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Abstract

The development of large vision-language models, no-
tably CLIP, has catalyzed research into effective adaptation
techniques, with a particular focus on soft prompt tuning.
Conjointly, test-time augmentation, which utilizes multiple
augmented views of a single image to enhance zero-shot
generalization, is emerging as a significant area of inter-
est. This has predominantly directed research efforts to-
ward test-time prompt tuning. In contrast, we introduce a
robust MeanShift for Test-time Augmentation (MTA), which
surpasses prompt-based methods without requiring this in-
tensive training procedure. This positions MTA as an ideal
solution for both standalone and API-based applications.
Additionally, our method does not rely on ad hoc rules (e.g.,
confidence threshold) used in some previous test-time aug-
mentation techniques to filter the augmented views. Instead,
MTA incorporates a quality assessment variable for each
view directly into its optimization process, termed as the
inlierness score. This score is jointly optimized with a den-
sity mode seeking process, leading to an efficient training-
and hyperparameter-free approach. We extensively bench-
mark our method on 15 datasets and demonstrate MTA’s
superiority and computational efficiency. Deployed easily
as plug-and-play module on top of zero-shot models and
state-of-the-art few-shot methods, MTA shows systematic
and consistent improvements.

1. Introduction
Vision-language models, pretrained on vast sets of image-
text pairs, have emerged as powerful tools for learning
cross-modal representations [25, 30, 46, 60, 62, 63]. The
joint feature space of visual and textual features enables
zero-shot recognition, without any task-specific data. For
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instance, given a set of candidate classes, one can create tex-
tual descriptions, with the so-called prompt [34], pk = ‘’a
photo of a [classk]”, and get its corresponding em-
bedding representation tk = θt(pk) with the language
encoder. Similarly, an image x is projected in the same
embedding space f = θv(x) using the visual encoder.
Then, one can classify this image by measuring the sim-
ilarity between these two encoded modalities and predict-
ing the class corresponding to the most similar embedding,
k̂ = argmaxk f

ttk.

Despite their impressive capabilities, these models still
encounter substantial challenges and may yield unsatisfac-
tory responses in complex situations [17, 46]. These issues
are particularly pronounced when confronted with the prag-
matic constraints of real-world scenarios, where labeled
data can be scarce (i.e., few-shot scenarios [52]) or com-
pletely absent (i.e., zero-shot scenarios [28]), thus limiting
their broader usage. Consequently, there has been a grow-
ing interest in enhancing the test-time generalization facul-
ties of these vision-language models [14, 16, 36, 38, 40, 45].
Empirical findings indicating that improved textual descrip-
tions can positively impact zero-shot predictions [46] have
sparked interest in refining prompt quality for downstream
tasks. Originating in the NLP community [23, 26, 49],
soft prompt learning, which utilizes learnable continuous
tokens as input [29], has rapidly gained popularity. Build-
ing on this momentum, CoOp [68] stands out as the sem-
inal work for prompt tuning in vision-language models.
Since then, prompt tuning has appeared as the promi-
nent approach for adapting vision-language models [63]
across both unsupervised [14, 24, 38] and few-shot scenar-
ios [3, 5, 12, 35, 59, 67–69].

In parallel, test-time augmentation, which has been ex-
tensively used in the computer vision community [32, 50,
64], is now emerging in the vision-language field, with a
focus on prompt tuning [14, 36, 38]. Instead of exploiting a
single image x, test-time prompt tuning techniques leverage
multiple embeddings (fp)1≤p≤N , each derived from a dif-
ferent augmented view (xp)1≤p≤N of the same original im-
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age x. Afterwards, the prompt is optimized by forcing con-
sistency of the predictions among these different views [38].
The final classification step is then performed by computing
the similarity between the original image encoding and the
optimized textual embedding t∗k, k̂ = argmaxk f

tt∗k. These
novel research directions underscore the increasing atten-
tion in enhancing these models’ robustness, especially in
zero-shot scenarios, through data augmentation at test-time.
Alongside this expanding literature, we ask the following
question: Can we improve the image representation f di-
rectly in the embedding space, achieving superior results in
a way that is more efficient than prompt tuning?

Concurrently, there has been a surge in the use of propri-
etary and closed APIs that encapsulate advanced machine
learning functionalities, often termed black boxes due to
their limited transparency, offering little insight into their
internal mechanisms or architectures. Yet, they are crucial
in executing a wide spectrum of tasks in vision and NLP,
introducing new challenges in model adaptation [51]. The
field of NLP, in particular, has seen an emerging literature
on few-shot adaptation of black-box models [8], driven by
the reality that large-scale models (e.g., GPT family [2, 41],
Palm [6]) are only accessible via APIs and their pretrained
weights are not publicly available. Optimizing prompts,
which necessitates gradient computation from output back
to input, a memory-intensive and time-consuming process,
is impractical in the context of API-reliant applications. In
contrast, our approach does not require extra assumptions
about the model’s internal states or architecture, making it
suitable for black-box applications.

Contributions. In this work, we introduce a robust multi-
modal MeanShift Test-time Augmentation (MTA), which
enhances the zero-shot generalization of CLIP models,
leveraging different augmented views of a given image. Un-
like current prompt tuning solutions, which rely on heavy
training procedures and ad hoc thresholds to discard de-
generated views, MTA uses only the final embedding state
and directly integrates an inlierness assessment of the aug-
mented views into its optimization process. Our objective
function is efficiently solvable using iterative block coordi-
nate descent updates, and relaxes the need for training the
model’s parameters or prompts. Empirically, we demon-
strate that MTA surpasses state-of-the-art prompt-tuning al-
ternatives, while being time and memory efficient. Our key
contributions are as follows:
1. We propose a robust MeanShift formulation, which au-

tomatically manages augmented views in test-time aug-
mentation scenarios by optimizing inlierness variables.
Used as a versatile plug-and-play tool, MTA improves
the zero-shot performances of various models on a large
variety of classification tasks, without any hyperparam-
eter tuning.

2. We report comprehensive evaluations and comparisons
to the existing test-time prompt tuning techniques on
15 datasets, showing MTA’s highly competitive perfor-
mances, although it operates in limited access (i.e., final
embedding) and training-free mode. This makes MTA
suitable for both standalone and API-based applications.

3. Deployed easily atop current state-of-the-art few-shot
learning methods, MTA brings consistent improvements,
a benefit not observed with test-time prompt tuning.

2. Related works
Vision-language models adaptation. Large scale vision-
language models have shown excellent results in several
vision tasks [63]. This success has created interest in de-
veloping adaptation techniques that capitalize their gen-
eral knowledge [57]. Among these, prompt tuning [29]
has emerged as the primary method for adapting CLIP-like
models, at test-time based on data augmentations [14, 36,
38] or with few labeled samples [3, 5, 12, 35, 59, 67–69].
CoOp [68] optimizes learnable continuous tokens attached
to the class name, while CoCoOp [67] trains a neural net-
work to generate instance-conditioned tokens based on the
image. Further efforts include ProGrad [69], which guides
prompts toward predefined handcrafted ones based on gra-
dients, whereas PLOT [5] aligns learned prompts with finer-
grained visual features via an optimal transport formulation.
Beyond soft prompt tuning, other strategies involve using
hierarchical word structures to create more semantically re-
fined class descriptions [16, 40], or exploiting other large
scale models to generate more detailed prompts [45, 54, 66]
or new images by diffusion mechanisms [14, 66].
Contrastingly, methods such as CLIP-Adapter [15] offer
an alternative strategy by learning feature adapters. How-
ever, there has been limited effort in developing black-box
methods [42], which can effectively capitalize the knowl-
edge of these models while only accessing their final em-
bedding state. Examples include zero-shot prediction with
parameter-free plug-in attention [18], or few-shot settings
with Tip-Adapter [65] using a cache model.
Our experiments demonstrate that our robust MeanShift al-
gorithm significantly enhances the performances in zero-
shot scenarios, without relying on soft prompt tuning, while
respecting the black-box constraints. Additionally, we re-
port increased performances when applied atop of various
aforementioned few-shot methods, without requiring fur-
ther training or hyperparameter tuning.

Test-time augmentation. Data augmentation during
training is widely recognized for its capacity to enhance
model robustness [20, 21]. Also, its utility extends to test-
time applications [32, 50, 64]. In particular, test-time aug-
mentation can be used on a single image [64] to adapt mod-
els with an entropy minimization term. The latter is of-
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ten used in the context of unsupervised adaptation [31, 55],
but is deployed differently in this augmentation setting, en-
forcing consistent predictions across the various augmented
views. This idea is further developed for vision-language
models with test-time prompt tuning (TPT) [38], where a
prompt is optimized to make consistent predictions among
light augmentations inspired by Augmix [20]. DiffTPT [14]
builds up on this work by adding generated images from
Stable Diffusion [48] to acquire more diverse views. Both
works show improvements when selecting a subset of the
augmented views. Specifically, TPT utilizes only the 10%
most confident views, and DiffTPT measures the similar-
ity with the original image, keeping the unconfident but
correctly classified augmentations. We also demonstrate
that filtering the augmented views can substantially im-
prove test-time augmentation techniques. Additionally, our
method does not rely on arbitrary hard thresholds or rules
as in TPT and DiffTPT; instead, we directly integrate the
weighting of the augmented views in our optimization pro-
cedure thanks to inlierness variables.

3. Robust multi-modal MeanShift
Similarly to the test-time generalization setting recently in-
troduced in TPT [38], let us assume that we are given a
set of image samples (xp)1≤p≤N , which correspond to N
distinct augmented views of a given test sample x. It is
important to note that our method is applicable on top of
any type of augmentations. Let fp = θv(xp) denote the
vision-encoded feature embedding corresponding to aug-
mented sample xp, θv being the vision encoder of the CLIP
pre-trained model. A straightforward way to use the ensem-
ble of augmentations is to perform the zero-shot prediction
based on their mean embedding, thereby giving exactly the
same importance to all augmented samples, independently
of the structure of the data. However, the augmentations
may include degenerated views, which correspond to out-
liers, e.g., in the form of isolated data points or small re-
gions with little structure within the feature space. Such
outliers may bias global statistics like the mean.

3.1. Formulation

We hypothesize that robust statistics like the modes of the
density of the set of augmented views could provide better
representations. Augmented views presenting major char-
acteristics of the concept to be recognized are likely to be
projected close to the original image and close to each oth-
ers. This motivates our formulation, which could be viewed
as a novel robust and multi-modal extension of the popu-
lar MeanShift algorithm [9], an unsupervised procedure for
finding the modes of the distribution of a given set of sam-
ples. In our case, we explicitly model and handle the po-
tential presence of outliers in the estimation of the kernel
density of the set of feature vectors (fp)1≤p≤N . To do so,

we introduce a latent assignment vector y = (yp)1≤p≤N ∈
∆N−1, with ∆N−1 = {y ∈ [0, 1]N | 1ty = 1} the prob-
ability simplex, and propose to minimize the following ob-
jective function:

min
m,y
L(m,y) s.t. y ∈ ∆N−1 with

L(m,y) = −
N∑

p=1

ypK(fp −m)− λ

2

∑
p,q

wp,qypyq

− λyH(y) (1)

In the following, we describe the notations occurring in our
model in Eq. (1), as well as the effect of each of its terms:

Robust KDE (first term) K is a kernel function measur-
ing a robust affinity between fp and m, e.g., a Gaussian
kernel [4]: K(fp − m) ∝ exp(−∥fp − m∥2/h2), where
h is the kernel bandwidth. When variables yp are fixed to
1 ∀p, the first term reduces to the kernel density estimate
(KDE) of the distribution of features at point m. Clearly,
minimizing this term w.r.t m yields the standard MeanShift
algorithm for finding the mode of the density (i.e., the point
maximizing it). In our model, the additional latent vari-
able yp evaluates the inlierness of the pth augmented view,
i.e., the model’s belief in fp being an inlier or not within
the whole set of augmented-view embeddings (fp)1≤p≤N .
Score yp ∈ [0, 1] is high when the model considers the pth

sample as an inlier, enabling it to contribute more in the
KDE evaluation in (1), and small (closer to 0) otherwise.

Text-knowledge guided quadratic term (second term)
This term encourages samples with nearby text-based zero-
shot predictions to have similar inlierness scores yp. Specif-
ically, we construct the pairwise affinities wp,q in the second
term of (1) from both the text and vision embeddings as fol-
lows. Let sp ∈ RK denotes the text-driven softmax pre-
diction based on the zero-shot text embedding for the pth

sample, i.e., the kth component of sp is given by:

sp,k =
exp lp,k∑K
j=1 exp lp,j

; lp,k = τ f tptk (2)

where τ is the temperature scaling parameter of the CLIP
model. Affinities wp,q are given by:

wp,q = stpsq (3)

The Shannon entropy (third term) H(y) is the Shannon
entropy defined over simplex variables as follows:

H(y) = −
N∑

p=1

yp ln yp (4)
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This term acts as a barrier function, forcing latent variable
y to stay within the probability simplex. Furthermore, this
entropic regularizer is necessary to avoid a trivial solution
minimizing the quadratic term (i.e., yp = 1 ∃p.), as it
pushes the solution toward the middle of the simplex (i.e.,
yp = 1/N ∀p).

3.2. Block coordinate descent optimization

Our objective in (1) depends on two types of variables: m
and y. Therefore, we proceed with block-coordinate de-
scent alternating two sub-steps: one optimizing (1) w.r.t y
and keeping density modes m fixed, while the other mini-
mizes (1) w.r.t m with the inlierness variables fixed.

Optimization w.r.t y via the concave-convex procedure
When m is fixed, our objective L(y,m) could be mini-
mized efficiently w.r.t y using the Concave-Convex Proce-
dure (CCCP) [61], with convergence guarantee. At each
iteration, we update the current solution y(n) as the mini-
mum of a tight upper bound on L, which ensures the objec-
tive does not increase. For the sum of concave and convex
functions, as for our sub-problem, the CCCP replaces the
concave part by its linear first-order approximation at the
current solution, which is a tight upper bound, while keep-
ing the convex part. For (1), the quadratic term could be
written as ytWy, with W = [wi,j ]. It is easy to see that
this term is concave as affinity matrix W is positive semi-
definite, whereas the remaining part of L is convex. There-
fore, we replace this quadratic term by ytW ty(n), obtain-
ing, up to an additive constant, the following tight bound:

L(y,m)
c
≤ −

N∑
p=1

ypK(fp −m)− λytW ty(n) − λyH(y)

(5)
Solving the Karush-Kuhn-Tucker (KKT) conditions for
minimizing bound (9), s.t. simplex constraint y ∈ ∆N−1,
gives the following updates for y:

y(n+1)
p =

exp
(
(K(fp −m) + λ

∑N
q=1 wp,qy

(n)
q )/λy

)
∑N

j=1 exp
(
(K(fj −m) + λ

∑N
q=1 wj,qy

(n)
q )/λy

)
(6)

which have to be iterated until convergence. The complete
derivation of Eq. (6) is provided in Appendix A.

Optimization w.r.t m via fixed-point iterations This
sub-step fixes y, and minimizes the objective in (1) w.r.t
the density modes m. Setting the gradient of L w.r.t m to
0 yields the following necessary condition for a minimum,
which takes the form of a fixed-point equation:

m− g(m) = 0; g(m) =

∑N
p=1 ypK(fp −m)fp∑N
p=1 ypK(fp −m)

(7)

(a) Inlierness scores distribution. Blue gradation represents the inlierness
score: the darker, the higher.

(b) Inlierness-density mode seeking. The white arrow represents the up-
date direction of the traditional MeanShift; instead our robust MeanShift
follows the orange ones.

Figure 1. Interpretation of Eqs. (6) and (8) in (a) and (b) respec-
tively. Our robust MeanShift alternatively solves these 2 equations
until convergence. A pseudocode is available in Appendix C.

The solution to (7) could be obtained by the following fixed-
point iterations:

ml+1 = g(ml) =

∑N
p=1 ypK(fp −ml)fp∑N
p=1 ypK(fp −ml)

(8)

This yields a Cauchy sequence {ml}l∈N, which con-
verges to a unique value: m∗ = liml−→∞ ml+1 =
liml−→∞ g(ml) = g(liml−→∞ ml) = g(m∗), and m∗ is
the unique solution of the fixed-point in (7) (Appendix B).

Final prediction The class prediction is computed by the
cosine similarity between the mode minimizing our objec-
tive in Eq. (1), i.e., m∗ obtained at convergence, and the
encoded prompts of each class k, i.e., tk:

k̂ = argmax
k

(m∗)ttk

Interpretation Eqs. (6) and (8) can be nicely interpreted
in Figure 1. Sub-figure 1a shows how the inlierness scores
are spreading. A data point is given a high inlierness score
if it is close to the mode and/or close to other data points
with high inlierness scores. Therefore, inlierness scores are
spreading iteratively from data points close to the mode to-
ward other data points controlled by their affinity relations.
Sub-figure 1b shows the update direction followed by tradi-
tional MeanShift, i.e., updates (8) but with fixed yp = 1, ∀p.
The orange arrows follow the update of our robust Mean-
Shift, i.e. joint updates in (6) and (8). Our mode update is
directed toward dense regions with high inlierness scores,
thus avoiding close regions with few or isolated data points.
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Table 1. Zero-shot methods on ImageNet datasets. We use ”a photo of a [classk]” as prompt. Majority vote of the 80 handcrafted
prompts of [46] is used for final prediction when Ensemble is specified. CoOp is a pretrained prompt on 16-shots ImageNet. We highlight
the best and second best results by bolding and underlining them, respectively. ✓ for training-free methods at test-time, ✗ otherwise.

Method ImageNet -A -V2 -R -Sketch Average

CLIP [46] ✓ 66.73 47.87 60.86 73.98 46.06 59.11
CLIP + Ensemble [46] ✓ 68.38 49.95 62.1 77.38 47.96 61.15

TPT [38] ✗ 68.94 54.63 63.41 77.04 47.97 62.40
MTA (Ours) ✓ 69.29 57.41 63.61 76.92 48.58 63.16
MTA + Ensemble (Ours) ✓ 70.08 58.06 64.24 78.33 49.61 64.06

CoOp [68] ✓ 71.51 49.71 64.20 75.21 47.99 61.72

TPT + CoOp [38] ✗ 73.61 57.85 66.69 77.99 49.59 65.14
MTA + CoOp (Ours) ✓ 73.99 59.29 66.97 78.2 49.96 65.68

Table 2. Zero-shot methods on 10 fine-grained classification datasets. We highlight the best result by bolding. +E. means that majority
vote with the 80 handcrafted prompts of [46] is used for final prediction.

Method SUN397 Aircraft EuroSAT Cars Food101 Pets Flower102 Caltech101 DTD UCF101 Average

CLIP [46] 62.59 23.67 42.01 65.48 83.65 88.25 67.44 93.35 44.27 65.13 63.58
CLIP + E. [46] 66.02 23.88 48.8 66.14 83.83 88.42 67.8 93.87 46.04 66.77 65.16

TPT [38] 65.41 23.1 42.93 66.36 84.63 87.22 68.86 94.12 46.99 68.00 64.76
MTA (Ours) 64.98 25.32 38.71 68.05 84.95 88.22 68.26 94.13 45.59 68.11 64.63
MTA +E. (Ours) 66.67 25.2 45.36 68.47 85.00 88.24 68.06 94.21 45.9 68.69 65.58

Table 3. Comparison of augmentation strategies: RandomCrop Vs Diffusion-based. Note that the test set of each dataset is reduced
to 1000 samples for computation reasons and batch size of 128 was used as in the DiffTPT paper [14] (64 randomly cropped and 63
diffusion-generated images for Diffusion). Hence reported performance can vary from Table 1. We highlight the best result by bolding.

Augmentation Method ImageNet -A -V2 R -Sketch Average

RandomCrop TPT [38] 68.15 51.23 66.17 76.88 49.31 62.35
MTA 69.11 55.27 65.71 77.48 50.23 63.56

Diffusion DiffTPT [14] 67.83 53.43 65.18 76.85 50.2 62.7
MTA 69.18 54.5 64.81 76.82 51.09 63.28

4. Experimental settings

4.1. Datasets

To evaluate our proposed MTA, we follow the setting
of previous works [38, 68]. We assess our method
on ImageNet [11] and its four variants (ImageNet-
A [22], ImageNet-V2 [47], ImageNet-R [21], ImageNet-
Sketch [56]) to measure robustness to natural domain shifts.
Additionally, we also consider 10 datasets for fine-grained
classification of scenes (SUN397 [58]), aircraft types (Air-
craft [37]), satellite imagery (EuroSAT [19]), automobiles
(StanfordCars [27]), food items (Food101 [1]), pet breeds
(OxfordPets [43]), flowers (Flower102 [39]), general ob-
jects (Caltech101 [13]), textures (DTD [7]) and human ac-
tions (UCF101 [53]). These diverse datasets provide a com-
prehensive benchmark for visual classification tasks.

4.2. Implementation details

No hyperparameter tuning. In the MeanShift algorithm,
the bandwidth is a sensitive hyperparameter that can cause
the algorithm to become stuck in small, locally dense areas
if set too low, or escape significant dense regions if set too
high [10]. We utilize the Gaussian kernel [4] as described
in Section 3 and adopt a variable bandwidth [10] in which
each point is assigned a unique bandwidth value h2

p. The
bandwidth of a point is estimated with a ratio ρ of its clos-
est neighbors: h2

p = 1
ρ(N−1)

∑
q∈Ip
∥fp− fq∥2 with ρ set to

0.3 inspired by [44]. Here, Ip represents the set of indices
corresponding to the neighbors of point p. Initial guess of
the mode can also impact the final solution and is set to
the embedding of the original (i.e., non-augmented) image.
Affinities are based on the text prediction as described in
Section 3. Finally, λ and λy are set to 4 and 0.2 respectively
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Figure 2. Runtime in seconds per image on ImageNet for TPT
and MTA with 5 different backbones: RN50 (ResNet-50), RN101
(ResNet-101), ViT-B/32, ViT-B/16 and ViT-L/14. Experiences
were performed on a single A100 40Gb GPU.

and remain fixed for every CLIP visual encoder and dataset.
This leads to a hyperparameter-free method across all ex-
periments. Unless otherwise mentioned, we report top-1
accuracy using the ViT-B/16 backbone.

Comparison methods. We employ the term ensemble
for the majority vote among the 80 predefined handcrafted
prompts of CLIP [46]. For the zero-shot scenario, TPT is
performed with one step as suggested in their work [38].
We evaluate the zero-shot setting [28] with the basic ”a
photo of a [classk]” as prompt initialization and
with the ensemble for final prediction if mentioned. Note
that combining ensemble with TPT is not straightforward as
the goal is to use the optimized prompt for prediction, hence
we only use ensemble with our approach. The weights of
CoOp [68] are from 16 shots Imagenet with 4 tokens. For
the few-shot scenario, the number of tokens of CoOp [68]
and ProGrad [69] are specified in the caption of each table.
As proposed in [33], to establish a fair comparison between
few-shot methods, we limit the number of validation sam-
ples to min(n, 4) where n is the number of training shots,
notably for Tip-Adapter and Tip-Adapter-F [65] that tune
hyperparameters. Because of the randomness inherent in
test-time augmentation or some training procedures (e.g.,
prompt tuning), each reported performance is the averaged
top-1 accuracy of three different random seeds. More de-
tailed performances are available in Appendix D.

Test-time augmentation. Our proposed method uses ran-
dom cropping (RandomCrop) as augmented view generator
identical to the one in TPT [38]. We also study at the end of
Section 5 the impact of a more complex data augmentation
based on diffusion as done in DiffTPT [14]. Note that TPT
and DiffTPT are using slightly stronger augmentations for
the 10 fine-grained classification datasets inspired by Aug-
Mix [20]. In our case, for a more realistic zero-shot setting,
we keep the simple RandomCrop for all the 15 datasets.

Table 4. Averaged top-1 accuracy on ImageNet and its 4 vari-
ants for different visual encoders of CLIP. Hyperparameters are
kept identical across datasets and visual encoder architectures. +E.
stands for Ensemble.

Architecture ResNet-50 ResNet-101 ViT-B/32 ViT-B/16 ViT-L/14

CLIP 44.11 49.48 50.65 59.11 70.65
Ensemble 46.23 51.58 52.23 61.12 72.6
TPT 47.23 52.16 53.27 62.40 73.67
MTA 47.22 53.15 55.17 63.16 73.88
MTA + E. 48.35 54.23 56.1 64.06 74.71

5. Zero-shot
MTA globally outperforms TPT while respecting the
black-box constraints and running nearly three times
as fast. Table 1 demonstrates MTA’s stable improvement
over TPT on ImageNet and its variants with both the ba-
sic ”a photo of a [classk]” and CoOp’s pretrained
prompt. Moreover, Table 2 indicates that, except for the
EuroSAT dataset [19], MTA consistently enhances base-
line performance across fine-grained datasets. It also sur-
passes TPT when combined with ensembling, which re-
spects the black-box assumption. TPT is not able to outper-
form the majority vote strategy in average for the 10 fine-
grained classification datasets, questioning its applicability
for a larger variety of tasks. Finally, we compare runtimes
on ImageNet in Figure 2. MTA is nearly three times faster
than TPT, notably due to the quick optimization step and
the removed second forward pass.

MTA benefits from improved prompt strategy. Table 1
and 2 concur in suggesting that the improvements brought
by our approach complement those from refined prompt
strategies, i.e., basic ensemble of handcrafted prompts or
soft pretrained prompts. This may imply that leveraging
both modalities in the same optimization process, as sug-
gested in [33] for the few-shot setting, could further en-
hance performance.

MTA bridges the transferability gap of pretrained
prompts due to better image representation. We use
CoOp pretrained on ImageNet to measure the domain gen-
eralization ability of our method as in [68] in Table 1. Al-
though the gains of CoOp over the ensembling strategy re-
main ambiguous, the combination of CoOp with MTA sig-
nificantly enhances accuracy for all datasets. This notable
improvement suggests that the mode found by MTA is able
to highlight the generalization ability of pretrained prompts.
This illustrates an additional use case of MTA, which can
be used in synergy with fine-tuning for a specific task (e.g.,
prompt tuning). This aspect is emphasized in Section 6.
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Figure 3. Few-shot learning results on the 10 fine-grained datasets and ImageNet. We compare MTA and TPT when added on top of CoOp
prompts (M=4 tokens) for increasing number of shots. Averaged top-1 accuracy over the 11 datasets is shown on the bottom right, we
additionally show the averaged top-1 accuracy for CoOp with M=16 tokens.

MTA generalizes across visual encoder architectures
with the same hyperparameters. Generalization across
various model architectures is a desirable attribute of zero-
shot methods, as it eliminates the need for laborious and
computationally demanding hyperparameter tuning. This
becomes increasingly critical in the context of the current
scaling trend, where model complexity is rapidly expand-
ing [2, 6]. Table 4 shows consistent improvement on the
baseline for five different visual backbones of CLIP with
fixed hyperparameters. It demonstrates the generalization
ability of our method across architectures and model scales.

MTA is applicable to other data augmentation strate-
gies. We explore the compatibility of MTA with different
types of data augmentation. Specifically, we follow the pro-
tocol of DiffTPT [14] to generate augmented views from
cropping and diffusion model [48]. We employ a batch
of 128 images composed of the original one, 63 diffusion-
generated and 64 randomly cropped views. Since gener-
ating images by diffusion is more computationally inten-
sive than RandomCrop (generating 63 images takes approx-
imately 2 minutes on a A100 40Gb GPU), we present these
results separately. Inspired by the observations of DiffTPT

about the reliance of the images generated by diffusion, we
increase ρ to a slightly less restrictive value of 0.5 for the
purpose of this experiment. Otherwise, we keep the same
hyperparameters λ and λy and do not treat the two kinds of
augmentation differently. As demonstrated in Table 3, our
method surpasses DiffTPT on average, further evidencing
its effectiveness across a broad range of applications.

6. Few-shot

Fine-grained learned prompts benefit from MTA but not
from TPT. As depicted in Figure 3, MTA improves CoOp
performances across shots and datasets with notably Air-
craft 40.07%→ 44.33% (+ 4.26%), EuroSAT 83.53%→
87.38% (+ 3.85%), and Cars 79.06%→ 82.66% (+ 3.6%)
with 16 shots. In contrast, TPT generally diminishes perfor-
mance across most datasets, highlighting its limitations in
enhancing prompts for fine-grained tasks. While the accu-
racy for 16 tokens is on average higher for MTA and lower
for TPT, we report the 4 tokens results in alignment with
the TPT paper [38] to maintain fairness. Detailed perfor-
mances for 16 tokens and individual datasets are available
in Appendix D.
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Table 5. Improvement of few-shot learning methods on ImageNet
when MTA is added on top. CoOp and ProGrad are using 16 to-
kens. ∆ highlights the gain. ✓ for training-free methods, ✗ oth-
erwise.

Shots 1 2 4 8 16

Tip-Adapter [65] ✓ 68.94 69.18 69.75 70.15 70.51
Tip-Adapter-F [65] ✗ 69.36 69.95 70.74 71.82 73.39
CoOp [68] ✗ 65.7 66.97 68.83 70.57 71.87
ProGrad [69] ✗ 67.01 69.06 70.15 71.25 72.14
Tip-Adapter + MTA ✓ 71.05 71.12 71.4 71.9 72.05
∆ (+2.11) (+1.94) (+1.65) (+1.75) (+1.54)
Tip-Adapter-F + MTA ✗ 71.35 71.48 72.17 73.18 74.23
∆ (+1.99) (+1.53) (+1.43) (+1.36) (+0.84)
CoOp + MTA ✗ 67.82 69.1 71.05 72.85 74.20
∆ (+2.12) (+2.13) (+2.22) (+2.28) (+2.33)
ProGrad + MTA ✗ 69.27 71.39 72.50 73.66 74.41
∆ (+2.26) (+2.33) (+2.35) (+2.41) (+2.27)

MTA can be applied atop few-shot learning methods.
As demonstrated in Table 5, applying MTA to prompt-based
and adapter-based few-shot learning methods on ImageNet
results in notable performance improvements. Specifically,
prompt-based methods see an average gain exceeding 2%
across shots, with adapter-based methods showing slightly
lower yet significant improvements. Indeed, our affinity
term, outlined in Eq. 3, can greatly benefit from refined
prompts. Nevertheless, we can notice that a training-free
approach, Tip-Adapter, combined with MTA is competi-
tive with prompt tuning methods without MTA. This could
present a compelling trade-off: opting for more intensive
computational efforts during training or at test-time.

7. Ablation study
Number of augmented views. In Figure 4, the accuracy
for MTA and MTA + Ensemble increases as the number
of augmented views grows until reaching a plateau around
128. Even when we restrict the number of augmented views
to 16, our method still brings about 2.3% gain, which makes
it a useful tool for lighter applications, up until 4.4% gain
for batches of 128 views. We can observe similar gains
when combined with ensemble of prompts, with 1.9% gain
for batches of 16 up until 3.1% for larger batches.

Inlierness scores. We compare performance with equal
weights on each augmented view (i.e., traditionnal Mean-
Shift), with a confidence threshold as in TPT [38] and with
our inlierness formulation in Table 6. The inlierness for-
mulation yields better performance on average over the 15
datasets. Note that the relatively high score of confidence
threshold is mainly due to peak performance on ImageNet-
A, a trend not consistent on other datasets, see Appendix
D. Additionally, Appendix C contains a study of λ and λy

showing their interdependent relation and importance.
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Figure 4. Averaged top-1 accuracy of MTA with and without ma-
jority vote for final prediction on the 5 ImageNet variants with
increasing number of augmented views.

Affinity measure. Rather than using the affinity measure
based on text described in Section 3, one could use only
visual features (fp)1≤p≤N to compute the affinity between
two embeddings wp,q = f tpfq . For the sake of fairness,
we reperform a comprehensive hyperparameter search (λ
ranging from 0.1 to 10 and λy from 0.1 to 0.5). Best per-
formance is reported in Table 6. We observe that vision-
based affinity measure degrades performance in comparison
to text-based affinity measure.

Table 6. Ablation study on two main components of MTA: the
inlierness scores and the affinity measure. Reported value is the
averaged top-1 accuracy over the 15 datasets studied in this work.

Baseline CLIP 62.09

Filtering
Strategy

MeanShift (no inlierness scores) 59.93
Confidence thresh. (10%) 63.27
Inlierness scores 64.14

Affinity
Measure

Vision-based 63.15
Text-based 64.14

8. Conclusion
In this work, we have investigated a novel approach to han-
dle test-time augmentation for vision-language models. Our
MeanShift for Test-time Augmentation (MTA) is based on
a robust generalization of a well-known mode seeking al-
gorithm, and operates solely on the final embeddings, in a
training-free manner. Extensive experiments demonstrate
that our method not only surpasses test-time prompt tun-
ing alternatives but also runs significantly faster. With-
out any other requirements, MTA can easily be deployed
in a zero-shot manner and atop few-shot learning meth-
ods. We believe our work could serve as a starting point to
broaden the current research focus on improving zero-shot
vision-language models, and to investigate more efficient
approaches, beyond prompt learning.
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