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Abstract

We present an approach to pose object recognition as next
token prediction. The idea is to apply a language decoder
that auto-regressively predicts the text tokens from image
embeddings to form labels. To ground this prediction pro-
cess in auto-regression, we customize a non-causal atten-
tion mask for the decoder, incorporating two key features:
modeling tokens from different labels to be independent,
and treating image tokens as a prefix. This masking mech-
anism inspires an efficient method � one-shot sampling �
to simultaneously sample tokens of multiple labels in paral-
lel and rank generated labels by their probabilities during
inference. To further enhance the efficiency, we propose a
simple strategy to construct a compact decoder by simply
discarding the intermediate blocks of a pretrained language
model. This approach yields a decoder that matches the
full model’s performance while being notably more efficient.
The code is available at github.com/kaiyuyue/nxtp.

1. Introduction

This paper delves into a fundamental problem in computer
vision � object recognition � translating an image into ob-
ject labels. Generally speaking, the recognition framework
comprises an image encoder and a decoder. The image en-
coder, either in the form of a convolutional neural network
(CNN) [43, 60, 72, 106, 110] or a vision transformer (ViT)
[28, 93, 120], produces image embeddings, while the de-
coder propagates them to predict object labels.

If the decoder is a linear classifier [28, 43, 60, 72, 106, 110],
it needs to be initialized with fixed object concepts. ResNet
[43], for instance, initializes its final linear layer with 1K
embeddings, a.k.a. weights, to represent 1K objects in Ima-
geNet [25]. Such static weights, however, limit the model’s
ability to recognize any object. This limitation can be mit-
igated using a language model [26, 114] as the decoder to
generate a flexible set of object embeddings from input de-
scriptions. For example, CLIP [93] encodes the object de-
scriptions into dynamic weights by prompting with “a photo
of a {L}”, where L could be any object name, and matches
these weights with image embeddings to recognize objects.
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Figure 1. Object recognition as next token prediction using a
generative decoder such as a transformer-based language model to
auto-regressively predict object labels. Photo authorized with CC BY 4.0.

Note that CLIP predefines the gallery with a fixed number
of object descriptions prior to inference. This requirement
reveals that CLIP’s object embeddings cover only a portion
of the textual space in practical scenarios, rather than its en-
tirety. Additionally, enlarging the gallery has been shown
to diminish its performance [19]. Given these observations,
a question arises: Can we eliminate the predefined object
labels or descriptions?

A direct strategy could use a generative model, particularly
a large language model (LLM) [11, 87, 91, 92, 112–114],
to decode labels from image embeddings. For instance,
Flamingo [1, 3] employs a LLM to transform image em-
beddings into textual outputs for various vision tasks such
as object recognition, image captioning, and visual ques-
tion answering (VQA). But producing the desired results
for a specific task needs several reference samples as few-
shot prompts for the model. In other words, it requires pre-
defined reference pivots to refine and align its predictions
more precisely with the target task.

The most straightforward alternative is to skip any predefin-
ing procedure and align the LLM with the recognition task
directly. This approach hinges on the fact that a LLM’s to-
ken embeddings represent the entire textual space, includ-
ing all object labels. This is as opposed to predefining sub-
sets, i.e., query galleries or reference pivots, of this space
that potentially constrains the model’s capability.

Building on this concept, we propose a simple method that
employs a language decoder to auto-regressively decode
object labels token-by-token from image embeddings, as de-
picted in Figure 1. We operate a pretrained CLIP image en-
coder [93] to produce image embeddings, already aligned
with text, and linearly transform them to match the language
decoder’s embedding dimension.
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This auto-regressive framework, unlike the contrastive fra-
mework exemplified by CLIP [93], is trained to predict text
embeddings from image embeddings, rather than aligning
both. While related in spirit to recent vision-language mod-
els such as LiMBeR [81], LLaVA [68, 69], and BLIP-2 [64,
65], our method introduces differences and innovations:

First, our approach targets object recognition, as opposed to
the chat-oriented VQA methods. We train on image-caption
pairs, easier to collect and annotate than image-question-
answer triplets, and extract nouns from raw captions as ref-
erence labels to weakly supervise training. For inference,
we generate text fragments as labels rather than sentences.
In scenarios like recommendation systems [97] that require
labels or tags, a simple label-only output is more concise
than verbose sentences requiring further post-processing.

Second, our decoder has a different token modeling mech-
anism. Instead of decoding all input and output tokens in
a conditional sequence as in LLMs, we ensure tokens from
different labels to be independent, while tokens from the
same label remain conditional. Naturally, all label tokens
are conditional on image embeddings. This decoupling is
based on the understanding that different labels in the same
image are independent but their coexistence is determined
by the underlying visual context. To this end, we customize
a non-causal attention mask for our language decoder.

Further, the non-causal masking mechanism inspires a new
sampling method, called one-shot sampling, to generate text
tokens for labels. Instead of sampling tokens in sequence as
in greedy search, beam search, and nucleus sampling [50],
one-shot sampling simultaneously samples tokens of multi-
ple labels in parallel and ranks them by their probabilities.
This makes use of the strong parallelization capabilities of a
transformer, leading to object recognition that is much more
efficient than the aforementioned methods and does not suf-
fer from repetition issues [35, 121].

Lastly, we put forth a straightforward strategy to enhance
model efficiency of our recognition model. We hypothesize
that only partial knowledge in LLMs is vital for recognition
and focus on maximizing efficiency by not engaging the en-
tire language model. To construct the decoder, we start with
a pretrained LLM, e.g., LLaMA [112, 113], retain first six
transformer blocks along with the final output layer, and
drop the intervening blocks. This compact decoder matches
the full model’s performance but is substantially more effi-
cient, i.e., 4.5⇥ faster in inference.

2. Related Work

Aligning Images and Text, including sentences, phrases,
or words, in a shared space has been prevalent for image-
text matching [9, 23, 34, 49, 57, 59, 78, 108, 119], and foun-
dational in contrastive frameworks [40, 75, 93], while others

are geared towards generating text descriptions from images
[55, 56, 59, 78, 108, 115]. Then, integrating visual percep-
tion with LLMs [114] like GPT [11, 87, 91, 92] and LLaMA
[112, 113] is gaining traction by treating image embeddings
as language token embeddings, seamlessly fusing visual
and textual information within the model [48, 105]. Such
methods are being applied to tasks such as detection [14],
few-shot recognition [1, 93], textual explainations [10],
classification justification [45], bottleneck models [100,
122], reasoning [2, 42, 46, 77, 80, 103], and chat-based
models [22, 64, 65, 68, 69, 81] for captioning and VQA.

Tackling Open-Vocabulary Tasks for recognition [93], de-
tection [29, 38, 61, 82, 83, 123] and segmentation [29, 36]
typically involves training on a set of base labels and then
recognizing rare unseen labels. The cornerstone of open-
vocab approaches is the contrastive learning [41, 109] like
CLIP [93], which employs a language model to encode la-
bels to contrast with images. Therefore, open-vocab meth-
ods potentially inherit CLIP’s limitations discussed in Sec-
tion 1 due to the predefined base and rare labels. CaSED
[19] utilizes raw captions to form a vocabulary-free gallery,
diverging from the gallery of predefined label vocabularies.
However, its performance is heavily dependent on gallery
selection, as demonstrated in Table 10 of [19], highlighting
its limitations as a retrieval-based method.

We argue that by dramatically increasing the training data
to cover a wide array of objects, the reliance on recognizing
rare data and concepts can be heavily reduced. Our method
aligns more with the open-world paradigm [6] that incre-
mentally learns new labels over time, mirroring the way of
data collection in the real world. In the application, given
just an image, our model predicts labels with ranking prob-
abilities, without relying on any predefined set of concepts.

3. Method

3.1. Revisiting Object Recognition

We begin by briefly reviewing object recognition in its gen-
eral formulation. Suppose that 2D images are fed into a
backbone, e.g. ViT [28] in CLIP [93], which produces im-
age embeddings1 Xv 2 RM⇥D, where M is the spatial size
and D is the embedding dimension. In a nutshell, the prob-
lem of recognition aims to decode object labels solely from
Xv, translating image embeddings into the textual space.

In the past years, the core design of this translation employs
a set of textual embeddings W 2 RN⇥D to seek the opti-
mal alignment with Xv:

argmax �(Wf(Xv)
>), (1)

1Bold capital letters denote a matrix X, and bold lower-case letters a
column vector x. xi and xj represents the ith row and jth column of the
matrix X respectively. Xij denotes the scalar in the ith row and jth column
of the matrix X. All non-bold letters represent scalars.
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where � is the softmax function and f is to transform Xv
for aligning with W. For instance, linear classifiers such as
ResNet [43] employ the average pooling as f to transform
Xv to a single vector representation, and initiate W using
a set of predefined concepts corresponding to object labels,
e.g., N = 1000 for ImageNet [25]. The contrastive frame-
works such as CLIP [93] embed a collection of predefined
object descriptions into W, and apply an aggregation (like
[CLS] embedding [28]) and linear projection as f on Xv.

Eq. 1 aims to maximize the alignment between f(Xv) and
W. The space of W plays a critical role in this alignment as
the diversity and richness of the embeddings in W directly
affect the model’s ability to differentiate objects. The linear
classifiers and contrastive frameworks, however, limit W to
a predefined subset that potentially constrains the model’s
capability to recognize any object. Our goal is to eliminate
this limitation and extend W to the entire textual space.

3.2. Auto-Regression for Recognition

Recently, LLMs have significantly advanced in understand-
ing and generating text [11, 87, 91, 92, 112–114]. Consid-
ering that their token embeddings are trained to represent
the entire textual space, we define W with the token em-
beddings2 from a pretrained LLM, e.g., LLaMA [112, 113],
featuring N = 32K textual tokens. Then Eq. 1 changes to
predicting the token:

P (w|Xv) = argmax �(Wf(Xv)
>), (2)

where w represents the most probable single token for Xv.
In our method, f is a combination of linear projection and
the pretrained LLM to project Xv in the textual space of W.
That is, f is our language decoder.

To guide the language decoder in the recognition task, we
prompt it with a short instruction � “the objects in the im-
age are” � tokenized as Xp 2 RP⇥D. Then we concatenate
Xv and Xp to form our input token embeddings:

X = Xv � [IMG]�Xp, (3)

where � is the concatenation operation and [IMG] is a spe-
cial token to indicate the boundary.

Typically, a label consists of multiple tokens, e.g., “sofa”
has two tokens [so] and [fa]. Without loss of generality, we
assume a label L has T tokens. Now predicting L is equiv-
alent to auto-regressively predicting its tokens:

P (L) = P (w1, . . . ,wT |Xv,Xp) =
TY

t=1

P (wt|w<t,X), (4)

2In general, LLMs have two sets of token embeddings, one for encod-
ing input tokens and the other for predicting output tokens. Some LLMs
like GPT-2 [92] share the same embeddings for both input and output to-
kens [90], while others like LLaMA [113] employ different embeddings.
Our method defines W with the embeddings designated for output tokens.
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[SEP]
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Figure 2. Non-causal attention mask for prefixing image tokens
Xv and decoupling tokens from different labels Lk to be indepen-
dent at the [SEP] token.

where wt is the t-th token of L, and w<t is the sequence
of tokens before the t-th token. To compute the conditional
probability in Eq. 4, the transformer-based LLM in f em-
ploys a causal mask M [114] on the pairwise attention A to
model the interdependence between tokens:

A A+M, M = tril(1), (5)

where tril(1) is with zeros in the lower triangle and infinity
values in the upper triangle. This enforces the token wt to
attend only to the preceding tokens w<t, i.e., making wt

conditional on w<t, as shown in the left of Figure 2.

3.3. Non-causal Masking

In general, an image contains multiple objects, and our
goal is to predict them all. Suppose there are K objects,
and we denote the output set of labels for the image as
L = {L1, ..., LK}, where k-th label has Tk + 1 tokens,
including the special token [SEP] for the delimiter. Then
the likelihood of this set of labels appearing in the image is
the product of their probabilities:

P (L) =
KY

k=1

P (Lk) =
KY

k=1

Tk+1Y

t=1

P (wk
t |wk

<t,X). (6)

Now Eq. 6 is not a standard auto-regression practiced in
LLMs because wk

t only needs to attend to the input tokens
X and the preceding tokens wk

<t from the same label Lk.
This is supported by the understanding that the labels co-
exist in the same image due to the underlying visual con-
text, but are independent of each other. Additionally, the
image tokens Xv exhibit inherently spatial correlation, in
contrast to the temporal correlation of natural language to-
kens. Therefore, we customize a non-causal attention mask
M with two designs, illustrated in the right of Figure 2: a)
We decouple the correlation between tokens from different
labels at the [SEP] token to prevent these tokens from being
attended to each other; b) We treat image tokens Xv as a
prefix [27, 70, 94, 116–118], enabling the image tokens to
see each other. Interestingly, our non-causal attention mask
shares a similar design as the column mask in [95] but is
developed from a different perspective, where the column
mask is specifically for image-to-image attention.
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In the end, Eq. 6 is our final training objective. We use the
cross-entropy loss for optimization, with weakly-supervised
labels3 L extracted from the corresponding image captions.

3.4. One-Shot Sampling

The non-causal masking decouples the tokens from distinct
labels, indicating that the first token of any label could be
the next after X in the first sampling round. In other words,
a higher probability for the first token, being sampled after
input X, would result in a higher relevance of the label to
the image. This inspires us to sample tokens of multiple la-
bels in parallel, as shown in Figure 3.
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[SEP]

Figure 3. One-shot sampling for generating tokens of top-k labels
in parallel. Once the model samples the [SEP] token, the label is
completed. Otherwise, the model continues for unfinished labels.

Given input tokens X, we propagate them into the decoder
and rank the output logits by their softmax probabilities.
The top-k tokens, called initial tokens, decide the top-k
labels to be generated. The efficacy of linking initial to-
kens to final labels is explored in Table 8, highlighting the
promise of this straightforward approach. Then we sample
the next token for the top-k initial tokens in parallel, using
top-1 sampling, to generate k labels. If the sampled token
is [SEP], the label is completed. Otherwise, the model con-
tinues to sample the next token for the unfinished labels.
Finally, we report the probability of each label as the prod-
uct of its token probabilities. We refer to this approach as
one-shot sampling, which enables parallel sampling of mul-
tiple labels in one shot. The key to its parallelism lies in the
non-causal masking mechanism, which also avoids the rep-
etition issue [35, 121] typically faced in greedy and beam
search, as it causes the model to focus uniformly on the
same input tokens X across various labels.

To sum up, the one-shot sampling differs from other sam-
pling methods in two essential aspects: a) It operates in
parallel across multiple object labels, with each parallel
branch processing a small number of tokens (roughly less
than ten tokens), in contrast to the sequential sampling of
other methods; b) It naturally aligns with the vision recog-
nition task by representing the image as a spatially corre-
lated entity, while other sampling methods depict the image
as a sequence of tokens.

3Our learning approach is considered weakly-supervised as the labels
are incomplete and imperfect derived from raw captions.

3.5. Truncating the Decoder

Now, considering the language model LLaMA in our de-
coder f , we posit that a specific subset of language under-
standing in its numerous parameters is vital for recognition.
This realization prompts us to focus on maximizing effi-
ciency by not engaging the entire model. We construct our
language decoder, initially based on the LLaMA 7B (ver-
sion 1 or 2), by truncating it to the first 6 transformer blocks
along with the final output layer, as depicted in Figure 4,
while preserving its tokenizer and the pretrained 32K token
embeddings for encoding the input. We designate this mod-
ified version as the truncated language decoder, denoted as
Langtruncated in our experiments.

freezing

Xv

ViT-L/14 LLaMA 7B

truncating

training

Figure 4. Encoder and truncated decoder. We retain the first 6
transformer blocks along with the final output layer of the LLaMA
7B as our truncated decoder, and train with partial encoder blocks.

4. Experiments

Data. We construct training datasets at two different scales
for experiments. G3M: a training group of 3M(illion) pairs
combines CC3M [104], COCO Captions [15, 67], SBU
[88], which is mainly used for ablation studies. G70M: We
gather 67M pairs from LAION-Synthetic-115M (slightly
fewer than previous work due to missing URLs) [64, 102].
Combining it with G3M, we form a 70M-pair training group
for scaling-up training. For evaluation, we use the valida-
tion split of CC3M, COCO Captions, and OpenImages V7
[7]. We parse the raw captions to obtain meaningful nouns
as reference labels in both training and evaluation. The pro-
cessing details are described in Section A.5.

Implementation. The inference augmentation for input im-
ages in CLIP [93] is applied in both training and evalua-
tion. The input size is 2242. The image encoder is ViT-
L/14 [28] pretrained from CLIP [93], producing 256 token
embeddings with the dimension of 1024, as Xv. Note that
we drop its [CLS] token. The special token embedding of
[IMG] is learned during training. The special token [SEP] is
the comma (,), and 32K token embeddings for the input are
fixed. The max number of input tokens is 512. No [EOS]
token, i.e., the end of the sentence, is used in the input. We
shuffle labels for each image in training.

Training. AdamW [74] with the cosine annealing learn-
ing rate (LR) schedule [73] is applied in single-stage train-
ing. The multi-dimensional parameters apply a weight de-
cay of 10�1. The global batch size is 512 with 32 NVIDIA
A100-SXM4-80GB GPUs. The warm-up has 2K iterations.
We jointly train four parts: the last 6 blocks of the image
encoder ViT-L/14, the projection layer for Xv, the special
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[IMG] token embedding, and the whole truncated language
decoder, using a LR of 10�5 for 3 epochs, as shown in Fig-
ure 4, taking ⇠5 hours on G3M and ⇠5 days on G70M.

Evaluation. The n-gram overlap metrics, including BLEU
[89] and ROUGE [66], are widely used to evaluate the qual-
ity of sentences generated by language models. However,
these metrics are not suitable for evaluating the quality of
results in recognition tasks. For example, “car” and “auto-
mobile” have the low n-gram similarity but are semantically
alike. To quantify the semantic similarity between the gen-
erated labels and the reference labels, we adopt the concept
from BERTScore [124] to formulate our evaluation metric4.

Formally, given a set of reference labels R with size M and
a set of generated labels G with size N , we use the sentence-
BERT [96] to encode R to a set of semantic embeddings
R 2 RM⇥D and G to G 2 RN⇥D, where D is the em-
bedding dimension. Then we compute the cosine similarity
matrix S 2 RM⇥N between R and G:

Sij =
ri g

>
j

krikkgjk
2 R[�1,1]. (7)

We compute the recall for the reference set R and the pre-
cision for the generated set G:

R =
1
M

MX

i=1

max
j

Sij , P =
1
N

NX

j=1

max
i

Sij , (8)

where max indicates the greedy matching strategy follow-
ing [124]. Finally, we compute the F1 score as the harmonic
mean of R and P :

F1 =
2RP
R+ P

. (9)

For each sample, we evaluate the top-k generated labels out
of N and report the average R, P , and F1 over all samples.

Note that, different models may have different numbers of
generated labels N for each image. Especially, when N <
k, we do not pad the matrix S with zeros to make N = k
and penalize the model. Thus, the model with N < k will
have a higher P compared to the model with N = k.

4.1. Main Results

The comprehensive comparisons with other related meth-
ods, including CLIP [93], Open Flamingo [3], LLaVA
[68, 69], BLIP-2 [65], InstructBLIP [22], and CaSED [19],
are detailed in Table 1 with top-10 predictions, and Table
A.10 with top-5 predictions.

Preliminary. We construct two galleries for CLIP: a) the
base gallery, highlighted in gray, contains reference labels
only from the corresponding test dataset, e.g., CC3M vali-
dation labels for CC3M evaluation. b) the extended gallery,

4The metric essentially measures the model’s accuracy, as explained in
Section A.4.

Figure 5. Precision-recall (PR) curves on CC3M, COCO, and
OpenImages validation splits within 3 rows from top to bottom.
The left column is the PR curves with different thresholds, i.e.,
[0.0, 0.3, 0.5, 1.0], applying on the similarity matrix S in Eq. 7.
The right column is the PR curves with different top-k predictions,
where k is [1, 3, 5, 10]. All figures share the same legend.

includes all reference labels from the G3M training group.

Regarding CaSED [19], its performance is significantly im-
pacted by the search gallery composition. For a fair compar-
ison, we evaluate CaSED using: a) the released gallery pro-
vided with the paper, in gray, featuring CLIP ViT-L/14 text
embeddings from CC12M [104]; b) the extended gallery,
comprising CLIP ViT-L/14 text embeddings from COCO,
SBU, CC3M, and LAION-400M, which covers our G70M
training group. CaSED can be considered a CLIP variant,
with its defining aspect being the enhanced query gallery.

We evaluate other methods using their largest publicly avail-
able models. We employ two prompt types, list and cap-
tion, to generate object labels from them, detailed in Section
A.6. Also, we use the instruct prompt for instruction-based
methods, similar to its use for GPT-4V Preview [86] in A.1.
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CC3M COCO OpenImages
method models (vision + lang) prompt data scale # params (B) R P F1 R P F1 R P F1

CLIP [93] ViT L-14 + CLIPlang - 400M 0.43 0.575 0.448 0.499 0.525 0.562 0.540 0.510 0.462 0.480
CaSED [19] ViT L-14 + Retrieval - 12M 0.43 0.648 0.471 0.540 0.582 0.592 0.584 0.534 0.470 0.494
CLIP [93] ViT L-14 + CLIPlang - 400M 0.43 0.451 0.383 0.409 0.429 0.483 0.450 0.386 0.363 0.371
CaSED [19] ViT L-14 + Retrieval - 403M 0.43 0.653 0.481 0.548 0.616 0.629 0.620 0.560 0.494 0.519
Flamingoopen [3] ViT L-14 + LLaMA 1 [112] list 2.1B 8.34 0.547 0.540 0.536 0.549 0.721 0.618 0.526 0.621 0.562
Flamingoopen ViT L-14 + LLaMA 1 caption 2.1B 8.34 0.548 0.521 0.527 0.553 0.697 0.611 0.538 0.607 0.563
Flamingoopen ViT L-14 + MPT [111] list 2.1B 8.13 0.554 0.569 0.553 0.556 0.793 0.646 0.555 0.635 0.584
Flamingoopen ViT L-14 + MPT caption 2.1B 8.13 0.534 0.533 0.527 0.554 0.754 0.633 0.551 0.613 0.574
LLaVA1.0 [69] ViT L-14 + LLaMA 2 [113] list 753K 13.3 0.540 0.528 0.526 0.580 0.803 0.666 0.543 0.641 0.580
LLaVA1.0 ViT L-14 + LLaMA 2 caption 753K 13.3 0.634 0.460 0.528 0.688 0.668 0.675 0.610 0.511 0.550
LLaVA1.0 ViT L-14 + LLaMA 2 instruct 753K 13.3 0.588 0.450 0.505 0.638 0.631 0.632 0.615 0.541 0.570
LLaVA1.5 [68] ViT L-14 + Vicuna [16] list 1.2M 13.4 0.538 0.515 0.518 0.591 0.783 0.665 0.552 0.614 0.574
LLaVA1.5 ViT L-14 + Vicuna caption 1.2M 13.4 0.632 0.453 0.522 0.679 0.649 0.661 0.611 0.508 0.549
LLaVA1.5 ViT L-14 + Vicuna instruct 1.2M 13.4 0.572 0.498 0.522 0.630 0.716 0.659 0.615 0.577 0.582
BLIP-2 [65] ViT g-14 + Flant5xxl [17] list 129M 12.2 0.544 0.557 0.542 0.494 0.871 0.623 0.476 0.641 0.538
BLIP-2 ViT g-14 + Flant5xxl caption 129M 12.2 0.600 0.539 0.561 0.600 0.893 0.714 0.523 0.626 0.561
InstructBLIP [22] ViT g-14 + Flant5xxl list 129M 12.3 0.596 0.554 0.567 0.613 0.897 0.725 0.544 0.634 0.578
InstructBLIP ViT g-14 + Flant5xxl caption 129M 12.3 0.639 0.487 0.546 0.690 0.662 0.673 0.647 0.539 0.581
InstructBLIP ViT g-14 + Flant5xxl instruct 129M 12.3 0.529 0.604 0.555 0.569 0.879 0.686 0.561 0.698 0.615

Ours ViT L-14 + Langtruncated - 3M 1.78 0.738 0.530 0.611 0.700 0.712 0.702 0.613 0.544 0.570
Ours ViT L-14 + Langtruncated - 70M 1.78 0.722 0.512 0.593 0.765 0.757 0.758 0.663 0.564 0.603

Table 1. Comparison of different methods with top-10 predictions. Bold numbers are the best results and underlined numbers are the
second best results, same for the following tables.

Analytic Comparisons. In the R column of Table 1, R re-
mains consistent as the number of reference labels per sam-
ple is fixed, so unaffected by prediction count. Higher R
suggests top-k predictions have higher semantic relevance
to the reference labels. Our method outperforms others
for top-10 predictions across all datasets, showing our ap-
proach’s ability to yield more relevant labels.

The P column is sensitive to the quantity of predictions; for
instance, if we assess top-10 predictions but the model pro-
duces only five labels, the precision will be higher than that
of the model yielding 10 predictions, according to Eq. 8. To
better understand the P /R relationship, we plot two differ-
ent precision-recall (PR) curves in Figure 5, calculated by
adjusting the match threshold between references and pre-
dictions, and altering k for predictions.

The left column of Figure 5 derives from various thresholds
on the similarity matrix S in Eq. 7 with top-10 predictions.
The curves demonstrate a strong linear correlation due to
the calculation of P and R from the best matches in S.
A threshold of 0.7, for example, excludes pairs with lower
similarity, reducing both P and R simultaneously. The rate
at which P and R decline with increasing thresholds reflects
the overall similarity of predictions to reference labels � a
faster drop means the lower overall similarity. Our method,
with the gradual descent of the curves, suggests better pre-
diction quality across all test datasets. At a threshold of 1.0,
non-zero values of P and R signify that the model’s predic-
tions perfectly match the reference labels.

The right column of Figure 5 shows the PR curves for vary-
ing top-k predictions, with the inverse correlation between

P and R, indicating their trade-off. Our method outper-
forms others in both P and R at top-1 and -3, while at top-5,
Flamingoopen and InstructBLIP saturate at the same level as
top-10, even we double their sampling tokens for trying to
generate more. This observation demonstrates that VQA-
based models are suboptimal for the task due to the lack
of the ability to generate diverse labels consistently. The
plateau explain their highest P , but lower R and F1 in Ta-
ble 1. Our method can achieve higher recall with increasing
k, showing that it can consistently hold a P /R balance.

5. Ablation Studies

Truncating the Language Decoder. To test our conjecture
that only a subset of knowledge in LLMs is vital for the task,
we reduce the decoder’s size starting from LLaMA 7B. We
have found that removing intermediate transformer blocks
results in a compact decoder with comparable performance.

To begin, we need to determine which transformer blocks to
remove out of the 32 blocks in LLaMA 7B. Drawing inspi-
ration from [44], we initially fine-tuned the last third, i.e.,
11 blocks, along with the final output layer. On the other
hand, motivated by the observation that the language de-
coder takes image embeddings as the input with a novel
domain, we fine-tune the first third of the blocks, i.e., 11
blocks, and the final output layer. This approach is premised
on the hypothesis that the initial blocks might be better
suited to learn the image embeddings. As evidenced by Ta-
ble 2, indeed the first third of the LLaMA 7B emerges as the
most significant segment. Therefore, we decided to remove
blocks after the 11th block.
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CC3M COCO OpenImages
f.t. part R P F1 R P F1 R P F1

first third 0.679 0.602 0.632 0.621 0.802 0.698 0.559 0.593 0.569

last third 0.651 0.586 0.611 0.585 0.748 0.654 0.550 0.587 0.562

Table 2. Partial fine-tuning (f.t.) results of LLaMA 7B with top-5
predictions, sampled by one-shot method. The first third encom-
passes the first 11 transformer blocks plus the final output layer,
while the last third includes the last 11 blocks with the output layer.

CC3M COCO OpenImages
# params R P F1 R P F1 R P F1

7.05B - 32 0.679 0.602 0.632 0.621 0.802 0.698 0.559 0.593 0.569
3.00B - 11 0.676 0.600 0.630 0.622 0.805 0.699 0.561 0.598 0.572
1.78B - 6 0.673 0.598 0.627 0.618 0.799 0.695 0.560 0.595 0.570
1.18B - 3 0.670 0.595 0.624 0.615 0.795 0.692 0.558 0.593 0.568
0.77B - 1 0.665 0.590 0.620 0.610 0.790 0.688 0.555 0.590 0.565

Table 3. Comparison of different language decoder sizes with
top-5 predictions, sampled by one-shot method. The number of
parameters counts both the image encoder (0.43B) and the lan-
guage decoder. It is paired with the number of transformer blocks
in our language decoder, e.g., 1.78B model has 6 blocks in the de-
coder, denoted as 1.78B - 6.

decoder w/ CC3M COCO OpenImages
LLaMA R P F1 R P F1 R P F1

3B [113] 0.718 0.522 0.599 0.689 0.702 0.693 0.612 0.546 0.571
7B ! 2.6B 0.745 0.532 0.615 0.703 0.716 0.707 0.615 0.546 0.572

Table 4. Comparison between truncated decoder and small

language model at equivalent model size with top-10 predictions.

CC3M COCO OpenImages
sampling R P F1 R P F1 R P F1

greedy 0.661 0.604 0.624 0.606 0.802 0.687 0.549 0.599 0.565
beam 0.641 0.590 0.608 0.585 0.772 0.663 0.530 0.577 0.546

one-shot 0.673 0.598 0.627 0.618 0.799 0.695 0.560 0.595 0.570

Table 5. Comparison of different sampling methods using top-5
predictions. The greedy and beam search sample up to 64 tokens,
and takes first five generated labels as predictions.

Note that, we always retain the final output layer of LLaMA
for generating the final logits. Initially, we truncate LLaMA
7B at the 11th block, as illustrated in Figure 4, resulting in a
3B model. Table 3 shows that the 3B model matches the full
model in performance. To further explore the impact of the
decoder size, we truncate the 3B model’s decoder by remov-
ing its last 5 transformer blocks to produce a 1.78B model
and find it still performs comparably to the full model. Un-
til the 0.77B model, which has only one transformer block,
the performance has a noticeable drop but small.

The other way to construct the decoder is directly using rel-
ative small LLMs, e.g., LLaMA 3B [113]. Table 4 shows
our truncated decoder outperforms LLaMA 3B at the same
model scale, indicating that truncated decoders can be ben-
efited from the better token embeddings of the larger LLMs.
Plus, truncating enables models to flexibly balance accuracy
and efficiency across different model scales as in Table 3.

Sampling Strategies. We investigate three deterministic to-
ken sampling methods: greedy search, 3-way beam search,
and one-shot sampling. Greedy and beam search select the
highest probability token, i.e., top-1, at each step. With our
model, greedy and beam search suffer from the repetition
issue, explained in Section 3.4. To mitigate it for the com-
parison, we follow [58] to penalize the logits x of the pre-
ceding generated tokens. The sampling distribution for the
next token is

p =
exp(xi/(⌧ · (i 2 G)))P
j exp(xj/(⌧ · (j 2 G))) , (10)

where ⌧ = 1.2 is the penalization factor, (·) is the indica-
tor function, and G is the set of preceding sampled tokens.

The results are shown in Table 5. One-shot sampling con-
siders label count instead of token count in greedy and beam
search. It generates more diverse labels without the repeti-
tion issue, explaining its superior performance in R and F1

over greedy and beam search, though with marginally re-
duced P , consistently in top-10 predictions (see Table A.6).
Their top-10 comparisons show that, unlike one-shot sam-
pling, increasing the number of tokens in greedy and beam
search does not result in more diverse labels.

Note that our one-shot sampling could potentially encounter
a competition issue, where if multiple plausible labels share
the same initial token, it would sample one of them and omit
the others. While sampling multiple times for the same to-
ken could mitigate this issue, in practice, its impact seems
less critical than the repetition issue in sequential sampling.
Plus, redundant tokenization can allow multiple labels with
the same starting words being returned through different to-
ken combinations. This is tentatively indicated by our large-
scale predictions in Table 9.

Generation Efficiency. We combine the sampling methods
with different decoder sizes to investigate their overall gen-
eration efficiency. As illustrated above, the 1.78B model is
4.5⇥ faster than the 7B version in inference. Further, with
one-shot sampling and truncated language model, our ap-
proach achieves 18.1⇥ speed-up compared to the full model
with greedy sampling. The inference time is measured by
the average time of generating top-10 labels with one-shot
sampling and 64 tokens with greedy search per image. The
models run with a batch size of 1 and 16-bit Floating Point,
i.e., FP16, on an A100 GPU. Attention is without kv-cache.

Non-causal Masking. In Section 3.3, the non-causal mask-
ing considers two aspects: a) prefixing image embeddings
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Xv in the input sequence, and b) decoupling tokens from
different labels to be independent. The first ablation is to
un-prefix the image embeddings as a sequential input. Table
6 shows that the prefixing is beneficial for the performance,
especially with the sequential sampling strategy, i.e., greedy
search. For the one-shot sampling, the prefixing helps with
a slight improvement on COCO.

The second ablation is to model tokens conditionally from
different labels, also shown in Table 6. Independent model-
ing is able to also provide marginal performance improve-
ment with both greedy search and one-shot sampling, even
though it provides significant gains in efficiency due to the
parallelized decoding of all object labels.

CC3M COCO OpenImages
modeling R P F1 R P F1 R P F1

greedy search
baseline 0.662 0.577 0.611 0.602 0.754 0.667 0.539 0.559 0.543
+ prefix 0.664 0.580 0.613 0.604 0.759 0.670 0.541 0.563 0.546
+ indep. 0.668 0.600 0.625 0.609 0.797 0.688 0.548 0.588 0.561

one-shot sampling
baseline 0.677 0.601 0.630 0.611 0.790 0.687 0.556 0.592 0.567
+ prefix 0.678 0.603 0.632 0.613 0.792 0.689 0.557 0.594 0.568
+ indep. 0.679 0.602 0.632 0.621 0.802 0.698 0.559 0.593 0.569

Table 6. Ablations for prefixing image embeddings and inde-

pendent modeling of different labels with top-5 predictions, gen-
erated by greedy search and one-shot sampling.

CC3M COCO OpenImages
version R P F1 R P F1 R P F1

trained on G3M
1 0.673 0.598 0.627 0.618 0.799 0.695 0.560 0.595 0.570
2 0.673 0.599 0.627 0.620 0.803 0.698 0.560 0.598 0.572

trained on G70M
1 0.659 0.576 0.609 0.674 0.866 0.755 0.594 0.615 0.597

2 0.653 0.572 0.604 0.673 0.865 0.754 0.593 0.614 0.596

Table 7. Comparison of truncating different LLaMA versions

for the language decoder with top-5 predictions.

CC3M COCO OpenImages
ranking R P F1 R P F1 R P F1

- 0.673 0.598 0.627 0.618 0.799 0.695 0.560 0.595 0.570
full 0.673 0.598 0.627 0.619 0.800 0.695 0.562 0.597 0.572

Table 8. Comparison of different strategies for ranking top-

5 predictions. The first row ranks predictions using initial token
probabilities, whereas the second row uses full label probabilities,
derived by multiplying token probabilities.

CC3M COCO OpenImages
method R P F1 R P F1 R P F1

CLIP 0.752 0.360 0.483 0.715 0.430 0.536 0.666 0.387 0.485
CLIP 0.615 0.332 0.427 0.576 0.411 0.478 0.506 0.334 0.399
ours 0.868 0.394 0.538 0.930 0.499 0.649 0.874 0.448 0.589

Table 9. Large-scale top-100 predictions with the same settings
in Table 1.

Different LLaMA Versions. In Table 7, we compare two

truncated versions of LLaMA, namely 1.78B models of
LLaMA 1 [112] and LLaMA 2 [113]. LLaMA 2 marginally
outperforms LLaMA 1 trained on G3M, and has compara-
ble results trained on G70M.

Ranking Predictions. Our one-shot sampling method se-
lects the final top-k labels based on the probabilities of their
initial tokens. Table 8 demonstrates the effectiveness of this
approach compared to using full label probabilities. Further
details on ranking strategies can be found in A.2.

Large-scale Prediction. We evaluate our method on large-
scale prediction, i.e., top-100 predictions, with the same set-
tings as in Table 1. Table 9 shows our method’s consistent
ability to predict diverse labels as the number of predic-
tions increases, where R and F1 are improved, and P is
decreased. Besides, CLIP [93] has a similar trend, but its
performance is much lower than ours. Further, with inflat-
ing its gallery from base to the extended one, CLIP has a
performance drop across all datasets, also observed in [19].

Figure 6. Qualitative results with top-10 predictions. The top
bar is with the first prediction’s probability. The right gray column
displays GPT-4V Preview [86]’s predictions. For extensive results
of 336 images, refer to Section A.8.

6. Conclusion

We have presented an auto-regressive framework for object
recognition based on next token prediction, efficiently gen-
erating labels with one-shot sampling in parallel and intu-
itively depending only on the number of required labels.
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