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Question: You are shown
subtraction <image 1>, T2 weighted
<image 2> and T1 weighted axial
<image 3> from a screening breast
MRI. What is the etiology of the
finding in the left breast?
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Figure 1. Overview of the MMMU dataset. MMMU presents four challenges: 1) comprehensiveness: 11.5K college-level problems across six
broad disciplines and 30 college subjects; 2) highly heterogeneous image types; 3) interleaved text and images; 4) expert-level perception
and reasoning rooted in deep subject knowledge.

Abstract

We introduce MMMU: a new benchmark designed to eval-
uate multimodal models on massive multi-discipline tasks
demanding college-level subject knowledge and deliberate
reasoning. MMMU includes 11.5K meticulously collected
multimodal questions from college exams, quizzes, and text-
books, covering six core disciplines: Art & Design, Busi-
ness, Science, Health & Medicine, Humanities & Social
Science, and Tech & Engineering. These questions span
30 subjects and 183 subfields, comprising 30 highly het-
erogeneous image types, such as charts, diagrams, maps,
tables, music sheets, and chemical structures. Unlike ex-
isting benchmarks, MMMU focuses on advanced perception
and reasoning with domain-specific knowledge, challenging
models to perform tasks akin to those faced by experts. The
evaluation of 28 open-source LMMs as well as the propri-
etary GPT-4V(ision) and Gemini highlights the substantial
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challenges posed by MMMU. Even the advanced GPT-4V and
Gemini Ultra only achieve accuracies of 56% and 59% re-
spectively, indicating significant room for improvement. We
believe MMMU will stimulate the community to build next-
generation multimodal foundation models towards expert
artificial general intelligence.

1. Introduction
Rapid advances in large language models (LLMs) [13, 54,
67] have sparked broad discussions on the controversial
concept of artificial general intelligence (AGI), often used
to describe AI systems that perform on par or surpass hu-
mans at most tasks [1, 7, 21, 29, 49, 52]. Candid and con-
structive discussions on AGI have been challenging due to a
lack of shared operationalizable definitions. In an attempt to
remedy this, Morris et al. [52] propose a leveled taxonomy
for AGI that centers around both generality (or breadth) and
performance (or depth). In the suggested taxonomy, Level
3, or Expert AGI, marks a critical milestone. It denotes an
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Art & Design
Question: Among the following harmonic intervals, 
which one is constructed incorrectly?
Options:

(A) Major third <image 1>
(B) Diminished fifth <image 2>
(C) Minor seventh <image 3>
(D) Diminished sixth <image 4>

Business
Question: …The graph shown is compiled from data 
collected by Gallup <image 1>. Find the probability 
that the selected Emotional Health Index Score is 
between 80.5 and 82?

Options:
(A) 0 (B) 0.2142
(C) 0.3571 (D) 0.5

Health & Medicine
Question: You are shown subtraction <image 1>, 
T2 weighted <image 2> and T1 weighted axial 
<image 3> from a screening breast MRI. What is the 
etiology of the finding in the left breast?
Options:
(A) Susceptibility artifact
(B) Hematoma
(C) Fat necrosis (D) Silicone granuloma

Science

Tech & Engineering
Question: Find the VCE for the circuit shown in 
<image 1>. Neglect VBE

Answer: 3.75
Explanation: …IE = [(VEE) / 
(RE)] = [(5 V) / (4 k-ohm)] = 
1.25 mA; VCE = VCC - IERL = 
10 V - (1.25 mA) 5 k-ohm; 
VCE = 10 V - 6.25 V = 3.75 V

Subject: Music; Subfield: Music; 
Image Type: Sheet Music; 
Difficulty: Medium

Subject: Marketing; Subfield: Market 
Research; Image Type: Plots and Charts; 
Difficulty: Medium

Subject: Clinical Medicine; Subfield: Clinical 
Radiology; Image Type: Body Scans: MRI, CT.; 
Difficulty: Hard

Subject: Electronics; Subfield: Analog 
electronics; Image Type: Diagrams; 
Difficulty: Hard

Subject: Math; Subfield: Calculus;
Image Type: Mathematical Notations; 
Difficulty: Easy

Question: In the political
cartoon, the United States is
seen as fulfilling which of the
following roles? <image 1>
Option:
(A) Oppressor
(B) Imperialist
(C) Savior (D) Isolationist

Humanities & Social Science

Subject: History; Subfield: Modern
History; Image Type: Comics and Cartoons; 
Difficulty: Easy

Question: <image 1> The region bounded by the
graph as shown above. Choose an integral
expression that can be used to find the area of R.
Options:
(A) ∫ 𝒇 𝒙 − 𝒈 𝒙 𝒅𝒙𝟏.𝟓

𝟎
(B) ∫ 𝑔 𝑥 − 𝑓 𝑥 𝑑𝑥%.&

'
(C) ∫ 𝑓 𝑥 − 𝑔 𝑥 𝑑𝑥(

' 	
(D) ∫ 𝑔 𝑥 − 𝑥 𝑥 𝑑𝑥(

'

Figure 2. Sampled MMMU examples from each discipline. The questions and images need expert-level knowledge to understand and reason.

AI system that reaches “at least 90th percentile of skilled
adults” in a broad range of tasks, thus starting to achieve
“the substitution threshold for machine intelligence in lieu
of human labor” for many industries, leading to significant
risks of job displacement and economic disruption. There-
fore, it is of both intellectual and societal importance to
closely monitor the progress towards Expert AGI.

How to create benchmarks for measuring Expert AGI?
Since the definition is based on comparison with skilled
adults, a natural starting point is college-level exams for
different disciplines, because those are designed to evalu-
ate skilled adults specialized in each discipline. This strat-
egy has been successfully adopted in benchmarks such as
MMLU [24] and AGIEval [85], but only text-based ques-
tions are considered, while human experts are capable of
solving multimodal problems. Meanwhile, large multi-
modal models (LMMs) that can understand both text and
images have been making a major stride towards more gen-
eral AI [9, 16, 32, 40, 73]. These LMMs have consistently
excelled in existing multimodal benchmarks [3, 23, 30, 36,
43, 62, 76, 79]. For instance, CogVLM [70] achieves 85%
on VQA-v2 [23], 92% on ScienceQA-IMG [46], and 93%
on RefCOCO [28]. However, most existing multimodal
benchmarks focus on commonsense/daily knowledge rather
than expert-level domain knowledge and advanced reason-
ing. The closest one to our goal is ScienceQA [46]. While
it covers diverse disciplines (breadth), the majority of the
questions are at the elementary to the middle school level,
thus falling short in depth for benchmarking Expert AGI.

To this end, we introduce MMMU: a comprehensive
benchmark designed for college-level multi-discipline mul-
timodal understanding and reasoning. It features problems
sourced from college exams, quizzes, and textbooks span-
ning six common disciplines: Art & Design, Business, Sci-
ence, Health & Medicine, Humanities & Social Science,
and Tech & Engineering. MMMU consists of 11.5K carefully
selected multimodal questions, which cover 30 diverse sub-
jects and 183 subfields, thus meeting the breadth goal.
Moreover, many problems within MMMU require expert-level
reasoning, such as applying “Fourier Transform” or “Equi-
librium Theory” to derive the solution, thus meeting the
depth goal. MMMU also presents two unique challenges ab-
sent in current benchmarks (Figure 1). Firstly, it covers di-
verse image formats, from visual scenes like photographs
and paintings to diagrams and tables, testing the perceptual
capabilities of LMMs. Secondly, MMMU features interleaved
text-image inputs. A model needs to jointly understand the
images and text, which often requires recalling deep subject
knowledge, and conducting complex reasoning based on the
understanding and knowledge to reach a solution.

We evaluate 28 open-source LMMs as well as the ad-
vanced proprietary LMMs such as GPT-4V(ision) [55] on
MMMU. Our key findings are summarized as follows:
• MMMU presents significant challenges; notably, GPT-4V

only achieves an accuracy of 55.7%, indicating substan-
tial room for improvement.

• There is a pronounced disparity in performance between
open-source LMMs and GPT-4V. The highest-performing
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open-source models, such as BLIP2-FLAN-T5-XXL and
LLaVA-1.5, achieve approximately 34% in accuracy.

• LLMs augmented with optical character recognition
(OCR) or generated captions do not see notable improve-
ment, indicating that MMMU necessitates deeper joint in-
terpretation of images and text.

• In disciplines such as Art & Design and Humanities &
Social Science, where visual data is less complex, mod-
els exhibit higher performance. In contrast, Business, Sci-
ence, Health & Medicine, and Tech & Engineering, which
present more complex visual data and require intricate
reasoning, see relatively lower model performance.

• Our error analysis on 150 error cases of GPT-4V reveals
that 35% of errors are perceptual, 29% stem from a lack
of knowledge, and 26% are due to flaws in the reasoning
process. These findings underscore the challenges of the
MMMU benchmark and point towards areas needing further
research and model enhancement.
Our aim with MMMU is to push the boundaries of what

LMMs can achieve. We believe it will prove instrumental in
developing next-generation multimodal foundation models
and monitoring the progress towards Expert AGI. We shall
caution that MMMU is not a sufficient test for Expert AGI,
as per the definition [52], because there lacks a direct map-
ping between performance on MMMU and “90th percentile of
skilled adults,” nor are college exams the only tasks an AGI
shall tackle. However, we believe it should be necessary for
an Expert AGI to achieve strong performance on MMMU to
demonstrate their broad and deep subject knowledge as well
as expert-level understanding and reasoning capabilities.

2. Related Work
Multimodal Pre-Training. In recent years, rapid progress
has been made in multimodal pre-training, which aims
to jointly encode vision and language in a fusion model.
LXMERT [64], UNITER [10], VinVL [80], Oscar [34],
VilBert [45], and VLP [86] are among the earliest work
to train universal vision-language models to tackle many
multimodal tasks. This work relies on pre-trained visual
representations like Faster RCNN features [61] to mini-
mize the training sample complexity. Later on, CLIP [60],
ALIGN [27], SimVLM [71], CoCa [78], Flamingo [2],
BLIP-2 [32], and Fuyu [6] (inter alia) have been proposed to
train visual representation using ViT [18] from scratch with
massive amount of web data. These models have achieved
great success on existing VQA and captioning tasks, which
require less knowledge and reasoning.
Multimodal Instruction Tuning. Inspired by open-
source instruction-tuned LLMs like FLAN-T5 [14] and Vi-
cuna [12], models like LLaVA [40, 41] and MiniGPT-4 [87]
utilized open-source resources, to improve the instruction-
following capabilities of LMMs. The evolutionary trajec-
tory of LMMs has also led to subsequent advancements

aimed at improving the quantity and quality of visual in-
struction data. Models such as LLaMA-Adapter [20, 81],
mPlug-OWL [74, 75], SVIT [82], LRV-Instruction [39],
and InstructBLIP [16] exemplify these developments. An-
other pivotal aspect of LMM research revolves around mul-
timodal in-context learning and the management of in-
terleaved text and image examples. This area has been
explored in depth by models such as Flamingo [2] and
OpenFlamingo [4], Otter [31], M3IT [33], MetaVL [51],
Sparkles [25], and MMICL [83]. These models have sig-
nificantly contributed to the ongoing advancements in mul-
timodal training and instruction-following capabilities.
LMM Benchmarks. With the surge of multi-modal pre-
training and instruction tuning, the prior single-task eval-
uation benchmarks like VQA [3, 23], OK-VQA [48],
MSCOCO [36], GQA [26], etc., have become insufficient
to holistically evaluate LMMs’ general multimodal percep-
tion and reasoning abilities. Therefore, numerous all-round
benchmarks have been established to assess different facets
of LMMs. These benchmarks cover a wide spectrum of
specific skills of LMMs, from Optical Character Recogni-
tion (OCR) as seen in the study by [44], to adversarial ro-
bustness [84] and hallucination [15, 38], e.g., POPE [35]
and HaELM [69]. More holistic evaluations have been con-
ducted as well, such as LAMM [76], LVLM-eHub [72],
SEED [30], MMBench [43], and MM-Vet [79]. These
benchmarks still largely focus on relatively basic percep-
tion abilities without requiring expert-level domain knowl-
edge and deliberate reasoning. More recently, MathVista
[47] presents a collection of visually challenging questions;
however, its scope is limited exclusively to the mathemat-
ical domain. MMMU is highly different from these bench-
marks by collecting more difficult expert-level problems
that cover 30 different subjects and require nuanced percep-
tion, recalling domain-specific knowledge to perform step-
by-step reasoning to derive the solution. In line with the mo-
tivation of our study, concurrently, GAIA [49] introduces
466 questions that test fundamental abilities of models such
as reasoning, multimodality handling, or tool use.

3. The MMMU Benchmark

3.1. Overview of MMMU

We introduce the Massive Multi-discipline Multimodal Un-
derstanding and Reasoning (MMMU) benchmark, a novel
benchmark meticulously curated to assess the expert-level
multimodal understanding capability of foundation models
across a broad scope of tasks. Covering 30 subjects across
6 disciplines, including Art, Business, Health & Medicine,
Science, Humanities & Social Science, and Tech & Engi-
neering, and over 183 subfields. The detailed subject cover-
age and statistics are detailed in Figure 7. The questions
in our benchmark were manually collected by a team of
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Statistics Number

Total Questions 11550
Total Disciplines/Subjects/Subfields 6/30/183
Image Types 30

Dev:Validation:Test 150:900:10500
Difficulties (Easy: Medium: Hard) 28%:45%:27%

Multiple-choice Questions 10861 (94.03%)
Open Questions 689 (5.97%)

Questions with an Explanation 2035 (17.62%)

Image in the Question 11264 (97.52%)
* Images at the beginning 2006 (17.81%)
* Images in the middle 4159 (36.92%)
* Images at the end 5679 (50.42%)

Image in Options 389 (3.37%)
Example with Multiple Images 854 (7.39%)

Average question length 59.33
Average option length 9.17
Average explanation length 107.92

Table 1. Key statistics of the MMMU benchmark.

50 college students (including coauthors) from various dis-
ciplines and subjects, drawing from online sources, text-
books, and lecture materials.

MMMU, constituting 11.5K questions, is divided into a
few-shot development set, a validation set, and a test set.
The few-shot development set includes 5 questions per sub-
ject, and the validation set, useful for hyperparameter selec-
tion, contains approximately 900 questions, while the test
set comprises 10.5K questions. MMMU is designed to mea-
sure three essential skills in LMMs: perception, knowledge,
and reasoning. Our aim is to evaluate how well these mod-
els can not only perceive and understand information across
different modalities but also apply reasoning with subject-
specific knowledge to derive the solution.

Our MMMU benchmark introduces four key challenges
to multimodal foundation models, as detailed in Figure 1.
Among these, we particularly highlight the challenge stem-
ming from the requirement for both expert-level visual
perceptual abilities and deliberate reasoning with subject-
specific knowledge. This challenge is vividly illustrated
through our tasks, which not only demand the processing
of various heterogeneous image types but also necessitate
a model’s adeptness in using domain-specific knowledge to
deeply understand both the text and images and to reason.
This goes significantly beyond basic visual perception, call-
ing for an advanced approach that integrates advanced mul-
timodal analysis with domain-specific knowledge.

3.2. Data Curation Process

Data Collection. Our benchmark collection takes three
stages. Firstly, we go through the common university ma-

jors to decide what subjects should be included in our
benchmark. The selection is based on the principle that vi-
sual inputs should be commonly adopted in the subjects to
provide valuable information. Through this principle, we
rule out a few subjects like law and linguistics because it
is difficult to find enough relevant multimodal problems in
these subjects. Consequently, we select 30 subjects from six
different disciplines. In the second stage, we recruit over
50 university students, including co-authors, specializing in
these majors as annotators to assist in question collection.
They collect multimodal questions from major textbooks
and online resources, creating new questions based on their
expertise where necessary. The annotators are instructed to
adhere to copyright and license regulations, avoiding data
from sites prohibiting copy and redistribution. Given the
arising data contamination concerns of foundation models,
the annotators are advised to select questions without im-
mediately available answers, such as those with answers in
separate documents or at the end of textbooks. This process
results in a diverse collection of 13K questions from various
sources. The detailed annotation protocol is in Appendix A.
Data Quality Control. To further control the quality of our
data, we perform two steps of data cleaning. In the first
stage, lexical overlap and source URL similarity are em-
ployed to identify potential duplicate problems. These sus-
pected duplicates were then reviewed by the authors to iden-
tify and eliminate any duplications. The second stage in-
volves distributing the problems among different co-authors
for format and typo checking. This step requires authors to
ensure adherence to a standardized format, undertaking nec-
essary corrections where deviations are found. In the third
and final stage, the authors categorize the problems into four
difficulty levels: very easy, easy, medium, and hard. Ap-
proximately 10% of the problems, classified as very easy
and not aligning with our design criteria due to their sim-
plistic nature, are excluded from the benchmark. This rig-
orous process plays a crucial role in maintaining the quality
and difficulty of the problem set.

3.3. Comparisons with Existing Benchmarks

To further distinguish the difference between MMMU and
other existing ones, we elaborate the benchmark details in
Figure 3. From the breadth perspective, the prior bench-
marks are heavily focused on daily knowledge and com-
mon sense. The covered image format is also limited. Our
benchmark aims to cover college-level knowledge with 30
image formats including diagrams, tables, charts, chemi-
cal structures, photos, paintings, geometric shapes, music
sheets, medical images, etc. In the depth aspect, the previ-
ous benchmarks normally require commonsense knowledge
or simple physical or temporal reasoning. In contrast, our
benchmark requires deliberate reasoning with college-level
subject knowledge.
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Breadth (Knowledge)

Depth (Reasoning)

VQA GQA VisWiz

OKVQA
TextVQA SEEDMMBench

MM-Vet ScienceQA

MMMU

Dataset Size Images Format Source Answer

VQA > 1M V I+T Annotated Open
GQA > 1M V I+T Synthesized Open
VisWiz 32K V I+T Annotated Open
TextVQA 45K OC I+T Annotated MC
OKVQA 14K V+OC I+T Annotated Open
SEED 19K V+OC I+T Annotated MC
MMBench 3K V+OC I+T Repurposed MC
MM-Vet 0.2K V+OC I+T Annotated Open
ScienceQA 6K 5 Types I+T Textbooks MC

MMMU 11.5K 30 Types Interleaved
Textbooks,
Internet,
Annotated

Open /
MC

Figure 3. The comparison between MMMU and other existing benchmarks. MMMU excels in both its breadth to cover a wide range of
disciplines and its depth to test LMMs’ reasoning abilities. In the image format, V means visual input, OC means optical characters, MC
means multi-choice. Repurposed means the benchmark is a compilation of prior datasets.

4. Experiments

We evaluate various models including LLMs and LMMs.
In each type, we consider both closed- and open-source
models. Our evaluation is conducted under a zero-shot set-
ting to assess the capability of models to generate accurate
answers without fine-tuning or few-shot demonstrations on
our benchmark. For all models, we use the default prompt
provided by each model for multi-choice or open QA, if
available. If models do not provide prompts for task types
in MMMU, we conduct prompt engineering on the validation
set and use the most effective prompt for the zero-shot setup
in the main experiments. We also report the few-shot results
of some selected models in the Appendix. All experiments
are conducted with NVIDIA A100 GPUs.

4.1. Baselines

LMMs. We consider various large multimodal models. By
default, for each model family, we use the latest, largest,
and best-performing available checkpoint to date. (i) Kos-
mos2 [57] is pre-trained to ground fine-grained visual ob-
jects with texts and to follow instructions. With only 1.6B
model size, Kosmos2 is able to achieve comparable or better
performance with Flamingo-9B [2] on VQA and caption-
ing tasks. (ii) LLaMA-Adapter2 [20] fine-tunes Llama [67]
in a parameter-efficient way and utilizes visual encoder
CLIP [60] and modular experts such as Optical Charac-
ter Recognition (OCR) to capture more image informa-
tion for later better visual understanding. (iii) BLIP-2 [32]
introduces light-weight learnable visual queries to bridge
the frozen CLIP ViT [60] and FLAN-T5 [14]. (iv) Start-
ing from the parameters from BLIP-2, InstructBLIP [16]
is further fine-tuned with visual instruction tuning data for
better zero-shot generalization capabilities. (v) LLaVA-
1.5 [40] linearly projects the visual embedding into word

embedding space of Vicuna [12], thus equipping the LLM
with visual abilities. (vi) As an open-source alternative to
Flamingo [2], OpenFlamingo [4] has close performance on
most vision-language tasks. (vii) CogVLM [70] concate-
nates image and text in the input embedding space and
adds trainable visual layers in textual Transformer blocks to
deeply align two modalities. It has been reported to achieve
very promising performance on existing VQA benchmarks
recently. (viii) Fuyu [6] projects the patches of the input
image into text embedding space. (ix) Qwen-VL [5] in-
troduces a set of trainable query embeddings and single-
layer cross-attention module to bridge the modalities, sup-
porting interleaved image-text input. (x) Otter [31] is fine-
tuned with diverse instruction-tuning data and able to per-
form in-context learning. (xi) MiniGPT-4 [87] is built upon
Vicuna [12] and designs a linear modality projection layer
for visual understanding abilities. (xii) mPLUG-Owl2 [75]
designs a modality-adaptive module to unify vision and lan-
guage while preserving their distinct properties of them.
Text-only LLMs. For text-only LLMs, we consider the
most capable ones including GPT-4 and several open-source
LLMs, Llama2-7B [67], FLAN-T5-XXL and Vicuna-13B,
which are adopted as the text encoder or decoder in the se-
lected LMMs. To determine if an external image-to-text
tool can enhance these LLMs’ performance on MMMU, we
deploy OCR by MMOCR1 or captioning by LLaVA-1.5 to
provide the recognized text information to text-only LLMs.
Human Experts. We involve 90 college senior students,
selected to represent a wide range of experts in the corre-
sponding 30 subjects (3 student experts per subject). These
students were tasked with completing the 30 questions in
their corresponding subjects (900 validation questions in to-
tal). The students were allowed to consult their textbooks

1https://github.com/open-mmlab/mmocr
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Validation
Overall

Test
Overall

Art &
Design Business Science Health &

Medicine
Human. &
Social Sci.

Tech &
Eng.

(900) (10,500) (1,163) (1,428) (2,426) (1,752) (947) (2,784)

Random Choice 22.1 23.9 24.1 24.9 21.6 25.3 22.8 24.8
Frequent Choice 26.8 25.8 26.7 28.4 24.0 24.4 25.2 26.5
Expert (Worst) 76.2 - - - - - - -
Expert (Medium) 82.6 - - - - - - -
Expert (Best) 88.6 - - - - - - -

Large Multimodal Models (LMMs): Text + Image as Input

OpenFlamingo2-9B [4] 28.7 26.3 31.7 23.5 26.3 26.3 27.9 25.1
Kosmos2 [57] 24.4 26.6 28.8 23.7 26.6 27.2 26.3 26.8
Adept Fuyu-8B [6] 27.9 27.4 29.9 27.0 25.6 27.0 32.5 26.4
MiniGPT4-Vicuna-13B [87] 26.8 27.6 30.2 27.0 26.2 26.9 30.9 27.2
LLaMA-Adapter2-7B [81] 29.8 27.7 35.2 25.4 25.6 30.0 29.1 25.7
CogVLM [70] 32.1 30.1 38.0 25.6 25.1 31.2 41.5 28.9
Qwen-VL-7B-Chat [5] 35.9 32.9 47.7 29.8 25.6 33.6 45.3 30.2
LLaVA-1.5-13B [40] 36.4 33.6 49.8 28.2 25.9 34.9 54.7 28.3
InstructBLIP-T5-XXL [16] 35.7 33.8 48.5 30.6 27.6 33.6 49.8 29.4
BLIP-2 FLAN-T5-XXL [32] 35.4 34.0 49.2 28.6 27.3 33.7 51.5 30.4
Emu2-Chat* [63] 36.3 34.1 50.6 27.7 28.0 32.4 50.3 31.3
Yi-VL-6B* [77] 39.1 37.8 53.4 30.3 30.0 39.3 58.5 34.1
Yi-VL-34B* [77] 45.9 41.6 56.1 33.3 32.9 45.9 66.5 36.0
LLaVA-1.6-34B* [42] 51.1 44.7 58.6 39.9 36.0 51.2 70.2 36.3
InternVL-Chat-V1.2* [11] 51.6 46.2 62.5 37.6 37.9 49.7 70.1 40.8

Adept Fuyu-Heavy* [19] 48.3 - - - - - - -
Qwen-VL-MAX* [59] 51.4 46.8 64.2 39.8 36.3 52.5 70.4 40.7
GPT-4V(ision) (Playground) [55] 56.8 55.7 65.3 64.3 48.4 63.5 76.3 41.7
Claude 3 Opus* [65] 59.4 - - - - - - -
Gemini Ultra* [22] 59.4 - - - - - - -

Large Language Models (LLMs): Only Text as Input

Llama2 7B [68] 30.1 28.7 30.7 27.2 26.7 27.7 32.6 29.8
FLAN-T5-XXL [14] 32.1 31.2 36.8 28.9 26.7 32.8 44.8 28.3

+ OCR 34.7 31.9 36.2 28.8 26.2 32.6 50.5 29.7
+ LLaVA Caption 34.8 31.9 38.4 27.8 27.0 33.2 49.9 28.7

Vicuna-13B [12] 33.3 31.0 35.1 30.1 24.7 31.4 44.8 30.1
+ OCR 35.4 31.9 37.1 28.6 26.5 32.0 49.3 30.0
+ LLaVA Caption 33.9 32.7 42.0 26.8 26.2 33.4 49.4 31.4

GPT-4 Text [54] 34.9 33.8 32.9 28.5 30.6 41.3 53.0 28.4

Table 2. Selected results of different models on the MMMU validation and test set. Besides reporting the performance of LMMs, we
additionally add text-only LLM baselines. The best-performing model in each category is in-bold, and the second best is underlined. *:
results provided by the authors. Due to the page limit, we show other models’ results in Appendix Table 4. The live-updating leaderboard
is available at: https://mmmu-benchmark.github.io/#leaderboard

but were prohibited from searching the Internet for answers.

Evaluation. We adopt micro-averaged accuracy as the
evaluation metric. For both open and multiple-choice
questions, we design systematic, rule-based evaluation
pipelines. Specifically, to mitigate the potential influence
of any intermediate generations (e.g., reasoning steps, cal-
culations) in the long response, we construct robust regular
expressions and develop response-processing workflows.
These are employed to extract key phrases, such as num-
bers and conclusion phrases, from the long responses for
accurate answer matching. If there is no valid answer in the
model’s response, we perform random selection as a rem-
edy for multiple-choice questions or consider the response
incorrect for open questions. For reference, we add Ran-
dom Choice and Frequent Choice baselines: the former ran-

domly selects an option, while the latter selects the most fre-
quent option within each specific subject of the validation
set, based on its frequency of occurrence in that subject.

4.2. Main Results

In this section, we present a comprehensive comparison of
different LLMs and LMMs using the MMMU benchmark, de-
tailed in Table 2. We summarize our key findings as follows:
Challenging Nature of MMMU: The benchmark poses sig-
nificant challenges to current models. The Best human ex-
pert achieves a validation accuracy of 88.6%, significantly
outperforming all the models reported in the table. This
demonstrates the still-existing gap between human expertise
and the performance of current models on the MMMU bench-
mark. This reflects the benchmark’s rigorous standards.
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Figure 4. Performance of models on different types of images.

Disparity between Open-source Models and Closed-
source models: Leading open-source models (as the paper
submission) such as BLIP2-FLAN-T5-XXL and LLaVA-
1.5 reach an accuracy level of approximately 34%, which is
significantly lower than GPT-4V. However, it is exciting to
see that open-source models have made significant strides in
performance. For example, LLaVA-1.6-34B and InternVL-
Chat-V1.2 achieve test accuracies of 44.7% and 46.2%, re-
spectively, narrowing the gap with proprietary models.
Effectiveness of OCR and Captioning Enhancements:
The application of OCR and captioning technologies does
not yield a significant improvement in the performance of
text-only LMMs. This finding suggests that the MMMU
benchmark requires models that can effectively interpret
and integrate both textual and visual information, under-
scoring the complexity of the multimodal tasks it presents.
Model Performance across Different Disciplines: In dis-
ciplines such as Art & Design and Humanities & Social
Sciences, where the images tends to be more ‘natural’ and
questions involve relatively less reasoning, models demon-
strate relatively higher performance. Conversely, in fields
like Science, Health & Medicine, and Technology & Engi-
neering, where tasks often involve intricate perception and
complex reasoning, models exhibit lower performance.

The MMMU benchmark underscores both the progress and
the challenges in multimodal understanding and reasoning.
While GPT-4V leads in performance, the overall results in-
dicate substantial room for improvement, especially in do-
mains with complex visual input and heavy reasoning with
subject knowledge.

4.3. Analysis on Images Types and Difficulties

Different Image Types. We compare the performance of
various models across top frequent image types in Fig-
ure 4. Across all types, GPT-4V consistently outperforms
the other models by a huge margin. Open-source models
demonstrate relatively strong performance in categories like
Photos and Paintings, which are more frequently seen dur-
ing training. However, for less common image categories
like Geometric shapes, Music sheets and Chemical struc-

Models
Easy Medium Hard Overall

(2946) (4917) (2637) (10500)

Fuyu-8B [6] 28.9 27.0 26.4 27.4
Qwen-VL-7B [5] 39.4 31.9 27.6 32.9
LLaVA-1.5-13B [40] 41.3 32.7 26.7 33.6
InstructBLIP-T5-XXL [16] 40.3 32.3 29.4 33.8
BLIP-2 FLAN-T5-XXL [32] 41.0 32.7 28.5 34.0

GPT-4V [55] 76.1 55.6 31.2 55.7

Table 3. Result decomposition across question difficulty levels.

tures, all models obtain very low scores (some are close to
random guesses). This indicates that the existing models are
generalizing poorly towards these image types.
Different Difficulty Levels. Table 3 compares the per-
formance of selected models across three difficulty lev-
els. GPT-4V demonstrates a significantly higher profi-
ciency, with a success rate of 76.1%, compared to open-
source models in the “Easy” category. When it comes to
the “Medium” category, while the gap narrows, GPT-4V
still leads at 55.6%. The further diminishing performance
gap in the “Hard” category across models indicates that as
the complexity of tasks increases, the advantage of more ad-
vanced models like GPT-4V almost disappears. This might
reflect a current limitation in handling expert-level chal-
lenging queries even for the most advanced models.

5. Error Analysis and Future Work

In this section, we delve into the analysis of errors by GPT-
4V, a pivotal aspect for understanding its operational ca-
pabilities and limitations. This analysis serves not only to
identify the model’s current shortcomings but also to guide
future enhancements in its design and training. We meticu-
lously examine 150 randomly sampled error instances from
GPT-4V’s predictions. These instances are analyzed by ex-
pert annotators who identify the root causes of mispredic-
tions based on their knowledge and the golden explanations
if available. The distribution of these errors is illustrated in
Figure 5, and a selection of 100 notable cases, along with
detailed analyses, is included in the Appendix.
Perceptual Errors (35%): Perceptual errors, forming the
bulk of the inaccuracies in the GPT-4V model, are catego-
rized into two types: basic perceptual errors and domain-
specific perceptual errors. Basic perceptual errors, as de-
picted in Figure 6, occur when the model accurately pro-
cesses and understands the given information but fails in
elementary visual interpretation, such as misjudging the se-
quence described as “from left to right, top to bottom.” On
the other hand, domain-specific perceptual errors occur due
to the lack of knowledge. As we analyze the root cause,
we classify such errors as lack of knowledge (see analysis
below). Additionally, GPT-4V often exhibits a bias towards
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Figure 5. Error distribution over 150 annotated GPT-4V errors.

text, prioritizing textual information over visual inputs, a
trend noted in recent studies [15]. A prominent example is
in Figure 68, where the model incorrectly prioritizes its text-
based interpretation of “imperialism” over the visual narra-
tive in a cartoon depicting the United States as a “Savior.”
This underscores the need for a more balanced approach to
multimodal interpretation.
Lack of Knowledge (29%): A fundamental root cause of
’domain-specific’ perceptual errors in the GPT-4V model,
as previously discussed, is the lack of specialized knowl-
edge. This deficiency is exemplified in the Computer Sci-
ence context illustrated in Appendix Figure 84, where the
model identifies visual elements such as double circles but
fails to interpret them accurately within the domain-specific
context, such as their representation of an ’accept state’ in
Deterministic Finite Automata. Similarly, a deficit in spe-
cialized knowledge can lead to flawed reasoning, as demon-
strated in the medical example in Appendix Figure 55.
These instances underscore the necessity of enriching the
training datasets of foundation models with a diverse range
of domain-specific knowledge to improve their accuracy
and general applicability in various specialized fields.
Reasoning Errors (26%): Flawed reasoning emerges as
another significant cause of errors. In instances where the
model correctly interprets text and images and recalls rel-
evant knowledge, it still often fails to apply logical and
mathematical reasoning skills effectively to derive accurate
inferences. A notable instance of this can be observed in
Appendix Figure 46, where the model neglects an essen-
tial step in a mathematical reasoning process, leading to an
incorrect conclusion. Enhancing the model’s reasoning ca-
pability is critical to address these shortcomings.
Other Errors: The remaining errors include Textual Un-
derstanding Error (6%), Rejection to Answer (3%), An-
notation Error (2%), and Answer Extraction Error (1%).
These errors are attributed to various factors such as com-
plex text interpretation challenges, limitations in response
generation, inaccuracies in data annotation, and issues in
extracting precise answers from longer outputs.

Perceptual Error 

Question: Look at the situation in the <image 1>. You are traveling on a
plane with a small child. The cabin is depressurized and the oxygen mask
falls from the ceiling. Which of these pictures shows the reconciliation of
egoism and other-isms (the order is from left to right, top to bottom)?
Option: (A) 1 (B) 2 (C) 3

GPT-4V: The image shows three situations
on a plane when the oxygen mask falls:
The adult puts on the mask first while the
child watches (egoism). The adult puts the
mask on the child first while struggling for
breath. Both the adult and the child share
the mask. The reconciliation of egoism and
other-isms would be a situation where
both the individual's needs and the needs
of others are considered and addressed.
Therefore, the correct answer is: (C) 3

Ground Truth: (B) 2

<image 1>

Error Reason: GPT-4V recalled the right knowledge and made the right
reasoning, but it failed to correctly map the IDs to the corresponding
illustrations in the figure, which is not explicitly marked in the figure but
is only described in text (the order is from left to right, top to bottom).

Figure 6. A basic perceptual error, easy for humans but challeng-
ing for GPT-4V. More examples can be found in the Appendix.

In summary, our error analysis underlines the challenges
posed by MMMU and highlights areas for further research
in visual perception, knowledge representation, reasoning
abilities, and multimodal joint understanding. 1) Interplay
of language and vision: language can aid in making visual
understanding more explainable, while also leading models
to hallucinate. 2) Challenges in grounding: tasks involving
grounding or referring to specific elements within a visual
input remain challenging, even for sophisticated models like
GPT-4V. 3) Complex reasoning is still challenging: models
still fail in complex reasoning scenarios involving lengthy
reasoning chains or extensive calculations.

6. Conclusion
The introduction of MMMU marks a significant step towards
evaluating the capabilities of LMMs in the context of Ex-
pert AGI. By assessing both basic perceptual skills and
complex reasoning abilities across various professional do-
mains, MMMU provides a comprehensive benchmark that
aligns with the expectations of skilled adults in these fields.
MMMU, like any benchmark, has limitations despite its

comprehensive nature. The manual curation process may
carry biases, and the focus on college-level subjects might
not be sufficient for testing Expert AGI [52]. However, we
argue that strong performance on this benchmark should be
a necessary criterion for an Expert AGI system. The chal-
lenging nature of MMMU is evident from the performance
of over 30 models and human experts. To strike a bal-
ance between complexity and practicality, MMMU combines
multiple-choice questions with concise open-ended ques-
tions, enabling the assessment of diverse subjects while
addressing the challenges associated with evaluating open-
ended responses.
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