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Abstract

We investigate a new task in human motion prediction,
which is predicting motions under unexpected physical per-
turbation potentially involving multiple people. Compared
with existing research, this task involves predicting less con-
trolled, unpremeditated and pure reactive motions in re-
sponse to external impact and how such motions can propa-
gate through people. It brings new challenges such as data
scarcity and predicting complex interactions. To this end,
we propose a new method capitalizing differentiable physics
and deep neural networks, leading to an explicit Latent Dif-
ferentiable Physics (LDP) model. Through experiments, we
demonstrate that LDP has high data efficiency, outstand-
ing prediction accuracy, strong generalizability and good
explainability. Since there is no similar research, a com-
prehensive comparison with 11 adapted baselines from sev-
eral relevant domains is conducted, showing LDP outper-
forming existing research both quantitatively and qualita-
tively, improving prediction accuracy by as much as 70%,
and demonstrating significantly stronger generalization.

1. Introduction

Human motion prediction aims to predict the future
movements given the past motions, which has been heavily
studied in computer vision [17, 67–69]. Deviating from ex-
isting research, we are interested in a new task setting: pre-
dicting human motions, on both individual and group levels,
under unexpected physical perturbation. On the individual
level, physical perturbation causes reactive motions as op-
posed to active motions. On the group level, such perturba-
tions can propagate through people while possibly being in-
tensified, e.g. a push at the back of a line of people could be
transferred all the way to the front. These motions have not
been investigated. Incorporating physical perturbation po-
tentially extends motion prediction to new application do-
mains e.g. balance recovery in biomechanics [4, 18], reac-
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tive motions for character animation [3, 14], crowd crush
induced by pushing [6, 53], humanoid robots [24, 26], etc.

Incorporating physical perturbation in prediction im-
poses new challenges. First, the motions are purely reactive
and less controlled such that they are less smooth and less
coordinated among body parts. Furthermore, this pertur-
bation can propagate through people when they are packed
and the space to recover balance is restricted, such that an
attempt to recover balance relies on pushing others. Last but
not least, unlike existing research, the data for motion pre-
diction under perturbation is extremely scarce. Not only is it
rare to capture full-body motions under such circumstances,
but it is also difficult to record the interactions between peo-
ple, e.g. forces of pushes.

Before deep learning, many areas have formulated this
problem, which can be broadly divided into two categories.
The first is physics-based where human bodies are simpli-
fied into connected rigid bodies [37, 53]. The reaction to
push is solved via optimization to compute what forces are
needed to recover balance [40, 42], or through carefully tun-
ing feed-forward controllers [37, 38]. These methods, de-
spite aiming to mimic the balance recovery of humans, do
not learn from human data and therefore cannot predict hu-
man motions. Alternatively, reactions to perturbation can
be learned from data via regression [60], optimization [66],
or reinforcement learning [63]. Comparatively, this type
of method tends to generate more human-like motions, but
they are not designed for prediction.

Recently, deep learning [44, 56, 67, 68] have dominated
human motion prediction, but they cannot be adapted for
our problem. First, most datasets only contain single-body
motions without external perturbation. Even when multi-
ple people are captured, it is not under unexpected pertur-
bation. To predict push propagation, one would still need
to measure information e.g. contact forces between peo-
ple, ground friction, muscle forces, etc., which are all ab-
sent. This data scarcity essentially rules out most deep-
learning methods. Furthermore, there is also little work in
modelling the physical/bio-mechanical interactions that can
potentially propagate through people. Current research in-
cludes motion forecasting, generation and synthesis. Most
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motion forecasting methods [17, 33, 67] are for a single
person, with a few recent exceptions [44, 68, 69] but not
involving perturbation. Alternatively, our problem could
be formulated as motion generation conditioned on external
perturbation. However, current methods [8, 46, 49–51, 73]
again do not explicitly model close interactions among mul-
tiple people caused by perturbation. Theoretically, motion
synthesis [36, 54, 55, 64] is a possibility, which potentially
can predict motions under perturbation. But they require
dense control signals to guide the synthesis, or/and exten-
sive physical simulation. Therefore, it requires manual la-
bor or/and is difficult to scale to many people.

To address the aforementioned challenges, we need a
model that has high data efficiency, strong generalizability
and can model interactions between people. In other words,
this model needs to be able to learn from a small number
of samples, can predict accurately in situations similar to
the data, and is capable of generating plausible motions in
drastically different scenarios. To this end, we propose a
new deep-learning model for human motion prediction un-
der unexpected perturbation. To address the data scarcity,
we propose a scalable differentiable physics (DP) model
for the human body, to learn the balance strategy and inter-
action propagation between people, inspired by recent DP
research [15, 59, 71]. However, naively following existing
DP approaches means we would need to make the full-body
simulation differentiable for each individual. Not only is
motion intrinsically indifferentiable due to e.g. foot contact,
but full-body physical models are too computationally ex-
pensive to scale. Therefore, we propose a latent DP space
where the full-body physics is reduced into a differentiable
inverted pendulum model (IPM) [19, 25, 29, 41], and the
full-body poses are mapped to and recovered from the IPM.
At the low level, the IPM governs body physics and learns
key forces such as ground friction and balance recovery. As
the IPM is simple, the required data is small. At the high
level, we use neural networks to recover the full-body pose
from the IPM, which also does not require much data as the
IPM provides strong guidance. We refer to our model as the
Latent Differentiable Physics (LDP) model. Note different
from other latent physics models where the dimensionality
reduction is implicit [47, 62], ours is explicit and physically
meaningful (i.e. mapping from full-body to IPM).

We show LDP can learn from very limited data and per-
form well under many widely used metrics. Since there
is no similar work to our best knowledge, we adapt a
wide range of baseline methods in the most relevant ar-
eas (motion forecasting, motion generation and motion syn-
thesis), in single-person and multi-people scenarios, for
comparison. The results demonstrate that LDP outper-
forms them both quantitatively and qualitatively. Notably,
our model exhibits remarkable generalizability. It can ac-
commodate unseen out-of-distribution perturbations, group

sizes, and group formations, potentially extending our re-
search beyond human motion prediction into broader areas,
e.g. crowd simulation. Furthermore, owing to the explicit
physics model, our model possesses a distinctive feature:
explainability, providing plausible explanations for the pre-
dicted motion. Formally, our contributions include:
• A new task: human motion prediction under unexpected

perturbation. To our best knowledge, this is the first deep-
learning paper addressing this problem.

• A novel differentiable physics model in human motion
prediction that explicitly considers physical interactions.

• A new differentiable IPM model that learns body physics
under complex interactions.

• A novel differentiable interaction model that can learn in-
teractions and interaction propagation.

2. Related Work
Human Motion Prediction. Compared with traditional
statistical machine learning [31, 57], deep learning has
dominated human motion prediction recently. It can be
formulated as a sequence-to-sequence task modelled by
Recurrent Neural Networks [13, 22, 43]. Also, human
skeletons can be seen as graphs so that spatio-temporal
graph convolutions can be employed [9, 10, 33, 34, 72].
Transformer-based methods [1, 5] use the attention mech-
anism to capture spatial and temporal correlations. Re-
cently, there has been a surge of interest in multi-people
motion prediction [44, 58, 68, 69]. MRT [58] models the
social interactions between humans via a global encoder.
JRFormer [68] exploits the joint relation representation for
modelling the interactions where physical interactions are
considered implicitly. However, existing methods share a
common limitation - they do not consider unexpected per-
turbations, restricting their applications in predicting ac-
tively planned/controlled motions. Additionally, explicit
physical interactions between people have often been over-
looked in these methods. Our model extends the research to
a more challenging scenario involving unexpected pertur-
bation and perturbation propagation. The explicit physics
knowledge in our model enables it to achieve better predic-
tion, generalizability, and explainability.

Traditional Research on Balance Recovery Relevant
research has been conducted in other fields where tradi-
tional methods mainly focus on modelling balance recovery
strategies in response to perturbations [4, 6, 18, 24, 26, 42].
Brodie et al. [4] analyzed the biomechanical mechanisms
in the balance recovery following an unexpected pertur-
bation such as trips and slips. Chen et al. [6] studied
the dynamics of individuals under pushing in crowds. A
new controller was proposed to recover balance for bipedal
robots under perturbation [42]. In parallel, some traditional
methods aim to synthesize reactive motions to perturba-
tion [3, 39, 40, 45, 60]. Arikan et al. [3] proposed an al-
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Figure 1. Overview of our model. Given a frame Xt, it is first mapped into the IPM space via Skeleton-to-IPM to get its IPM state It.
Then It is simulated for one step via Differentiable IPM to compute It+1. Lastly, the full-body frame Xt+1 is recovered from It+1 via
Skeleton Restoration Model. The IPM is shown in the right figure. The full-body state X is represented by joint positions.

gorithm for selecting and adjusting the motions from data
to synthesize the motion for animating virtual characters be-
ing pushed. [39, 45] explored how to turn the given motions
under perturbation into physically valid ones. Overall, tra-
ditional methods cannot predict motions under perturbation,
either because they do not learn from data or have limited
learning capacity. By contrast, we incorporate DP with deep
neural networks to predict such human motions.

Differentiable Physics. DP is an emerging field fo-
cusing on combining traditional physics models with deep
learning techniques, to provide high data efficiency and
explainability. Consequently, many domains have inves-
tigated differentiable physics such as robotics [7, 30, 61],
physics [20, 23], computer vision [70, 71], and computer
graphics [15, 35]. We propose the first explicit latent differ-
entiable physics model for human motion prediction under
unexpected physical perturbation.

3. Methodology
Problem Definition. Given a motion with multiple people,
we denote the skeletal pose of the nth person at frame t as
Xn

t ∈ RJ×3 where J is the joint number. Unlike existing
research aiming to predict p frames {X̂n

T−p+1:T }Nn=1 given
k frames {Xn

1:k}Nn=1 history, we minimize the required his-
tory due to limited data. Given the initial frame {Xn

0 }Nn=1

and the input forces F input, we aim to predict the following
T frames, by solving an initial problem:

{X̂n
1:T }Nn=1 = Sγ({Xn

0 }Nn=1, IPMη(M({Xn
0 }Nn=1), F

input)) (1)

where {X̂n
1:T }Nn=1 is the predicted T frames. M is a

Skeleton-to-IPM mapping M : X → I where X and I are
the state space of skeleton poses (represented by joint posi-
tions) and the IPM respectively. IPMη is a Differentiable
IPM with learnable parameters η. Finally, Sγ is the inverse
mapping, i.e. Skeleton Restoration Model, Sγ : I → X , re-
constructing full-body skeleton pose from IPM states, with
learnable parameters γ. An overview of our model is shown
in Fig. 1. Given a motion, we map the full-body poses

into their corresponding states of an IPM [19, 25, 29] as
{In0 }Nn=1 = M({Xn

0 }Nn=1). By simulating the IPM for-
ward in time via IPMη , it can learn the key parameters η.
The interaction forces between people are also learned si-
multaneously. Meanwhile, our Skeleton Restoration Model
Sγ recovers the full-body poses from the predicted IPM
states from IPMη . For training, we minimize the mean
squared error (MSE) between the predicted {X̂n

1:T }Nn=1 and
the ground-truth poses {Xn

1:T }Nn=1:

Loss = MSE({X̂n
1:T }Nn=1, {Xn

1:T }Nn=1) (2)

where we need to specify Sγ , IPMη and M in Eq. (1). We
give key equations and model information below and refer
the readers to the supplementary material (SM) for details.

3.1. Latent Physics Space for Full-body Motions

3.1.1 Background and Skeleton-to-IPM Mapping

We first introduce IPMη and M in Eq. (1). Differen-
tiable physics (DP) has shown extremely high data effi-
ciency because physics can act as a strong inductive bias
and eliminates the reliance on large amounts of training
data [11, 59, 71]. For our model, a key design choice is
to choose a DP model that has the right level of granularity
while being scalable. Among many possible choices from
full-body physics [2] to simple rods [65], we choose the In-
verted Pendulum Model (IPM) [19, 25, 29] as it can fully
capture balance loss and recovery while being scalable.

Our IPM has a massless rod mounted to a cart with a
point mass at the end of the rod (Fig. 1 right). Denoting its
state I ∋ It = [xt, yt, θt, ϕt] ∈ R4 at time step t where
[x, y] is the coordinates of the cart in the xy-plane and [θ, ϕ]
is the rotation angles of the rod around YL axis and XL

axis in the local coordinate system ΣL, respectively. Our
full-body pose X is represented by 22 joint positions. M
in Eq. (1) is defined as (Fig. 1 left): the hip joint is mapped
onto the point mass, and the midpoint between the two ankle
joints is mapped onto the center of the cart. The point mass
and the cart jointly determine the two angles [θ, ϕ].
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Next, IPMη is defined. Given the initial IPM state, we
can simulate it in time by solving Eq. (3) repeatedly [41]:

M(It, lt)Ït + C(It, İt, lt) +G(It, lt) = Fnet
t (3)

where M ∈ R4×4, C ∈ R4×1 and G ∈ R4×1 are the iner-
tia matrix, the Centrifugal/Coriolis matrix, and the external
force such as gravity, which are all functions of state It,
its first-order derivative İt and the rod length lt. While the
standard IPM has a fixed rod length, we allow it to change as
the distance between the hip and the middle of two ankles
can drastically change in human motions. Therefore, we
also predict lt at each time step. Overall given the net force
Fnet
t ∈ R4 and the rod length lt, we can solve Eq. (3) for the

next state It+1 via a semi-implicit scheme İt+1 = İt+△tÏt
and It+1 = It +△tİt+1, where △t is the time step.

Finally, the learnable parameters η in IPMη parameter-
ize Fnet

t and the rod length lt, where the formulation differs
between single-person and multi-people, and will be elabo-
rated later. It’s notable that Fnet

t in Eq. (3) is the general-
ized force. Using the generalized force (instead of the Euler
force) keeps the motion equation simple, and its entries have
explicit physical meanings as shown later.

3.1.2 Single-Person Prediction via Differentiable IPM

Under single-person, we only consider Balance-Recovery
and Friction (blue blocks in Fig. 1 Differentiable IPM) when
predicting Fnet. Specifically, we consider three forces:

Fnet
t = F self

t + ft + F input
t (4)

where F self
t , ft, and F input

t are the balance recovery force,
the ground friction and the external perturbation. The
Balance-Recovery module learns F self

t which is further de-
composed into F self

t = F self−pd
t +F self−nn

t . This decom-
position is because F self

t is the muscle force at the hinge
of the rod which serves two purposes. The first one is to
give a feed-forward torque F self−pd

t to react to perturba-
tion for balance recovery, and the second is to give a torque
correction F self−nn

t for tracking observed motions. In gen-
eralized forces, we parameterize F self−pd

t by proportional
derivative (PD) control:

F self−pd
t = Kpet +Kdėt, et = sd − st (5)

where et is the PD state error, Kp and Kd are the control
parameters. Different from the IPM state, the current PD
state is st = [ẋt, ẏt, θt, ϕt] and the desired PD state sd is
[0, 0, 0, 0]. In other words, we assume people tend to re-
cover to the upright body pose and zero linear velocity af-
ter unexpected perturbation, which is a widely accepted as-
sumption [28, 32, 48]. However, F self−pd

t only captures
the general balance recovery strategy. To mimic the data,

we parameterize F self−nn
t with a Long Short Term Mem-

ory (LSTM) network:

F self−nn
t = LSTM([θt, ϕt, ẋt, ẏt, θ̇t, ϕ̇t,M ]), (6)

where M is the mass of the person.
Ground friction ft is the main reason for successful self-

balance and therefore needs to be explicitly considered.
In generalized forces, friction affects the IPM motion via
damping [41]. So we parameterize ft = −µ[ẋt, ẏt, 0, 0],
where the parameter µ is a learnable positive scalar and
shared by all people for simplicity. The damping force
only directly influences the cart motion. Finally, to com-
pute Eq. (3), we also need to predict the change of the rod
length lt, where we employ a multi-layer perception (MLP):

△lt = MLP ([θt, ϕt, ẋt, ẏt, θ̇t, ϕ̇t, F
self
t ,M, lt]) (7)

where lt is the rod length at time step t. We predict the rod
length at the next time step by lt+1 = lt+△lt. Finally, after
obtaining the prediction of Fnet

t and lt at every time step t,
we can calculate the next IPM state by solving Eq. (3) via
the semi-implicit scheme mentioned above.

3.1.3 Multi-people with Differentiable Interaction

When there is more than one person, the complexity in-
creases quickly. The main reason is that the interaction
propagation among people is: (1) complex, e.g. compli-
cated contact positions/duration/forces. (2) hard to capture
in data. Therefore, we propose to consider them as latent
variables that cannot be directly observed. But again large
amounts of data would be needed if we only relied on data
to infer these variables. Therefore we model the interactions
in the reduced IPM space, rather than the original space, so
that it becomes a Differential Interaction Model (DIM).

Our DIM models a differentiable interaction force be-
tween any two IPMs and is learned in the Interaction mod-
ule (the yellow block in Fig. 1 Differentiable IPM). The
overall net force on an IPM in multi-people then becomes:

Fnet
t = F self

t + F inta
t,n + ft + F input

t (8)

where F self
t , ft and F input

t are the same as Eq. (4). Note
all forces are learned and shared among all people, so that
we can generalize to an arbitrary number of people later.
F inta
t,n ∈ R4 is the new interaction force:

F inta
t,n =

∑
j∈Ωt,n

F inta
t,nj =

∑
j∈Ωt,n

F inta−bs
t,nj + F inta−nn

t,nj (9)

where Ωt,n is the neighborhood of the person n at time
t. F inta

t,nj is the interaction force applied onto person n
from her/his neighbor j ∈ Ωt,n. We model two factors in
F inta
t,nj : F inta−bs

t,nj and F inta−nn
t,nj . The first F inta−bs

t,nj repre-
sents a consistent and trackable repulsive tendency when
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two IPMs get close, while F inta−nn
t,nj captures the varia-

tions of the repulsion. So we expect F inta−bs
t,nj to capture

most of the interaction while F inta−nn
t,nj being a supplement.

To this end, we separate the dimensions of an IPM state
I = [x, y, θ, ϕ] into two groups [x, y] and [θ, ϕ] and treat
them separately as F bs−xy

nj ∈ R2 and F bs−θϕ
nj ∈ R2, such

that F inta−bs
t,nj = [F bs−xy

nj , F bs−θϕ
nj ]T, where we omit the

time subscript t and the superscript inta for simplicity.
For F bs−xy

nj , we define a repulsive potential energy be-
tween two close IPMs which leads to a repulsive force:

F bs−xy
nj (rnj) = −∇rnj

U [b(rnj)], U [b] = ue−
b
σ (10)

b =
1

2

√
(∥rnj∥+ ∥rnj −△tṙjn∥)2 − ∥△tṙjn∥2. (11)

where rnj = rn − rj is the relative position of the carts of
a person and his/her neighbor j, i.e. rn is the vector [x, y]
in the IPM state In. The U [b] is the repulsive potential
with elliptical equipotential lines, and u and σ are hyper-
parameters. b is the semi-minor axis of the ellipse where
ṙjn = ṙj − ṙn is the relative velocity.

For F bs−θϕ
nj , we treat it as a force with a constant mag-

nitude (tunable hyperparameter) and apply it on θ and ϕ
independently. Although the magnitude is constant, its di-
rections can vary in different situations. We explain it for θ
and the same principle applies to ϕ. On the high level, we
need to decide the direction of F bs−θϕ

nj based on the states
of two close IPMs. θ can be positive, zero and negative. For
two IPMs, this produces a total of 9 possible states, which
we detail in the SM.

After defining F inta−bs
t,nj , we explain F inta−nn

t,nj which
should capture the variation of interactions. Unlike
F inta−bs
t,nj where we can define an explicit form, we learn

F inta−nn
t,nj via an MLP:

Fnn
nj = MLP ([xnj , ynj , θn, ϕn, θj , ϕj , ẋnj , ẏnj , θ̇nj , ϕ̇nj ]) (12)

where xnj = xn − xj and ẋnj = ẋn − ẋj . ynj , ẏnj , θ̇nj
and ϕ̇nj are computed in a similar fashion.

3.2. Skeleton Restoration Model

To predict full-body motion, we recover the full-body pose
from the predicted IPM states. This is divided into two steps
as shown in Fig. 1. We first recover the lower body from the
IPM state, then recover the upper body from both the IPM
state and the recovered low body. There are two reasons
for this design. First, the Skeleton-to-IPM mapping dictates
that the IPM has a higher correlation with the lower body
than with the upper body. Also, the dynamics of the lower
body and the upper body are relatively independent [27, 49],
i.e. similar low-body motions can correspond to different
upper-body motions, e.g. different styles in walking. There-
fore, we use two models to recover the lower body and the

Figure 2. FZJ Push [12]. The blue agent was pushed by the punch
bag and then he pushed other people.

upper body, respectively. Overall, although the Skeleton
Restoration Model involves deep neural networks, the re-
quired data is small as there is strong IPM guidance.

Lower Body Restoration. We use a Conditional Varia-
tional Autoencoder (CVAE) [46, 49, 64] (CVAE-Lower in
Fig. 1) to learn a Normal distribution of the lower body
X l

t+1 in the latent space conditioned on X l
t . During infer-

ence, since X l
t+1 is unavailable, we train a sampler (Lower

Sampler) to sample the latent space to generate the next
frame X̂ l

t+1. The Lower Sampler network is an MLP. It
takes as input X l

t , It+1, and outputs a latent code of CVAE-
Lower which is then decoded. Overall, CVAE-Lower takes
as input the current lower body X l

t and the predicted IPM
state It+1, to predict the next lower body X̂ l

t+1, essentially
reconstructing the lower body under the IPM guidance.

Upper Body Restoration. Similarly, we also use a
CVAE named CVAE-Upper, except this time we use both
the lower body predicted by CVAE-Lower X̂ l

t+1 and the
current upper body Xu

t as the condition. A sampler (Upper
Sampler) is also used to take as input It+1, X̂ l

t+1 and Xu
t ,

and sample the latent space of CVAE-Upper, which is then
decoded to predict the upper body at the next frame X̂u

t+1.

3.3. Training with Auxiliary Losses

In summary, the learnable parameters of our model include:
the LSTM (Eq. (6)), the MLPs (Eq. (7), Eq. (12)), the
ground friction coefficent µ, CVAE-Lower, CVAE-Upper,
Lower Sampler and Upper Sampler. Other than the main
loss in Eq. (2), we also use other auxiliary losses such as
foot sliding, IPM state MSE, etc. We also pre-train some
components for initialization. Due to space limit, all de-
tails including training/prediction algorithms, implementa-
tion details, parameters, code, data, etc. are in the SM.

4. Experiments

4.1. Dataset and Metrics

Data for our problem is extremely scarce compared with
other human motion prediction research. The only publicly
available dataset, to our best knowledge, is a new dataset
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Figure 3. Perturbations with different magnitudes in single-person (top) and multi-people (bottom).

Method MPJPE hipADE hipFDE MBLE FSE

A2M 0.403 0.386 0.730 0.019 0.200

ACTOR 0.362 0.338 0.591 0.020 0.434

MDM 0.500 0.424 0.686 0 2.567

RMDiffuse 0.228 0.202 0.299 0.011 0.790

PhyVae 0.260 0.249 0.460 0.009 0.170

siMLPe 0.130 0.117 0.226 0.006 0.182

EqMotion 0.296 0.270 0.543 0.064 1.552

Ours 0.097 0.086 0.171 0.002 0.131

MRT 0.162 0.140 0.282 0.010 0.256

DuMMF 0.312 0.285 0.480 0 3.194

TBIFormer 0.204 0.177 0.305 0.010 0.234

JRFormer 0.181 0.152 0.260 0.012 0.932

Ours 0.106 0.092 0.218 0.003 0.069

Table 1. Metrics in single-person (top) and multi-people (bottom).

[12] named FZJ Push. The dataset includes standing indi-
viduals, groups of four, and groups of five, with one per-
son pushed by a punching bag unexpectedly and the push
is propagated through the group. In total, the dataset in-
cludes only 45 single-person motions and 63 multi-people
motions. This is considerably less than data normally used
for human motion prediction. As shown later, the necessity
of a model with high data efficiency is crucial. The motion
is recorded at 60 Hz. Shown in Fig. 2 a, a hanging punch
bag is operated by a person to give pushes of various magni-
tudes to one person in the group. Then the skeletal motions
(Fig. 2 b) are recorded. There is a pressure sensor measur-
ing the pushing forces on the punching bag. However, the
pushing forces between people are not recorded. We discard
redundant data such as frames in waiting.

For evaluation, we adopt five widely used metrics [49,
67, 69]: Mean Per Joint Position Error (MPJPE) in meters,
Average Displacement Error at the hip (hipADE) in meters,
Final Displacement Error at the hip (hipFDE) in meters,
Mean Bone Length Error (MBLE) in meters, and Foot Skat-
ing Error (FSE) in centimeters. Details and justifications for
these metrics are in the SM.

4.2. Baselines

There is no similar work in human motion prediction to
our best knowledge, so we carefully review a wide spec-
trum of research in motion prediction, synthesis and gener-
ation, and choose the latest methods in each field for com-
parison. Specifically, we choose 11 baselines: A2M [16],
ACTOR [46], MDM [51], RMDiffuse [73], PhyVae [64],
siMLPe [17] and EqMotion [67] for the single-person sce-
nario, and MRT [58], DuMMF [69], TBIFormer [44] and
JRFormer [68] for the multi-people scenario. The specific
adaptation varies according to the baseline, and we give the
details in the SM. One notable difference is our model only
requires the first frame with the perturbation force during in-
ference, while the other methods tend to require much more
information such as multiple frames.

4.3. Quantitative Results

The single-person comparison is shown in Tab. 1 top. De-
spite requiring the minimal information, our model still
achieves the best performance on all metrics except the
MBLE. MDM obtained 0 MBLE because its parameteri-
zation is joint angle based, i.e. no bone-length change in-
curred. A joint angle parameterization could also work
with our model but in practice, we find a joint-position-
based parameterization works better. Across different met-
rics, LDP outperforms the best baseline by as much as
25.38%, 26.50%, 24.34%, 66.67%, and 22.94% on MPJPE,
hipADE, hipFDE, MBLE, and FSE respectively, excluding
the MBLE of MDM. We tend to attribute the higher perfor-
mance to the explicit physics-based inductive biases embed-
ded in the design of LDP. Furthermore, we look into per-
formances under perturbations with different magnitudes
(weak, medium and strong) in Fig. 3 top, where we only
include the best three baselines and leave the full compari-
son in SM. Stronger pushes lead to stronger responses and
tend to be harder to predict. This is especially obvious in
metrics related to motion tracking, i.e. MPJPE, hipADE
and hipFDE, where as the push becomes stronger, the er-
rors become larger. Comparatively, LDP consistently out-
performs other baselines, demonstrating its effectiveness in
strong perturbations. In addition, compared with weak and
medium pushes, LDP has a slower error increment under
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Figure 4. Visual Results in the Single-person scenario.

strong pushes, in contrast to the more volatile performances
of other baselines, showing better generalizability. Overall,
LDP either ranks as the best or is close to the top perfor-
mance across metrics and perturbation levels.

The results under the multi-people scenario are shown in
Tab. 1 bottom. The MBLE of DuMMF is 0 because it em-
ploys joint-angle-based parameterization. Multi-people is a
challenging task for all methods. On all metrics, LDP out-
performs all baselines by at least 34.57%, 34.29%, 16.15%,
70%, and 70.51% on MPJPE, hipADE, hipFDE, MBLE,
and FSE, respectively, (excluding the MBLE of DuMMF).
Moreover, we show detailed analysis under perturbations
with different magnitudes in Fig. 3 bottom, with the three
best baselines. One challenge in multi-people is to predict
the onset and duration of interactions. The baseline meth-
ods need to learn the interactions by purely fitting the data,
while our method learns them as a latent physical process.
Consequently, none of the baselines can predict well, e.g.
they predict moving without being pushed or not moving
while being pushed, while our model can learn to predict
the interactions and their propagation well. Overall, our
model achieves or is close to the best performance across
metrics and perturbation levels.

4.4. Qualitative Results

We visually compare our methods with the best three base-
lines under single-person in Fig. 4. Our prediction has
the highest quality and is the most similar to the ground
truth. RMDiffuse severely violates bone lengths, especially
around ankles, and generates jittering motions. PhyVae
predicts walking but with rather small steps. siMLPe pre-
dicts only a single step. The multi-people scenario is much
harder (Fig. 5), where both individual reactions and inter-
actions need to be predicted. MRT and TBIFormer suffer

Method MPJPE hipADE hipFDE MBLE FSE

no IPM, Full 0.217 0.195 0.341 0.007 0.196

no IPM, Low-up 0.206 0.184 0.320 0.009 0.313

IPM, Full 0.110 0.094 0.242 0.004 0.126

IPM, Low-up 0.106 0.092 0.218 0.003 0.069

Table 2. Ablation study with (1) IPM and no IPM, (2) Full body
and Lower-up body pose reconstruction.

from serious intersections between individuals. JRFormer
predicts merely subtle movements that deviate considerably
from the ground truth. Our model generates the most simi-
lar prediction to the ground truth.

Explainability In Fig. 5 bottom, we show the learned net
forces on the second person (from left), to provide plausible
explanations of the predicted motion. This person remains
still initially under zero net force, then experiences a push
from the first person, resulting in forces in x and θ, and
small forces in y and ϕ. Then the third person is pushed by
the second, resulting in the change of the net force on the
second person from positive to negative in x and θ. Finally,
the second person recovers the balance. Our model predicts
the motion results from plausible forces, and therefore pos-
sess strong explainability.

4.5. Generalization

LDP can easily generalize to out-of-distribution scenarios,
e.g. unseen pushes, more people, different formations, etc.
Since there is no ground truth, we show the visual result
of a challenging generalization scenario in Fig. 6, where 13
people stand in a diamond formation and 3 of them indi-
cated by the orange arrows are pushed. Note the data only
contain up to 5 people in simple formations such as one
or two lines. So this 13-people formation is totally out-of-
distribution. However, our model can still generate plausi-
ble motions for the entire group, given only the initial poses
and the perturbation forces, demonstrating strong general-
izability. More experiments can be found in the SM.

4.6. Ablation Study

The Differentiable IPM and the Skeleton Restoration Model
are two key components of our model. We conduct the abla-
tion study to assess the effectiveness of them. There are four
combinations: with/without IPM, and full-body restoration
or separate restoration (first lower body then upper body).
When the IPM is absent, the next frame is directly predicted
by either one full-body CVAE (Full) or two CVAEs with
one for the lower body and the other for the upper body
(Low-up). Without IPM, there are also no samplers (Lower
Sampler and Upper Sampler in Fig. 1) so we need to directly
sample in the latent space of the CVAEs. We randomly sam-
ple the latent space 3 times when predicting the next frame
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Figure 5. Multi-people comparison. The last row shows the learned net force on the second (from the left) person. The bar height indicates
the magnitude and the sign indicates the direction, where the people move in the positive direction of the x-axis.

Figure 6. A 13-person group in a diamond formation with three people (indicated by orange arrows) being pushed.

and average the results. In contrast, with IPM, we can train
the samplers to only sample once to predict the next frame.

Results are shown in Tab. 2. When there is no IPM,
the performance deteriorates significantly across all met-
rics. With the IPM guidance, all metrics are significantly
improved. Further, the Low-up separation of the body im-
proves the performance further across all metrics under the
IPM guidance, especially on the FSE. However, it exhibits
limited effectiveness without the IPM guidance, even result-
ing in a bad FSE. This is because IPM states have strong
correlations with the lower body, without which the Low-
up is unable to improve the performance significantly even
when the lower body is separately predicted.

5. Conclusion

We proposed a new task, human motion prediction under
unexpected perturbation, which extends human motion pre-
diction into new application domains. To this end, we have
identified and overcome new challenges e.g. data scarcity
and interaction modelling, by proposing a new class of deep

learning models based on differentiable physics. Our model
outperforms existing methods despite requiring far less in-
formation and shows strong generalization to unseen sce-
narios. One limitation is our method requires explicit mod-
elling of the physical process, making the model not as gen-
eral as black-box deep neural nets that can be plug-and-play
on data. However, we argue this is mainly driven by the
data scarcity. Also, it brings stronger generalizability and
interpretability. In future, we will investigate more general
physics models that can potentially accommodate more di-
versified physical interactions between people. A big differ-
ence between other existing datasets [21, 52] and the dataset
FZJ Push is the former is active motions while the latter is
passive balance recovery. We will also explore LDP on ac-
tion motions in future.
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