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Abstract

3D Visual Grounding (3DVG) aims at localizing 3D ob-
ject based on textual descriptions. Conventional supervised
methods for 3DVG often necessitate extensive annotations
and a predefined vocabulary, which can be restrictive. To
address this issue, we propose a novel visual programming
approach for zero-shot open-vocabulary 3DVG, leveraging
the capabilities of large language models (LLMs). Our
approach begins with a unique dialog-based method, en-
gaging with LLMs to establish a foundational understand-
ing of zero-shot 3DVG. Building on this, we design a vi-
sual program that consists of three types of modules, i.e.,
view-independent, view-dependent, and functional mod-
ules. These modules, specifically tailored for 3D scenarios,
work collaboratively to perform complex reasoning and in-
ference. Furthermore, we develop an innovative language-
object correlation module to extend the scope of existing 3D
object detectors into open-vocabulary scenarios. Extensive
experiments demonstrate that our zero-shot approach can
outperform some supervised baselines, marking a signifi-
cant stride towards effective 3DVG. Code is available at
https://curryyuan.github.io/ZSVG3D.

1. Introduction

3D Visual Grounding (3DVG) aims to localize specific ob-

jects within 3D scenes by using a series of textual descrip-

tions. This has become a crucial component in a variety

of burgeoning applications, such as autonomous robotics

[12, 53, 58], virtual reality [40, 55], and metaverse [10, 33].

For illustration, given a 3D scan in Figure 1(a) along with its

description — It is the keyboard closest to
the door, the goal of 3DVG is to accurately pinpoint

the keyboard in the green box, while eliminating potential

distractions such as tables and desks. Despite the appar-

ent simplicity of this task for humans, it poses a significant

challenge for machines due to their inherently limited per-

ceptual capabilities.

*Corresponding author.

It is the keyboard closest
 to the door

It is the keyboard closest 
to the door

Figure 1. Comparative overview of two 3DVG approaches,

where (a) Supervised 3DVG involves input from 3D scans com-

bined with text queries, guided by object-text pair annotations,

(b) Zero-shot 3DVG identifies the location of target objects using

programmatic representation generated by LLMs, i.e., target cate-
gory, anchor category, and relation grounding, thereby highlight-

ing its superiority in decoding spatial relations and object identi-

fiers within a given space, e.g., the location of the keyboard (out-

lined in green) can be retrieved based on the distance between the

keyboard and the door (outlined in blue).

Traditional supervised 3DVG approaches [19, 60, 62]

achieve this objective by leveraging the rich annotations

in public datasets, such as ScanRefer [4] and Referit3D

[1]. These approaches typically define 3DVG as a match-

ing problem, generating possible objects via 3D detectors

[22, 38], and identifying the best match by fusing the vi-

sual and textual features. While these approaches can yield

precise results, the acquisition of sufficient annotations is

prohibitively resource-intensive for real-world applications.

Furthermore, these approaches are often constrained by the

pre-defined vocabulary during training, making them sub-

optimal in open-vocabulary scenarios.

To address these issues, we propose a novel visual pro-

gramming approach for 3DVG that integrates zero-shot

learning and large language models (LLMs). Zero-shot
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learning [65, 67, 70] can generalize across new categories

by leveraging the pre-trained capabilities of CLIP [41] in

the 3D domain. LLMs [34, 47, 49] can facilitate 3DVG due

to their strong planning and reasoning capabilities. Regard-

ing this, we first propose a vanilla version dialog with LLM.

It describes the location and size of all objects in the scene

and instructs the LLM to distinguish the object of interest

through an interactive dialog. Despite the simplicity of the

base approach, the inherent stochasticity and control limita-

tions of LLMs make it hard to capture the view-dependent
queries and decipher spatial relations in 3D space, which

are the main challenges of 3DVG. To overcome this lim-

itation, we further develop a new visual programming ap-

proach, as shown in Figure 1(b). It mainly consists of three

steps: (1) generating a 3D visual program using LLMs, (2)

interpreting the program into Python code, and (3) identi-

fying the target bounding box by executing the code. To

enhance the localization accuracy, we further introduce a

novel language-object correlation (LOC) module capable of

merging the geometric discernment of 3D point clouds with

the fine-grained appearance acumen of 2D images.

In summary, contributions are summarized as follows:

• We propose an innovative 3D visual programming ap-

proach. It eliminates the need for extensive object-text

pair annotations required in supervised approaches.

• We transform the visual program to Python code by de-

signing two types of modules, i.e., relation modules and

LOC modules. The former explicitly defines the view-

dependent and view-independent relations in 3D space,

while the latter captures both the geometric and appear-

ance information for open-vocabulary localization.

• We conduct extensive experiments on two popular

datasets, i.e., ScanRefer [4] and Nr3d [1]. We for the

first time evaluate the whole validation set rather than a

few samples. The results demonstrate the superior per-

formance of our approach, even comparable with existing

supervised approaches.

2. Related Work
Supervised 3DVG. 3DVG has received much attention

in many emerging applications ranging from automatic

robotics [12, 53, 58] to metaverse [10, 33]. On the one

hand, densely-annotated datasets like ScanRefer [4] and

Referit3D [1] can provide well-aligned object-text pairs for

ScanNet [9]. On the other hand, most existing methods

[6, 14, 42, 60, 62] treat 3DVG as a matching problem, where

object identifiers [22, 38] are utilized to generate candidate

objects and find the best-matching one by fusing visual and

textual features. Building on this, [57, 63] attempt to ex-

plore the object attributes and relations between different

proposals. Moreover, some works [7, 23] have also investi-

gated 3D language pretraining using advanced techniques,

such as mask modeling and contrastive learning on paired

object-caption data, followed by finetuning on downstream

tasks. Additionally, NS3D [17] has employed CodeX [5] to

generate hierarchical programs. However, it still needs an-

notations to train the neuro-symbolic networks, thus lacking

open-vocabulary and zero-shot capabilities.

Indoor 3D Scene Understanding. 3D scene understanding

of indoor environments has been widely studied. In spe-

cific, the emergence of RBG-D scans datasets [9, 44, 52]

greatly push the boundary of several tasks, including 3D

object classification [36, 37], 3D object detection [31, 38],

3D semantic segmentation [8, 66], 3D instance segmenta-

tion [22, 43, 51], and so on [16, 59, 64]. However, these

methods are often constrained to a closed set of semantic

class labels, limiting their applicability in real-world sce-

narios. Recent progress in open-vocabulary image segmen-

tation [13, 29] has inspired research into 3D scene under-

standing under the open-vocabulary setting. For instance,

LERF [24] learns a language field inside NeRF [32] by vol-

ume rendering CLIP [41] features along training rays, en-

abling it to generate 3D relevancy maps for arbitrary lan-

guage queries. OpenScene [35] extracts image features us-

ing 2D open-vocabulary segmentation models [13, 27], then

trained a 3D network to produce point features aligned with

multi-view fused pixel features. OpenMask3D [46] utilizes

the closed-vocabulary network to generate instance masks

while discarded the classification head. Despite these ad-

vancements, these methods still lack spatial and common-

sense reasoning abilities.

LLMs for Vision-Language Tasks. Recent progress on

LLMs has provided impressive zero-shot planning and rea-

soning abilities [34, 47, 49]. Advanced prompting technolo-

gies such as Least-to-Most [69], Think-Step-by-Step [26],

and Chain-of-Thought [54] are proposed to elicit the capa-

bilities of LLMs. These methods can understand human

instructions, break complex goals into sub-goals, and con-

trol robot agents to execute tasks without additional train-

ing [2, 20, 30]. Moreover, when combined with specialized

vision models, LLMs can significantly enhance the perfor-

mance of vision-language tasks. For instance, Visual Chat-

GPT [56] uses ChatGPT as a central orchestrator, interfac-

ing with a variety of visual foundation models to solve more

challenging problems. VISPROG [15] leverages the in-

context learning ability to generate high-level modular pro-

grams for solving complex and compositional natural lan-

guage reasoning and image editing tasks. ViperGPT [45]

directly feeds the API of available modules to LLM and

then generated executable Python code for image ground-

ing. However, leveraging these capabilities for zero-shot

3D language grounding remains an unexplored area.

3. Methodology
In Section 3.1, we introduce the vanilla approach, i.e., dia-

log with LLM to overcome the annotation issue in 3DVG.
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Description: The round cocktail 
table in the corner of the room 
with the blue and yellow poster

Program: 
BOX0=LOC(‘round cocktail table’)
BOX1=LOC(‘blue and yellow 
poster’)
TARGET=CLOSEST(targets=BOX0, 
anchors=BOX1)

Description: Staring at the 
cabinets you want the window on 
the right side

Program: 
BOX0=LOC(‘window’)
BOX1=LOC(‘cabinet’)
TARGET=RIGHT(targets=BOX0, 
anchors=BOX1)

LOC
(‘round cocktail table’)

LOC
(‘blue and yellow poster’)

CLOSEST
targets=BOX0 
anchors=BOX1

LOC(‘window’)

LOC(‘cabinet’)

RIGHT
targets=BOX0 
anchors=BOX1

Suppose you are a person 
standing in a room. You need to 
find a keyboard it is closest to 
the door.

Of course, I can help you find an 
object in a room based on its 
description. Please provide me 
with the details of the object 
you're looking for, and I'll do my 
best to assist you in locating it.

Room Information: 
Object 1 is a door located at ( -
0.65, 2.35, 1.05).
Object 2 is a desk located at 
(0.68, 1.30, 0.39). 
…
Object 26 is a keyboard located 
at (-0.65, -1.06, 0.65).

The keyboard closest to the door 
is Object 9, as it has a shorter 
distance of approximately 2.01 
units, compared to Object 26, 
which has a distance of 
approximately 3.44 units. So, the 
correct object ID is Object 9.

Figure 2. Overview of two zero-shot approaches for 3DVG. (a) shows the working mechanism of the vanilla dialog with LLM approach.

First, we describe the 3DVG task and provide the text descriptions of the room. Then, LLMs identify the objects relevant to the query

sentence and perform human-like reasoning. (b) presents the 3D visual programming approach. We first input in-context examples into

LLMs. Then, LLMs generate 3D visual programs through the grounding descriptions and perform human-like reasoning. Next, these

programs are transformed into executable Python codes via the LOC module for predicting the location of the object. For example, the

upper example uses the view-independent module, i.e., CLOSEST to determine the proximity in 3D space, while the lower example applies

the view-dependent module, i.e., RIGHT to establish the relative positioning.

From Section 3.2 to Section 3.4, we present the visual pro-

gramming approach, address the issue of view-dependent

relations, and design the LOC module, respectively.

3.1. Dialog with LLM

To accomplish the goal of 3DVG, we propose to initiate a

dialogue with LLMs. The input for the dialogue consists

of a real-world RGB-D scan and a free-form text descrip-

tion T . The text description provides specific information

about the target object within a point cloud representation

P ∈ R
N×6, where P is a collection of color-enriched 3D

points and N is the total number of such points. The LLM

acts as an agent located in the scanned room, which aims to

identify the specified object based on the given text descrip-

tion. To bridge the gap between the model’s proficiency in

understanding text and the spatial nature of the 3DVG task,

we first transform the scene into a textual narrative. This

narrative can provide a comprehensive account of the ob-

jects O presented in the scene, including their positions and

dimensions, which can be expressed as:

Object <id> is a <category>
located at (x, y, z) with sizes
(width, length, height).

Given such textual layout, we dialog with the LLM by

providing the scene’s description and query. Our objec-

tive is to guide the LLM to identify the object mentioned

in the query, while also understand and explain its reason-

ing process in the identification duration. Particularly, LLM

is capable of mimicking the reasoning steps undertaken by

humans. As illustrated in Figure 2(a), if the LLM get the

object information, it can extract the objects relevant to the

query sentence, i.e., targets keyboard and anchors door, and

successfully identify the correct target keyboard by calcu-

lating its distance with door.

While LLMs show powerful human-like reasoning capa-

bilties, they still have some limitations. First, it cannot han-

dle the view-dependent issue such as the right window. This

is becasue the 3D scene can freely rotate to different views

while it keeps static in 2D images. LLMs usually make

decisions by comparing their x-y values of 3D coordinates

despite hinting it in the conversation. Second, mathematical

calculation is a common weakness of LLMs but is necessary

for 3DVG [11]. For example, in Figure 2(a), distance com-

puting is crucial to solve the closest relations, whereas the

LLMs cannot always provide accurate results. These two

issues stem from LLM’s training limitations, which affect

the reliability of the dialog with LLM approach.

3.2. 3D Visual Programming

To address the above two issues, we now introduce a new

approach that generates visual programs through LLMs. As
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View-independent
near, close, next to, far, above, below,
under, top, on, opposite, middle

View-dependent

front, behind, back, right, left, facing,
leftmost, rightmost, looking, across, be-
tween

Functional min, max, size, length, width

Table 1. Common relations in 3DVG.

shown in Figure 2(b), we first construct a set of sample pro-

grams to encapsulate human-like problem-solving tactics in

3DVG. Each program includes a sequence of operations,

where each operation contains a module name, several in-

put parameters, and an assigned output variable. The output

of each step can be reused in the subsequent step, thus cre-

ating an interlinked sequence that reflects logical reasoning

within a visual context.

We transform the reasoning process of 3DVG into a

scripted visual program. Specifically, we collect a set of

in-context examples and the corresponding grounding de-

scriptions, and then use LLMs to extrapolate new visual

programs tailored to the task. For example, in Figure 2(b),

we consider the task prompted by the following description:

The round cocktail table in
the corner of the room with the
blue and yellow poster.

In this case, the objective is to identify the round cocktail

table, which can be transformed into a operation: BOX0 =

LOC(‘round cocktail table’), where the LOC operator pro-

cesses the textual query and outputs the bounding boxes for

the target objects. We will elaborate the design of LOC

module in Section 3.4. Nevertheless, since there may exist

multiple similar objects in 3D scenairos, the identified re-

sults may not be unique. To overcome this issue, we further

pinpoint the blue and yellow poster as an auxiliary refer-

ence point by a operation: BOX1 = LOC(‘blue and yellow

poster’). Then, the CLOSEST module computes the prox-

imity between BOX0 (potential tables) and BOX1 (poster),

and selects the table closest to the poster as the result.

Table 1 summarizes the common relations in 3DVG.

Based on this, we present the detailed visual program by

developing three types of modules tailored for 3D contexts:

• View-independent modules: They operate on the 3D spa-

tial relations between objects. For example, the CLOS-

EST module can discern proximity independent of the

viewer’s position.

• View-dependent modules: They depend on the observer’s

vantage point. For instance, the RIGHT module deter-

mines the right window (TARGET) when looking at cab-

inets (BOX1) from all windows (BOX0).

• Functional modules: They include multiple operations

such as MIN and MAX, which select objects based on

the extremal criteria.

Right

BehindLeft

Front

Up Left Window Right Window

Figure 3. Addressing view-dependent relations: A shift to 2D ego-

centric view.

These three types of modules allow the output of one

operation to be fed into another operation, thus providing

flexible composability. They not only facilitate structured

and accurate inference sequences, but also integrate 3D and

2D data to yield a robust and interpretable result for 3DVG.

3.3. Addressing View-Dependent Relations

In this section, we discuss the intricacies of the view-

dependent relations, which are essential for interpreting

spatial relations within 3D space. Particularly, the main

challenge is the dynamic nature of these relations that will

change with the observer’s viewpoint. Although traditional

supervised approaches can learn these relations implicitly,

they cannot provide a definitive resolution.

On 2D planes, the relations, especially the left and right
are well defined. More specifically, right often corresponds

to the positive direction of the x-axis while the left implies

the negative direction. Motivated by this, we adopt a 2D

egocentric view approach to ensure a consistent frame of

reference for the spatial relations in Table 1.

Our view-dependent modules accept a target argument

and an optional anchors parameter. They output the target

objects that fulfill the spatial relation to the anchors. When

grounding queries do not specify targets, we treat targets as

anchors as well. This approach aligns with our intuition,

such as identifying the left window by treating all windows

themselves as the anchors.

As shown in Figure 3, we assume there is a virtual cam-

era in the center of the room, i.e., Pcenter, which can rotate to

align with the location of the anchor objects, i.e., Poa
. The

3D objects are projected onto a 2D plane from this vantage

point. Assume that the orthogonal camera has a intrinsic

matrix I , then the 2D projections can be obtained by

R, T = Lookat(Pcenter, Poa
, up), (1)

(u, v, w)T = I · (R|t) · P, (2)

where Lookat(·) is a view transformation function that

computes the rotation matrix R and translation matrix T
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[50], P = (x, y, z, 1)T denotes the 3D coordinate vector, u
and v respectively signify the x-axis and y-axis on the 2D

plane, and w is the depth value. According to the value of u
of an object’s center, we can determine its left or right posi-

tion — a lower u value indicates left. Similarly, w allows us

to distingulish the front from behind. By synthesizing these

concepts, we can define the between relation.

The transition from 3D to 2D egocentric perspec-

tiveprovides a clear and consistent solution to interprete

view-dependent relations in 3D space, thus enhancing our

model’s spatial reasoning ability.

3.4. Language-Object Correlation Module

Although our zero-shot 3DVG approach does not need ex-

tensive grounding annotations, it still requires a basic vi-

sion model for object localization. To overcome this issue,

previous works [4, 62] usually use pre-trained 3D detectors

[22, 38] to generate object proposals and the corresponding

labels within a fixed vocabulary. However, this approach

is restricted to a predefined object class set, thus limiting

the scope of class prediction. To enable open-vocabulary

segmentation, we develop an LOC module, combining the

advantages of 3D and 2D networks to extend the labeling

capability beyond the closed set. For example, in Figure 4,

considering the operation: BOX0 = LOC(‘round cocktail

table’), we first filter a subset of objects whose predicted la-

bel is table using a 3D instance segmentation network [43].

Then we only need to identify a round cocktail table from

this subset using the corresponding 2D imagery. By map-

ping each 3D proposal to its 2D image, we can extract the

color and texture details pertinent to our query. To further

pinpoint the round cocktail table shown in the Figure 4, we

consider three types of 2D multi-modal models:

• Image classification models: We construct a dynamic vo-

cabulary, including both the query term “round cocktail

table” and the class “table” using popular tools such as

CLIP [41]. Then we evaluate the cosine similarity be-

tween these terms and the imagery to find the best corre-

lation to our query.

• Visual question answering models: We raise the question:

Is there a [query]? to the model such as ViLT

[25]. Then the model sifts through its dictionary to sug-

gest the most likely answer, i.e., yes or no.

• General large models: We submit the same inquiry and

anticipate a response based on the generated text. This

process is crucial for verifying the alignment between the

detected table and the query.

We shall note that our approach is not limited to specific

3D or 2D models, allowing versatile incorporation of vari-

ous models. In the experiments, we will demonstrate that

the benefit of the LOC modules by comparing with the 3D-

only and 2D-only couterparts. Our design indicates a leap

forward in 3D open-vocabulary instance segmentation and

BOX0=LOC(object='round cocktail table’)

Closed-vocabulary
Instance Segmentation

Filter: 
Table

2D Multi-modal Models

round cocktail table
table

Image Classification Question Answering
Is there a round cocktail table?

General large model

Q: Is there a round cocktail table?
A: Yes, it is a round cocktail table.

Is there a round cocktail table

yes
no

Figure 4. Illustration of the language-object correlation module.

can improve the object recognition accuracy in 3DVG.

4. Experiments
4.1. Experimental Settings

Datasets. We use two popular datasets, i.e., ScanRefer [4]

and Nr3D [1] for experiments. ScanRefer is tailored for

3DVG that contains 51,500 sentence descriptions for 800

ScanNet scenes [9]. Nr3D is a human-written and free-form

dataset for 3DVG, collected by 2-player reference game

in 3D scenes. The sentences are divided into “easy” and

“hard” subsets, where the target object only contains one

same-class distractor in the “easy” subset but contains mul-

tiple ones in the “hard” subset. Depending on whether the

sentence requires a specific viewpoint to ground the referred

object, the dataset can also be partitioned into “view depe-

dent” and “view independent” subsets. For both datasets,

we evaluate the zero-shot approaches on the validation split.

Evaluation metrics. We consider two settings for perfor-

mance evaluation. The first one mandates the generation of

object proposals, aligning closely with real-world applica-

tions. The evaluation metrics are Acc@0.25 and Acc@0.5,

representing the percentage of correctly predicted bound-

ing boxes whose IoU exceeds 0.25 or 0.5 with the ground-

truth, respectively. This is the default setting for ScanRe-

fer dataset. The second one furnishes ground-truth object

masks, necessitating only classification, with an objective

to eradicate localization error and achieve high grounding

accuracy. This is the default setting for Nr3D dataset.

Baselines. We use six supervised and two open-vocabulary

3D scene understanding approaches for performance com-

parison. For supervised approaches, ScanRefer [4] and

ReferIt3DNet [1] encode the 3D point clouds and language

separately, and then fuse them to rank the objects by pre-

dicted scores. TGNN [18] and InstanceRefer [62] make

one further step by learning instance-wise features. 3DVG-

Transformer [68] and BUTD-DETR [21] respectively uti-

lize the Transformer [48] and DETR [3] architectures, rep-

resenting the SoTA approaches. For open-vocabulary ap-
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Unique Multiple Overall

Methods Supervision Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer [4] fully 65.0 43.3 30.6 19.8 37.3 24.3

TGNN [18] fully 64.5 53.0 27.0 21.9 34.3 29.7

InstanceRefer [62] fully 77.5 66.8 31.3 24.8 40.2 32.9

3DVG-Transformer [68] fully 81.9 60.6 39.3 28.4 47.6 34.7

BUTD-DETR [21] fully 84.2 66.3 46.6 35.1 52.2 39.8

LERF [24] - - - - - 4.8 0.9

OpenScene [35] - 20.1 13.1 11.1 4.4 13.2 6.5

Ours (2D only) - 32.5 27.8 16.1 14.6 20.0 17.6

Ours (3D only) - 57.1 49.4 25.9 23.3 33.1 29.3

Ours - 63.8 58.4 27.7 24.6 36.4 32.7

Table 2. 3DVG results on ScanRefer validation set. The accuracy on the “unique” subset, “multiple” subset, and whole validation set are all

provided. Following [4], we label the scene as “unique” if it only contains a single object of its class. Otherwise, we label it as “multiple”.

Method Easy Hard Dep. Indep. Overall

ReferIt3DNet [1] 43.6 27.9 32.5 37.1 35.6

InstanceRefer [62] 46.0 31.8 34.5 41.9 38.8

3DVG-Transformer [68] 48.5 34.8 34.8 43.7 40.8

BUTD-DETR [21] 60.7 48.4 46.0 58.0 54.6

Ours (2D only) 29.4 18.4 23.0 23.9 23.6

Ours (3D only) 45.9 27.9 34.9 38.4 36.7

Ours 46.5 31.7 36.8 40.0 39.0

Table 3. Performance analysis of language grounding on Nr3D.

We evaluate the top-1 accuracy using ground-truth boxes.

proaches, OpenScene [35] and LERF [24] aims to learn a

3D representation aligned with the 2D CLIP feature, thus

enabling free-form language grounding. The query T is

processed by the CLIP text encoder, and its similarity is

computed against the extracted point features. Finally, they

cluster the points with the highest score to determine the

target object.

4.2. Quantitative Results

ScanRefer. Table 2 provides a quantitative assessment of

the proposed approach on the ScanRefer dataset. We can

see that our zero-shot approach outperforms all baseline ap-

proaches. Specifically, our approach can achieve a 32.7

Acc@0.5 score, which surpasses part of supervised ap-

proaches such as ScanRefer and TGNN. On the other hand,

the open-vocabulary approaches LERF and OpenScene can

respectively achieve the overall accuracy of 4.8 and 13.2,

even with the 0.25 IoU threshold. This is due to their

limitations in reasoning and localization precision. More-

over, our zero-shot approach outperforms the approaches

that only utilize the 3D or 2D information in the LOC mod-

ule. This result demonstrates the effectiveness of incorpo-

rating visual programming and perception modules, high-

lighting our zero-shot approach in navigating 3DVG.

Nr3D. Table 3 shows the performance of different ap-

proaches on the Nr3D dataset, in which the ground-truth

instance mask is also provided. We can see that our zero-

shot approach further excels the supervised approach In-

stanceRefer. Specifically, our zero-shot approach on the

“view-dependent” split can achieve a 2% accuracy gain than

the 3DVG-Transformer approach. This performance gain

comes from the relation modules, strengthing the potential

of our zero-shot approach for 3DVG tasks.

4.3. Qualitative Results

Figure 5 shows the visualizations of the selected sam-

ples from the ScanRefer validation set. The four columns

present the ground-truth result, the supervised approach

BUTD-DETR, the dialog with LLM, and the visual pro-

gramming approaches, respectively. From Figure 5(a) and

Figure 5(b), we can observe that the dialog with LLM

and the visual programming approaches can achieve accu-

rate prediction results for view-independent relations, i.e.,

(above, under) without much training. On the contrary, both

the BUTD-DETR and the dialog with LLM approaches can-

not address the view-dependent relations, i.e., (left, front),
as shown in Figure 5(c) and Figure 5(d). The inherent un-

certainty of these relations reflects the limitations of exist-

ing methods. However, our visual programming approach

can leverage the 2D egocentric views, thus achieving accu-

rate predictions in 3D scenarios.

Figure 5(e) presents a failure case, where the dialog with

LLM approach cannot recognize chair has wheels since it

lacks open-vocabulary detection ability. Besides, the visual

programming approach makes wrong predictions because

the LLM cannot correctly recognize the relation pushed.

Fortunately, when we correct the program using the CLOS-

EST module, the visual programming approach can make

correct predictions.

4.4. Ablation Studies

Dialog with LLM vs. visual programming. We compare

the performance of the two proposed zero-shot 3DVG ap-

proaches on the ScanRefer validation set with 700 exam-
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It is a window. It is 
located above a recycle 
bin that has a blue top.
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(Dialog)
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The rolling office chair. 
The chair is under the 

desk.

(b) (a) 

There is a square beige 
armchair. It is left of a 

square table.

(c) 

This is a brown 
piano bench. It is in 
front of the piano.

(d) 

A desk chair is pushed into 
a small computer desk. The 

chair has wheels .

(e) 
Figure 5. Visualization results of 3D visual grounding. Rendered images of 3D scans are presented, including the ground-truth (blue),

incorrectly identified objects (red), and correctly identified objects (green).

ples. For both approaches, we use two GPT versions, i.e.,

GPT-3.5-turbo-0613 and GPT-4-0613. The cost of each

GPT version depends on the number of input and output

tokens. The experimental results are shown in Table 4.

We can observe that for both zero-shot approaches, GPT4-

based approach can achieve higher accuracy than GPT3.5-

based approach, even it induces a larger economic cost. On

the other hand, the visual programming approach always

outperforms the dialog with LLM approach in terms of ac-

curacy and cost, which demonstrates the effectiveness of the

proposed visual programming approach. For other experi-

ments, we use GPT3.5 to save cost.

Relation modules. We now ablate different relation mod-

ules in Section 3.2 to analyze their impact on the system per-

formance. The most important view-dependent and view-

independent modules are presented in Table 5 and 6, re-

spectively. We can see that LEFT and RIGHT are the most

important view-dependent relations, while CLOSEST is the

most important view-independent relation. This result is co-

herent with our motivation and design.

LOC module. We juxtapose our approach by separately

omitting the 3D component and 2D component. Both mod-

els utilize the instance mask prediction of Mask3D [43].

Particularly, the 2D-only model solely employs the paired

2D images for classification, while the 3D-only model just

uses the 3D result. As can be seen from Tables 2 and 3,

the 2D-only model performs worst when the images of in-

Method LLM Acc@0.5 Tokens Cost

Dialog GPT3.5 25.4 1959k $3.05

Dialog GPT4 27.5 1916k $62.6

Program GPT3.5 32.1 121k $0.19

Program GPT4 35.4 115k $4.24

Table 4. Performance comparison of the dialog with LLM and the

visual programming approaches.

LEFT RIGHT FRONT BEHIND BETWEEN Accuracy

26.5

� 32.4

� � 35.9

� � � 36.8

� � � � 38.4

� � � � � 39.0

Table 5. Ablation study of different view-dependent modules.

door scenes are complicated and have domain gaps with the

training samples. The 3D-only model performs better since

it can utilize the geometric information and is trained on

closed-set labels. Our full model can always achieve the

best performance because it integrates the geometric dis-

tinctiveness of point clouds and the open-vocabulary ability

of the image models.

Generalization. As discussed in Section 3.4, our frame-

work has strong adaptability for a spectrum of 3D and 2D

perception models. To validate this claim, we conduct ex-
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CLOSEST FARTHEST LOWER HIGHER Accuracy

18.8

� 30.7

� � 34.0

� � � 36.8

� � � � 39.0

Table 6. Ablation study of different view-independent modules.

periments using several representative models. For 3D per-

ception, we utilize three backbones, i.e., PointNet++ [37],

PointNeXt [39], and PointBERT [61]. For 2D perception,

we use an image classification model proposed in [41], a vi-

sual question answering model in [25], and a general large

model BLIP-2 [28] for testing. The results are shown in

Tables 7 and 8. We can observe that our framework is com-

patible with other models. Also, it can leverage the ad-

vancements within both 2D and 3D foundational models to

improve the performance. This cross-model effectiveness

demonstrates the robustness and future-proof nature of our

approach in the ever-evolving landscape of visual percep-

tion models.

2D Assistance Unique Multiple Acc@0.25

CLIP 62.5 27.1 35.7

ViLT 60.3 27.1 35.1

BLIP-2 63.8 27.7 36.4

Table 7. Ablation study on different 2D models.

3D Backbone View-dep. View-indep. Overall

PointNet++ 35.8 39.4 38.2

PointBert 36.0 39.8 38.6

PointNeXt 36.8 40.0 39.0

Table 8. Ablation study on different 3D backbones.

Effect of prompt size. We use different numbers of in-

context examples in the prompt for program generation.

The result is shown in Figure 6. It can be seen that the per-

formance on ScanRefer and Nr3d improve with the num-

ber of examples. This is because more examples can guide

LLMs to handle more cases in the visual program gener-

ation process. Meanwhile, it still follows the law of di-

minishing marginal utility. Moreover, we test the voting

technique [15] to aggregate the results from multiple runs,

which brings some performance gains.

Error analysis. We select a representative subset for each

dataset with around 100 samples and manually check the

rationales offered by the visual program. As illustrated

in Figure 7, the generation of accurate visual programs is

the primary error source. Therefore, the performance can

be improved by using more in-context examples and more

powerful LLMs. The second error source is the object lo-

calization and classification, indicating that object detection

and classification in 3D space remains a critical component.

Figure 6. Ablation study on the number of in-context examples.

The performance on Nr3D and ScanRefer improves with the num-

ber of in-context examples.

Figure 7. Breakdown of error sources.

5. Conclusion
In this paper, we present a novel zero-shot approach for

3DVG to eliminate the need for extensive annotations and

predefined vocabularies. A vanilla dialog with LLM ap-

proach is first proposed by taking interactive dialog with

LLMs. A visual programming approach is further devel-

oped, which leverages three types of modules to navigate

the intricate 3D relations. To adapt to open-vocabulary

scenarios, we also develop a LOC module to seamlessly

integrate both 3D and 2D features. Experimental results

demonstrate the superiority of the proposed approach and

highlight its potential to advance the field of 3DVG.
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