, we finalize on τ = 0.6
with 20k steps of fine-tuning.
The effect of varying λtar. To determine the optimal
choice for λtar, we vary its value and evaluate its impact.
We illustrate the results in Fig. 5(c). A relatively high
value λtar, such as 2.0, results in fi decaying exponentially
faster towards those border frames, thus providing dimin-
ished reward signals. A relatively low value λtar, such as
0.5, leads to fi decaying more gently towards those border
frames, thus strengthening the reward signals. This equal-
ized weighting across frames can destabilize fine-tuning,
leading to a precipitous decline in reward scores. Subse-
quent increases in scores do not necessarily indicate im-
proved video quality but indicate quality degradation, as
revealed by the rising variance. Thus, an appropriate co-
efficient to ensure stable fine-tuning is imperative and we
finalize on λtar = 1.0.
Ablation on SegVR and TAR. To qualitatively verify the
efficacy of SegVR and TAR, we present illustrative results
in Fig. 7. Removing either SegVR or TAR results in a no-
ticeable reduction in temporal modeling capabilities. This
suggests that overly dense or excessively strong reward sig-
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Ablation on 
SegVR and TAR

InstructVideo

w/o TAR

w/o SegVR

Figure 7. Ablation study on SegVR and TAR. This video shows
a white dog walking in the park in slow motion.

nals can lead to generation collapse. The degradation of
modeling temporal dynamics often leads to the degraded
quality of the individual frames due to the intertwined na-
ture of spatial and temporal parameters. These observations
underscore the critical roles of SegVR and TAR in main-
taining fine-tuning stability.

4.3. Further Analysis

The evolution of the generated videos during reward
fine-tuning. To elucidate how the reward fine-tuning works,
we present a visual progression in Fig. 8. The top row de-
picts a video generated without fine-tuning. All the frames
in this video exhibit a lack of the dog’s fur texture. More-
over, a notable blurriness characterizes the third frame due
to sudden and unanticipated motion, while the fourth frame
suffers from a loss of facial clarity. As reward fine-tuning
proceeds, we observe a noticeable enhancement in terms
of all aspects mentioned above. Surprisingly, watermarks,
which are consistently present across the dataset, also grad-
ually fade. The resultant video is full of clear details and
aesthetically pleasing coloration.
Impact of fine-tuning data quality on the fine-tuning re-
sults. To investigate this, we self-collect a dataset compris-
ing an equivalent number of video-caption pairs for 45 an-
imal species, which are employed for fine-tuning. The re-
sults are illustrated in Fig. 9. We employ horizontal dashed
lines to indicate the quality of different data, inferred from
reward scores. While the variance of the generated videos
are comparable for two kinds of fine-tuning data, the em-
ployment of higher-quality data, i.e., WebVid10M, yields
superior average reward scores compared to that obtained
using the lower-quality counterpart. This suggests that su-
perior fine-tuning data can facilitate reward fine-tuning.
Constraints of fine-tuning data on resultant video qual-
ity. Fig. 9 showcases that InstructVideo is capable of
generating videos that achieve reward scores significantly
exceeding those of the fine-tuning data itself, as denoted by
the horizontal dashed lines. This observation leads us to
conclude that the quality of the fine-tuning data does not

How does the
video evolve？ ModelScopeT2V

InstructVideo
(5k steps)

InstructVideo
(10k steps)

InstructVideo
(15k steps)

InstructVideo
(20k steps)

Figure 8. The evolution of generated videos during fine-tuning.
The video shows a bobtail dog walking.
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Figure 9. The effect of utilizing different fine-tuning data. The
colored horizontal dashed lines denote the reward scores of differ-
ent fine-tuning data, matched by the color of the respective curve.

impose a ceiling on the potential quality of the fine-tuned
results. Our fine-tuning pipeline has the propensity to sur-
pass the initial data quality, thus facilitating the generation
of videos with substantially enhanced reward scores.

5. Conclusion
In this paper, we introduce InstructVideo that pioneers
instructing video diffusion models with human feedback.
We recast reward fine-tuning as an editing process and re-
purpose image reward models to provide human feedback
on generated videos. Extensive experiments validate that
InstructVideo not only elevates visual quality but also
maintains robust generalization capabilities.
Acknowledgments. This research was backed by the Na-
tional Natural Science Foundation of China under Grant No.
62173298 and the Alibaba Research Intern Program.
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