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Abstract

Deep neural networks are vulnerable to adversarial at-
tacks, leading to erroneous outputs. Adversarial training
has been recognized as one of the most effective meth-
ods to counter such attacks. However, existing adversar-
ial training techniques have predominantly been evaluated
on balanced datasets, whereas real-world data often ex-
hibit a long-tailed distribution, casting doubt on the effi-
cacy of these methods in practical scenarios. In this paper,
we delve into the performance of adversarial training under
long-tailed distributions. Through an analysis of the prior
method “RoBal”(Wu et al., CVPR’21), we discover that
utilizing Balanced Softmax Loss (BSL) alone can obtain
comparable performance to the complete RoBal approach
while significantly reducing the training overhead. Then,
we reveal that adversarial training under long-tailed distri-
butions also suffers from robust overfitting similar to uni-
form distributions. We explore utilizing data augmentation
to mitigate this issue and unexpectedly discover that, unlike
results obtained with balanced data, data augmentation not
only effectively alleviates robust overfitting but also signifi-
cantly improves robustness. We further identify that the im-
provement is attributed to the increased diversity of train-
ing data. Extensive experiments further corroborate that
data augmentation alone can significantly improve robust-
ness. Finally, building on these findings, we demonstrate
that compared to RoBal, the combination of BSL and data
augmentation leads to a +6.66% improvement in model ro-
bustness under AutoAttack on CIFAR-10-LT. Our code is
available at: https://github.com/NISPLab/AT-BSL.

1. Introduction

It is well-known that deep neural networks (DNNs) are vul-
nerable to adversarial attacks, where attackers can induce
errors in the recognition results of DNNs by adding slight
perturbations to the inputs [12, 38]. Many researchers have
focused on defending against such attacks. Among the var-
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Figure 1. The clean accuracy and robustness under AutoAt-
tack (AA) [5] of various adversarial training methods using
WideResNet-34-10 [50] on CIFAR-10-LT [22]. Our method,
building upon AT [30] and BSL [35], leverages data augmentation
to improve robustness, achieving a +6.66% improvement over the
SOTA method RoBal [45]. REAT [25] is a concurrent work with
ours, yet to be published.

ious defense methods proposed, adversarial training is rec-
ognized as one of the most effective approaches. Its insight
is integrating adversarial examples into the training set to
improve the generalization capability of the model against
these examples [19, 30, 41, 44, 52, 53]. In recent years, sig-
nificant progress has been made in the field of adversarial
training. However, we observe that almost all works utilize
balanced datasets such as CIFAR-10, CIFAR-100 [22], and
Tiny-ImageNet [23] for performance evaluation. In con-
trast, real-world datasets often exhibit an imbalanced, typi-
cally long-tailed distribution. Hence, the efficacy of adver-
sarial training in practice should be reassessed using long-
tailed datasets [14, 39].

To our knowledge, RoBal [45] is the sole published work
investigating the adversarial robustness under the long-
tailed distribution. However, its complex design causes ex-
tensive training time and GPU memory, somewhat limiting
its usability. Upon revisiting the design of RoBal, we notice
that its most critical component is the Balanced Softmax
Loss (BSL) [35]. We observe that combining AT [30] with

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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BSL to form AT-BSL can match the effectiveness of RoBal
while significantly reducing its training overhead. Hence,
we advocate using AT-BSL as a substitute for RoBal.

In addition, we encounter another important observa-
tion: similar to training under balanced datasets, adversar-
ial training with long-tailed distribution data also leads to
the issue of robust overfitting [36]. Some prior works on
balanced datasets employed data augmentation to mitigate
this issue [4, 13, 34, 36, 44]. Hence, a straightforward ap-
proach is to attempt to introduce data augmentation in ad-
versarial training under long-tailed distribution. Our results
partially align with the results on balanced datasets, indi-
cating that data augmentation can also mitigate robust over-
fitting. However, contrary to results on balanced datasets
where only utilizing data augmentation alone is unhelpful
for improving robustness [34, 36, 44], we find that data aug-
mentation techniques, including MixUp [51], Cutout [9],
CutMix [49], AugMix [17], AutoAugment (AuA) [6], Ran-
dAugment (RA) [7] and TrivialAugment (TA) [32], can
significantly improve robustness. Hence, we further intro-
duce the question: Why does data augmentation improve
robustness? We hypothesize that data augmentation can in-
crease the diversity of training data, enabling the model to
learn richer representations and thereby improving robust-
ness. We validate this hypothesis through ablation studies.

Our contributions are summarized as follows:
• Through ablation studies, we discover that BSL is the

most critical component of RoBal, and the streamlined
method AT-BSL can significantly reduce the training time
and memory usage of RoBal.

• We observe that data augmentation not only mitigates ro-
bust overfitting in adversarial training under long-tailed
distributions but also substantially improves robustness.

• We propose a hypothesis about how data augmentation
improves robustness and validate this hypothesis through
experiments.

• Comprehensive empirical evidence demonstrates that our
discoveries generalize across multiple common data aug-
mentation strategies, model architectures, and datasets.

2. Related Works

Long-Tailed Learning. Long-tailed distributions refer to
a common imbalance in training datasets where a small
portion of classes (head) have massive examples, while
other classes (tail) have very few examples [14, 39]. Mod-
els trained under such distribution tend to exhibit a bias
towards the head classes, resulting in poor performance
for the tail classes. Traditional rebalancing techniques
aim at addressing the long-tailed recognition problem in-
clude re-sampling [20, 37, 40, 55] and cost-sensitive learn-
ing [8, 28], which often improve the performance of tail
classes at the expense of head classes. To mitigate these ad-

verse effects, some methods handle class-specific attributes
through perspectives such as margins [42] and biases [35].
Recently, more advanced techniques like class-conditional
sharpness-aware minimization [56], feature clusters com-
pression [26], and global-local mixture consistency cumu-
lative learning [10] have been introduced, further improving
the performance of long-tailed recognition. However, these
works have been devoted to improving clean accuracy, and
investigations into the adversarial robustness of long-tailed
recognition remain scant.
Adversarial Training. The insight of adversarial train-
ing is integrating adversarial examples into the training set,
thereby improving the generalizability of the model to such
examples. Theoretically, adversarial training addresses a
min-max problem, where the inner maximization generates
the most powerful adversarial examples, and the outer min-
imization optimizes the model parameters. One of the most
typical adversarial training methods is AT [30], which can
be mathematically represented as follows:

argmin
θm

Lmin (θm;x′, y) ,

where x′ = argmax
∥x′−x∥p≤ϵ

Lmax (θm;x′, y) .
(1)

where x′ is an adversarial example constrained by the ℓp
norm for the clean example x, y is the label of x, θm is the
parameter of the model m, ϵ is the perturbation size, Lmax

is the internal maximization loss, and Lmin is the external
minimization loss.

Building upon the foundation of AT [30], subse-
quent works developed advanced adversarial training tech-
niques such as TRADES [52], MART [41], AWP [44],
GAIRAT [53], and LAS-AT [19].
Robustness under Long-Tailed Distribution. Unfor-
tunately, previous works about adversarial training were
mainly concerned with balanced datasets, but data in the
real world more commonly follow long-tailed distribu-
tions [14, 39]. Therefore, a critical criterion for assessing
the practical utility of adversarial training should be its per-
formance on long-tailed distributions. To our knowledge,
RoBal [45] is the only published work that investigates ad-
versarial training on long-tailed datasets. In Section 3, we
will conduct a detailed analysis of the design of RoBal.
Data Augmentation. Data augmentation has been recog-
nized as an effective tool to mitigate overfitting and im-
prove the generalization capability of models, irrespec-
tive of whether the distribution of the training data is bal-
anced or long-tailed [2, 10, 47, 54]. Commonly employed
data augmentation techniques in image classification tasks
include random flips, rotations, and crops [15]. Some
more advanced augmentation methods, such as MixUp [51],
Cutout [9], and CutMix [49] may deliver better perfor-
mance in standard training scenarios. Moreover, augmen-
tation strategies such as Augmix [17], AuA [6], RA [7],
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and TA [32], which integrate a learned or random combina-
tion of multiple augmentations, demonstrate superior per-
formance.

3. Analysis of RoBal

3.1. Preliminaries

RoBal [45], compared to AT[30], introduces four additional
components: 1) Cosine Classifier; 2) Balanced Softmax
Loss[35]; 3) Class-aware Margin; and 4) TRADES Regu-
larization [52].
Cosine Classifier. In basic classification tasks employing a
standard linear classifier, the predicted logit for class i can
be represented as follows:

g(f(x))i = WT
i f(x) + bi

= ∥Wi∥ · ∥f(x)∥ cos θi + bi

= zi + bi,

(2)

where g(·) is the liner classifer. This formulation indicates
that three factors influence the prediction result: 1) the mag-
nitude of the weight vector ∥Wi∥ and the feature vector
∥f(x)∥; 2) the angle between them, denoted as cos θi; and
3) the bias term of the classifier bi.

This decomposition highlights that the prediction results
of the examples can be altered by adjusting the norm of ex-
amples in the feature space. In linear classifiers, the scale
of the weight vector ∥Wi∥ tends to decrease in tail classes,
thereby impacting the accuracy for these classes. Conse-
quently, [45] aims to employ a cosine classifier [33] to min-
imize the scale effects of features and weights. In the cosine
classifier, the predicted logit for class i can be represented
as follows:

h(f(x))i = s ·
(

WT
i f(x)

∥Wi∥ ∥f(x)∥

)
+ bi

= s · cos θi + bi,

(3)

where h(·) is the cosine classifier, ∥ · ∥ denotes the ℓ2 norm
of the vector, s is the scaling factor.
Balanced Softmax Loss. An intuitive and widely adopted
approach to address class imbalance is assigning class-
specific biases during training for cross-entropy loss. [45]
employs the approach outlined in [31, 35], where the bias
is defined as bi = τb log (ni). This modification leads to the
Balanced Softmax Loss (BSL), which is formulated as:

L0(h(f(x)), y) = − log

(
es·cos θy+by∑
i e

s·cos θi+bi

)

= log

1 +
∑
i ̸=y

e
s·(cos θi−cos θy)+τb log

(
ni
ny

) ,

(4)

where ni is the number of examples in the i-th class, and τb
is a hyperparameter controling the calculation of the bias.
BSL dynamically adjusts to the label distribution shift be-
tween training and testing by incorporating specific biases
for each class based on their respective example counts,
thereby enhancing the performance in long-tailed learn-
ing [35].
Class-Aware Margin. Yet, when the margin from the true
class y to any other class i, expressed as τb log (ni/ny),
becomes negative (i.e., when ny > ni), it may degrade
the quality of discriminative representations and the learn-
ing performance of the classifier, particularly for head
classes. To address this, [45] designs a class-aware mar-
gin term [33], which assigns a larger margin value to head
classes as a form of compensation:

mi =
τm
s

log
ni

nmin
+m0. (5)

The first term increases with ni and reaches its minimum
of zero when ni = nmin, with τm as the hyperparameter
controlling the trend. The second term, m0 > 0, establishes
a universal boundary for all classes. Add this class-aware
margin mi to L0 to become L1:

L1(h(f(x)), y)

= − log

(
es(cos θy−my)+by

es(cos θy−my)+by +
∑

i ̸=y e
s cos θi+bi

)
.

(6)

TRADES Regularization. [45] incorporates a Kullback-
Leibler (KL) regularization term following TRADES [52],
thereby modifying the overall loss function to:

Lmin = L1 (h (f (x′)) , y) + β ·KL (h (f (x′)) , h(f(x))) ,
(7)

where β is a hyperparameter for controlling the intensity of
the TRADES regularization.

3.2. Ablation Studies of RoBal

We conduct ablation studies to investigate the contribution
of each component contribution within RoBal [45]. Specifi-
cally, each component of RoBal is sequentially incorporated
into AT [30] to examine their impact on clean accuracy, ad-
versarial robustness, training time per epoch, and memory
usage. The results are summarized in Table 1. Note that
the selected hyperparameters selected strictly conform to
the default settings of [45]. Further details about the ad-
versarial attacks are provided in Section 5.1.

We observe that the AT augmented with Balanced Soft-
max Loss (AT-BSL) outperforms the vanilla AT in both
clean accuracy and adversarial robustness. Nevertheless,
the addition of a cosine classifier to AT-BSL improves ro-
bustness against PGD attacks[30], but robustness against
adaptive attacks such as CW[3], LSA [18], and AA [5] sig-
nificantly declines. This observation aligns with insights
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Table 1. The clean accuracy, robustness, time (average per epoch) and memory (GPU) of ResNet-18 [15] on CIFAR-10-LT following the
integration of components from RoBal [45] into AT [30]. The best results are bolded. The second best results are underlined. Cos: Cosine
Classifier; BSL: Balanced Softmax Loss [35]; CM: Class-aware Margin [45]; TRADES: TRADES Regularization [52].

Method Components Accuracy Efficiency

Cos BSL CM TRADES Clean FGSM PGD CW LSA AA Time (s) Memory (MiB)

AT [30] 54.91 32.21 28.05 28.28 28.73 26.75 21.36 946
AT-BSL ✓ 70.21 37.44 31.91 31.45 32.25 29.48 21.00 946

AT-BSL-Cos ✓ ✓ 71.99 39.41 34.73 30.27 29.94 28.43 22.39 946
AT-BSL-Cos-TRADES ✓ ✓ ✓ 69.31 39.62 34.87 30.19 30.15 28.64 38.91 1722

RoBal [45] ✓ ✓ ✓ ✓ 70.34 40.50 35.93 31.05 31.10 29.54 39.03 1722
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Figure 2. Analysis of learning rate scheduling for RoBal [45]. (a)
Comparison of the learning rate schedules: ‘RoBal Code Sched-
ule’ from the source code and ‘RoBal Paper Schedule’ as de-
scribed in the publication. (b) The evolution of test robustness un-
der PGD-20 [30] using ResNet-18 on CIFAR-10-LT across train-
ing epochs.

from REAT [25], which suggests that the scale-invariant na-
ture of the cosine classifier in RoBal may induce gradient
vanishing during the crafting of adversarial examples with
cross-entropy loss. This phenomenon is attributed to the
normalization of weights and features in the classification
layer, which considerably diminishes the magnitude of the
gradient, thus hampering the generation of effective adver-
sarial examples [25]. Subsequent integration of TRADES
regularization and class-aware margin do not yield signifi-
cant improvements in robustness against AA, yet substan-
tially increase both training time and memory usage. In
fact, AT-BSL in solation competes with the complete RoBal
scheme in terms of clean accuracy and robustness against
AA. Hence, we advocate using AT-BSL, which renders ad-
versarial training more efficient without sacrificing signif-
icant performance. The Lmin formulation for AT-BSL is
presented as follows:

Lmin = L0 (g (f (x′)) , y)

= − log

(
ezy+by∑
i e

zi+bi

)
= − log

(
nτb
y · ezy∑
i n

τb
i · ezi

)
.

(8)

3.3. Robust Overfitting and Unexpected Discoveries

Discrepancy in Learning Rate Scheduling: Paper De-
scription vs. Code Implementation. RoBal [45] asserts
that early stopping is not employed, and the reported results
are from the last training epoch, i.e., the 80th epoch. The
learning rate schedule described in the publication starts at
0.1, with decays at the 60th and 70th epochs, each by a
factor of 0.1. However, upon running the source code of
RoBal, we observe, as depicted by the blue line in Fig. 2(b),
that test robustness remains essentially unchanged after the
first learning rate decay (60th epoch), indicating an absence
of robust overfitting. It is well-known that adversarial train-
ing techniques on balanced datasets, e.g., CIFAR-10, ex-
hibit the robust overfitting issue [36], and CIFAR-10-LT,
having fewer data points than CIFAR-10, should theoret-
ically exacerbate this issue, contradicting the notion that
more data mitigates robust overfitting as suggested in [34].

Upon a meticulous examination of the official code pro-
vided by RoBal, we discover inconsistencies between the
implemented learning rate schedule and what was claimed
in the publication. The code follows a schedule that begins
at 0.1, with a decay of 0.1 per epoch after the 60th epoch
and then 0.01 per epoch after the 75th epoch (depicted by
the blue line in Fig. 2(a)). This leads to a learning rate
as low as 1e-26 by the 80th epoch, potentially limiting the
training after the 60th epoch and contributing to the similar
performance of the model at the 60th and 80th epochs as
shown in Fig. 2(b).

We then adjust the learning rate schedule to match the
one declared in [45] (depicted by the orange line in Fig.
2(a)) and redraw the robustness curve, shown by the or-
ange line in Fig. 2(b). After this adjustment, we observe
a decline in test robustness post the first learning rate decay,
consistent with the expected robust overfitting phenomenon
typically observed on CIFAR-10.

Thus, adversarial training under long-tailed distributions
also exhibits robust overfitting, similar to that under bal-
anced distributions. The question then arises: How can we
address this issue? Several studies [4, 13, 34, 36, 44] have
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Figure 3. The evolution of test robustness against PGD-20 using
ResNet-18 on CIFAR-10-LT for AT-BSL with various data aug-
mentation. To facilitate comparison, the robustness of the most ef-
fective checkpoint of AT-BSL is marked by red dashed lines within
each graph. Due to the density of the illustrations, the results are
divided into four separate panels: (a), (b), (c), and (d).

attempted to mitigate this using data augmentation on bal-
anced datasets, but whether data augmentation remains ef-
fective on long-tailed distributions is currently unknown.

Testing MixUp. Some prior works [34, 36, 44] have sug-
gested that on CIFAR-10, MixUp [51] can help alleviate
robust overfitting. Thus, we hypothesize that MixUp could
also alleviate robust overfitting on CIFAR-10-LT, a long-
tailed version of CIFAR-10. According to Fig. 3(a), it is
clear that AT-BSL-MixUp significantly reduces robust over-
fitting compared to AT-BSL. Moreover, we unexpectedly
discovered that MixUp also markedly improves robustness.
This result is inconsistent with prior observations on bal-
anced datasets [34, 36, 44], which concluded that data aug-
mentation alone does not improve robustness.

Exploring data augmentation. Inspired by the validation
of the MixUp hypothesis, our investigation extends to eval-
uate whether other data augmentation techniques can sim-
ilarly alleviate robust overfitting and improve robustness.
This examination includes methods such as Cutout [9], Cut-
Mix [49], AugMix [17], TA [32], AuA [6], and RA [7]. The
robustness achieved with these augmentation techniques
during training is presented in Fig. 3. Our results reveal
that each augmentation technique reduces robust overfit-
ting, with CutMix, AuA, RA, and TA showing particularly
strong performance in almost entirely preventing it. More-
over, we note that the robustness achieved with each aug-
mentation surpasses that of the vanilla AT-BSL, thereby
supporting the assertion that data augmentation alone can
indeed improve robustness.

4. Why Data Augmentation Can Improve Ro-
bustness

Formulating Hypothesis. Our hypothesis posits that data
augmentation improves robustness by increasing the diver-
sity of the training data, thus enabling models to learn richer
representations. We take RA [7] as a case study, where
for each training image, RA randomly applies a series of
augmentations from a pool of 14 options-Identity, ShearX,
ShearY, TranslateX, TranslateY, Rotate, Brightness, Color,
Contrast, Sharpness, Posterize, Solarize, AutoContrast, and
Equalize. We conduct an ablation study to evaluate the indi-
vidual impact of each augmentation. Specifically, we limit
the pool to just one type, forcing RA to use the same sin-
gle augmentation for all training examples. According to
the results in Fig. 4(a), no single augmentation indepen-
dently improves robustness except for the Contrast. In fact,
augmentations such as Solarize, AutoContrast, and Equal-
ize significantly underperform compared to AT-BSL. This
suggests that the diversity provided by a single augmenta-
tion is insufficient for improving robustness.
Validating Hypothesis. Subsequently, we examine how
increasing the variety of augmentation types impacts ro-
bustness. In each experiment, we randomly select n types
of augmentations to constitute the pool of RA, with n ∈
{2, 14}. Each configuration is tested five times. As shown
in Fig. 4(b), robustness consistently improves when more
types of augmentations are added to the pool. This trend
shows that a richer assortment of augmentations can in-
crease example diversity. Consequently, the model learns
more comprehensive representations, which improves ro-
bustness and supports our hypothesis.

Moreover, to further reinforce our hypothesis, we
conduct an ablation study on three types of augmenta-
tions—Solarize, AutoContrast, and Equalize—which, when
used individually, impair robustness. We start with a base-
line excluding these three augmentations, denoted as RA-
11, and incrementally reintroduce them. The results pre-
sented in Table 2 show that robustness incrementally im-
proves as more augmentation types are included. Although
using these three methods individually may have negative
effects, incorporating them into the pool can still improve
robustness. This further validates our hypothesis that data
augmentation improves robustness by increasing the diver-
sity of training examples.

5. Experiments

5.1. Settings

Datasets. Following [45], we conduct experiments on
CIFAR-10-LT and CIFAR-100-LT [22]. Due to space lim-
itations, partial results for CIFAR-100-LT are provided in
the appendix. The main experiments focus on CIFAR-10-
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Figure 4. The robustness under AA for AT-BSL with different
augmentations using ResNet-18 on CIFAR-10-LT. (a) Change the
augmentation space of RA [7] to a single augmentation, and the
horizontal axis represents the name of the single augmentation.
(b) The horizontal axis represents the number of types of augmen-
tations in the search space of RA.

Table 2. The clean accuracy and robustness against AA for AT-
BSL utilizing various augmentations with ResNet-18 on CIFAR-
10-LT. The best results are highlighted in bolded. “RA-11” refers
to utilizing only the initial 11 augmentations in the pool. The lines
below RA-11 represent additional augmentations added to RA-11,
with the last line employing the full pool. SO denotes Solarize;
AC refers to AutoContrast; EQ means Equalize.

Method Clean FGSM PGD CW LSA AA

RA-11 67.80 40.68 35.88 34.01 33.89 32.12

SO 67.60 41.43 37.04 34.52 34.05 32.76
AC 68.57 41.20 36.60 34.24 34.07 32.51
EQ 68.33 41.64 36.80 34.33 34.17 32.59

SO+AC 68.43 42.10 37.23 34.62 34.37 33.02
SO+EQ 68.53 41.89 37.42 35.07 34.83 33.49
AC+EQ 68.36 41.88 37.42 34.91 34.49 33.15

SO+AC+EQ 70.86 43.06 37.94 36.24 36.04 34.24

LT with an imbalance ratio (IR) set to 50. Table 6 further
provides results across various IRs.
Evaluation Metrics. Model robustness is evaluated under
an l∞ norm-bounded perturbation of ϵ = 8/255. Employed
attacks include the single-step FGSM [12] and several iter-
ative attacks, such as PGD [30], CW [3] and LSA [18], ex-
ecuted over 20 steps with a step size of 2/255. We also em-
ploy AutoAttack (AA) [5], regarded as the strongest attack
to date. For all methods, the evaluations consider both the
best checkpoint (chosen based on robustness under PGD-
20) and the final checkpoint.
Comparison Methods. We consider two adversarial
training methods under long-tailed distributions, including
RoBal [45] and REAT [25], as well as defenses designed
for balanced distributions, such as AT [30], TRADES [52],
MART [41], AWP [44], GAIRAT [53], and LAS-AT [19].
Training Details. We train the models using the Stochas-
tic Gradient Descent (SGD) optimizer with an initial learn-
ing rate of 0.1, momentum of 0.9, and weight decay of 5e-
4. The batch size is set to 128. The training lasts for 100

0 1 2 3 4 5 6 7 8 9
Class

0

1000

2000

3000

4000

5000

Ex
am

pl
e 

Nu
m

be
r

10

20

30

40

50

60

70

Ro
bu

st
ne

ss
 (%

)

AT-BSL
AT-BSL-RA

0 1 2 3 4 5 6 7 8 9
Class

0

1000

2000

3000

4000

5000

Ex
am

pl
e 

Nu
m

be
r

10

20

30

40

50

60

70

Ro
bu

st
ne

ss
 (%

)

AT-BSL
AT-BSL-AuA

(a) (b)

Figure 5. The class-wise example number and robustness against
AA for various algorithms on CIFAR-10-LT at the best check-
point. (a) ResNet-18; (b) WideResNet-34-10.

epochs, with the learning rate reduced by 10 at the 75th and
90th epochs following [52]. Adversarial examples are gen-
erated with a maximum perturbation of 8/255 and a step
size of 2/255, utilizing 10 iterations for the internal max-
imization, denoted PGD-10. The impact of PGD steps on
robustness is detailed in Table 15. For all experiments about
AT-BSL, we adopt τb = 1, with results for different τb val-
ues shown in Fig. 7. Note that the AT-BSL version in Ta-
bles 3 and 4 represents our implementation and may differ
in training parameters from that of RoBal [45]. Detailed
discussions about these differences are provided in the ap-
pendix.

5.2. Main Results

The results in Tables 3 and 4 indicate that on CIFAR-
10-LT, AT-BSL with data augmentation obtains the high-
est clean accuracy and adversarial robustness across both
ResNet-18 and WideResNet-34-10 models. Specifically, on
the WideResNet-34-10 model, our AT-BSL-AuA method
marks a significant improvement of +6.66% in robustness
against AA over RoBal. Moreover, in terms of robustness at
the final checkpoint, our method significantly outperforms
others, showcasing that data augmentation effectively miti-
gates robust overfitting.

We detail the class-wise robustness of various methods
in Fig. 5. Notably, apart from a few exceptions, our method
improves robustness across nearly all classes, particularly
in the tail classes (classes 5 to 9). This improvement illus-
trates the efficacy of our method in addressing long-tailed
distribution challenges. Moreover, in line with observations
on balanced datasets [29, 43, 46, 48], there is a significant
variance in class-wise robustness. Interestingly, Class 3 ex-
hibits the lowest robust level despite having more training
examples than subsequent classes. This phenomenon sug-
gests that the intrinsic characteristics of Class 3 may play a
significant role in its vulnerability, as highlighted in previ-
ous research [45].

5.3. Futher Analysis

Effect of Augmentation Strategies and Parameters. We
present the impact of various augmentation strategies and
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Table 3. The clean accuracy and robustness for various algorithms using ResNet-18 on CIFAR-10-LT. The best results are bolded.

Method Best Checkpoint Last Checkpoint

Clean FGSM PGD CW LSA AA Clean FGSM PGD CW LSA AA

AT [30] 49.35 30.09 27.30 26.93 27.08 25.76 52.91 29.29 25.15 25.58 27.13 24.23
TRADES [52] 43.61 29.18 27.81 26.73 26.58 26.41 43.75 29.06 27.05 26.10 25.93 25.78

MART [41] 48.61 32.75 30.29 28.82 28.46 27.73 48.80 32.60 29.78 28.45 28.12 27.30
AWP [44] 49.29 33.78 31.20 30.53 30.36 29.53 47.75 32.77 30.83 30.01 29.68 29.12

GAIRAT [53] 50.83 30.20 27.46 21.65 21.23 20.41 50.66 28.44 25.60 19.68 19.22 18.26
LAS-AT[19] 52.81 33.35 30.32 29.57 29.15 28.53 53.50 33.14 30.09 29.13 28.84 28.30

RoBal [45] 70.34 40.50 35.93 31.05 31.10 29.54 70.00 36.18 29.00 27.67 26.98 25.63
REAT [25] 67.38 40.13 35.83 33.88 33.66 32.20 67.58 36.99 30.93 30.83 31.62 28.61

AT-BSL 68.89 40.08 35.27 33.47 33.46 31.78 67.63 35.20 28.65 28.91 31.35 26.97
AT-BSL-RA 70.86 43.06 37.94 36.24 36.04 34.24 71.83 42.62 37.15 35.37 35.50 33.44

Table 4. The clean accuracy and robustness of various algorithms using WideResNet-34-10 on CIFAR-10-LT. The best results are high-
lighted in bolded.

Method Best Checkpoint Last Checkpoint

Clean FGSM PGD CW LSA AA Clean FGSM PGD CW LSA AA

AT [30] 59.21 31.88 27.88 28.19 29.81 27.07 58.25 29.77 25.29 25.71 29.83 24.94
TRADES [52] 51.28 31.58 28.70 28.45 28.36 27.72 53.85 30.44 26.23 26.57 26.77 25.59

MART [41] 49.13 34.33 32.32 30.73 30.13 29.60 52.48 33.95 31.09 29.64 29.43 28.67
AWP [44] 50.91 34.28 31.85 31.23 31.01 30.06 48.65 33.21 31.07 30.33 30.14 29.40

GAIRAT [53] 59.89 33.47 30.40 26.69 26.71 25.38 56.37 29.41 27.25 23.94 23.95 23.15
LAS-AT [19] 57.52 33.66 29.86 29.60 29.44 28.84 58.19 32.98 28.89 28.75 28.58 27.90

RoBal [45] 72.82 41.34 36.42 32.48 31.95 30.49 70.85 35.95 27.74 27.59 26.76 25.71
REAT [25] 73.16 41.32 35.94 35.28 35.67 33.20 67.76 34.51 27.75 28.17 31.82 26.66

AT-BSL 73.19 41.84 35.60 34.86 35.99 32.80 65.95 33.29 27.23 27.87 31.00 26.45
AT-BSL-AuA 75.17 46.18 40.84 38.82 39.23 37.15 77.27 44.73 38.06 37.14 39.05 35.11

their parameters on robustness through Table 5 and Fig.
6. These experiments focus on the robustness at the best
checkpoint. Specifically, Table 5 employs the optimal
hyper-parameters for each strategy: a mixing rate of α =
0.3 for Mixup, a window length of 17 for Cutout, a mix-
ing rate of α = 0.1 for CutMix, and a magnitude of 8
for RA. The results illustrate that different strategies can
improve robustness beyond the vanilla AT-BSL. Notably,
AuA and RA not only improve robustness but also con-
tribute to higher clean accuracy. Fig. 6 indicates that for
MixUp and CutMix, lower α values lead to better robust-
ness; for Cutout, longer window lengths generally corre-
late with better robustness; and for RA, an optimal level
of transformation improves robustness, reaching its peak at
magnitude = 8, suggesting that overly aggressive augmen-
tation may not yield further benefits.

Effect of Hyperparameter τb. To investigate the sensitiv-
ity of AT-BSL to τb, we evaluate the performance of the
trained models under varying τb values. Specifically, we uti-

Table 5. The clean accuracy and robustness for AT-BSL with dif-
ferent augmentations using ResNet-18 on CIFAR-10-LT. The best
results are bolded.

Method Clean FGSM PGD CW LSA AA

Vanilla 68.89 40.08 35.27 33.47 33.46 31.78

MixUp [51] 65.82 41.33 38.05 34.29 33.63 32.92
Cutout [9] 65.12 40.25 36.68 34.81 34.51 33.35

CutMix [49] 64.54 41.13 37.86 34.10 33.46 32.83
AugMix [17] 67.12 40.31 35.95 34.19 34.02 32.51

TA [32] 67.14 41.56 37.75 34.34 33.90 32.62
AuA [6] 71.63 42.69 37.78 35.60 35.47 33.69
RA [7] 70.86 43.06 37.94 36.24 36.04 34.24

lize ResNet-18 with τb ranging from 0 to 20. When τb = 0,
the bias bi = τb log (ni) added by AT-BSL becomes zero,
reverting BSL to the cross-entropy loss and transforming
AT-BSL into vanilla AT [30]. The results, depicted in Fig.
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Figure 6. The robustness against AA employing ResNet-18 on
CIFAR-10-LT as we variables include (a) the mixing rate α for
MixUp, (b) the window length for Cutout, (c) the mixing rate α
for CutMix, and (d) the magnitude of transformations for RA.
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Figure 7. The robustness under AA for various algorithms with
different τb using ResNet-18. (a): CIFAR-10-LT; (b): CIFAR-
100-LT.

7, reveal that on CIFAR-10-LT, AT-BSL is quite sensitive
to variations in τb, with the model performing optimally at
τb = 1. In addition, on CIFAR-100-LT, the performance of
AT-BSL exhibits a lesser degree of sensitivity to changes in
τb. Moreover, including data augmentation strategies across
all datasets and τb values consistently results in a significant
robustness improvement compared to the vanilla AT-BSL.
This emphasizes the benefits of data augmentation in adver-
sarial training, especially within the context of long-tailed
distributions.
Effect of Imbalance Ratio. To assess how our method per-
forms with varying IRs, we create long-tailed versions of
datasets following [8, 45]. Our results, presented in Table 6,
demonstrate that RA consistently improves the robustness
of AT-BSL in various IR settings. This further supports the
conclusion that data augmentation can improve robustness.
Effect of PGD Step Size. To investigate the impact of the
PGD step size on robustness, we fine-tune the step size from
the standard 2/255 to smaller values of 1/255 and 0.5/255,
simultaneously increasing the number of PGD steps from
10 to 20 and then to 40. As shown in Table 7, it is clear that
RA consistently improves the robustness of AT-BSL across
all tested PGD step sizes. However, we also note a decrease

Table 6. The clean accuracy and robustness for various algorithms
using ResNet-18 on CIFAR-10-LT with different imbalance ratios.
Better results are bolded.

IR Method Clean FGSM PGD CW LSA AA

10 AT-BSL 73.29 47.33 42.04 40.77 41.05 39.12
AT-BSL-RA 79.00 50.98 44.19 42.82 43.10 40.56

20 AT-BSL 71.89 44.76 39.40 38.47 38.68 36.74
AT-BSL-RA 75.84 47.62 41.68 39.92 39.82 37.78

50 AT-BSL 68.89 40.08 35.27 33.47 33.46 31.78
AT-BSL-RA 70.86 43.06 37.94 36.24 36.04 34.24

100 AT-BSL 62.03 35.06 30.95 29.41 29.56 28.01
AT-BSL-RA 66.85 38.75 33.69 31.77 31.50 30.00

Table 7. The clean accuracy and robustness of various algorithms
employing ResNet-18 on CIFAR-10-LT, adjusted for various im-
balance ratios (IRs).

Size Method Clean FGSM PGD CW LSA AA

0.5 AT-BSL 68.57 39.65 35.10 32.92 32.97 31.28
AT-BSL-RA 68.68 41.97 37.60 34.81 34.36 33.26

1 AT-BSL 68.63 39.98 35.09 33.02 33.00 31.18
AT-BSL-RA 68.93 42.71 37.85 35.30 34.79 33.51

2 AT-BSL 68.89 40.08 35.27 33.47 33.46 31.78
AT-BSL-RA 70.86 43.06 37.94 36.24 36.04 34.24

in robustness relative to the original baseline performance
achieved at a PGD step size of 2/255.

6. Conclusion
In this paper, we first investigate the design of RoBal and
identify Balanced Softmax Loss as the critical component.
We then propose the issue of robust overfitting in adver-
sarial training under long-tailed distributions and attempt to
mitigate this using data augmentation. We discover that data
augmentation not only mitigates robust overfitting but also
improves robustness, and we validate that the improved ro-
bustness is due to the expanded training example diversity
brought by data augmentation. Finally, we conduct exten-
sive experiments with various data augmentation strategies,
model architectures, and datasets, affirming the generaliz-
ability of our findings. Through our research, we contribute
to the advancement of adversarial training, making it more
adaptable and effective in real-world data scenarios.
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