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Abstract

Temporal action detection (TAD) aims to locate ac-
tion positions and recognize action categories in long-term
untrimmed videos. Although many methods have achieved
promising results, their robustness has not been thoroughly
studied. In practice, we observe that temporal information
in videos can be occasionally corrupted, such as missing or
blurred frames. Interestingly, existing methods often incur
a significant performance drop even if only one frame is af-
fected. To formally evaluate the robustness, we establish
two temporal corruption robustness benchmarks, namely
THUMOS14-C and ActivityNet-v1.3-C. In this paper, we
extensively analyze the robustness of seven leading TAD
methods and obtain some interesting findings: 1) Existing
methods are particularly vulnerable to temporal corrup-
tions, and end-to-end methods are often more susceptible
than those with a pre-trained feature extractor; 2) Vulnera-
bility mainly comes from localization error rather than clas-
sification error; 3) When corruptions occur in the middle of
an action instance, TAD models tend to yield the largest
performance drop. Besides building a benchmark, we fur-
ther develop a simple but effective robust training method
to defend against temporal corruptions, through the Frame-
Drop augmentation and Temporal-Robust Consistency loss.
Remarkably, our approach not only improves robustness but
also yields promising improvements on clean data. We be-
lieve that this study will serve as a benchmark for future
research in robust video analysis. Source code and mod-
els are available at https://github.com/Alvin-
Zeng/temporal-robustness-benchmark.

1. Introduction
Temporal action detection (TAD), an essential aspect of
video understanding, seeks to pinpoint action locations and
identify action categories in untrimmed videos. Despite
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Figure 1. The mAP gap of temporal action detection methods
when testing on clean and corrupted videos. * and # denote the
video features extracted by I3D and VideoMAEv2, respectively.
Other methods follow an end-to-end manner. Existing TAD meth-
ods incur a significant mAP drop of more than 1.08% even when
only one frame is corrupted in an action instance on THU-
MOS14 dataset, highlighting a prevailing lack of robustness to-
wards temporal corruptions.

the fruitful progress in this mission, the robustness of these
methods against corruptions remains largely unexplored. If
TAD models are very vulnerable to corruptions, it would be-
come particularly problematic when applying them in vari-
ous practical contexts, including autonomous driving, secu-
rity monitoring, and robotics. To verify this, we conduct a
preliminary experiment in which we introduce corruptions
to a single frame within an action instance, simulating the
phenomenon of “Black Frame” [17] that can occur during
data transmission. Remarkably, as shown in Figure 1, the
performance of existing TAD methods drops significantly,
no matter what kind of features are used or whether the
model is trained end-to-end. This outcome reveals that cor-
rupting even a single frame in an action instance disrupts the
temporal continuity of the video and damages the temporal
information. The poor performance of existing models un-
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Figure 2. The gain of mAP and relative robustness brought by
our proposed training strategy. * and # denote the video features
extracted by I3D and VideoMAEv2, respectively. Our method en-
hances TAD models’ robustness on corrupted videos and, surpris-
ingly, boosts their performance on clean videos.

der these conditions suggests that TAD models generally
exhibit weak temporal robustness. As such, a comprehen-
sive evaluation of temporal robustness becomes a corner-
stone in advancing this field.

Robustness has been an active research topic yet the ma-
jority of studies have concentrated on images [27, 54]. Re-
cently, in the video domain, [57, 79] present robustness
benchmarks to evaluate action recognition models. By con-
trast, TAD not only requires action recognition; its key dis-
tinction lies in the need for temporal localization. Since
these benchmarks do not take the change of temporal con-
tinuity into account, they are not directly applicable to as-
sess TAD models. Thus, the design of an effective bench-
mark capable of evaluating temporal robustness remains an
unexplored area. To this end, we propose two benchmark
datasets, THUMOS14-C and ActivityNet-v1.3-C, that con-
tain corruptions in the temporal domain. Specifically, we in-
troduce 5 types of corruptions that are commonly observed
in video acquisition and processing. To measure the severity
of breaking the temporal continuity, we consider 3 levels by
varying the number of frames to be corrupted in a video clip.
We conduct in-depth experiments to analyze the robustness
based on diverse leading TAD methods and obtain several
interesting observations: 1) Existing TAD models demon-
strate a notable vulnerability to temporal corruptions. Addi-
tionally, it has been observed that end-to-end TAD models
are more susceptible to temporal corruptions compared to
models that employ a fixed feature extractor. 2) The primary
source of this vulnerability can be attributed to localization
errors, as opposed to classification errors. 3) The vulnera-
bility of TAD methods is most pronounced when corruption
occurs at the center of an action instance. We believe these
observations may suggest a potential avenue for future re-
search towards robust TAD models.

Furthermore, we also develop a simple but effective

method to improve the temporal robustness of TAD mod-
els. First, we propose a FrameDrop augmentation strat-
egy, which randomly selects frames from adjacent actions
and backgrounds of a video and introduces corruptions to
break the temporal continuity. We highlight that training
with such augmented data enables the model to locate and
recognize actions against temporal corruptions. Second,
we develop a Temporal-Robust Consistency (TRC) loss,
which aligns the model’s predictions on corrupted videos
with those on clean videos. To increase the efficiency of this
alignment, we propose an action-centric sampling strategy,
selecting high-quality predictions that are temporally more
relevant to the action instance for alignment. Interestingly,
our experiments reveal that our robust training method not
only increases robustness but also improves performance on
clean data (see Figure 2). This study provides essential con-
siderations for future model development.

Our contributions can be summarized as follows:
• To the best of our knowledge, we are the first to provide

a comprehensive robustness analysis of temporal action
detection (TAD) models. We believe that our new ob-
servations could be beneficial to developing robust TAD
models for real-world deployment.

• We build two benchmark datasets and each involves 5
types of corruptions and 3 severities, resulting in 15 cor-
ruption types in total. We show that existing TAD meth-
ods are very vulnerable and often incur a significant per-
formance drop on our benchmarks. Besides the per-
formance on clean data, we highly recommend that re-
searchers additionally evaluate their models in terms of
temporal robustness in future research.

• We propose a simple but effective training method to im-
prove temporal robustness. Interestingly, our method not
only improves the robustness based on a diverse set of
popular TAD models on corrupted videos but also obtains
better performance on clean data in most cases.

2. Related Work

2.1. Temporal Action Detection

Temporal action detection approaches can be grouped into
two categories: Two-stage methods primarily involves
generating a set of proposals followed by their classifica-
tion and boundary refinement [15, 62, 73, 84, 88]. To gen-
erate proposals, one can perform frame or segment-level
classification and merge frames or segments of the same
category [47, 49, 53, 63], while other methods use pro-
posal generation methods [12, 40]. However, these methods
heavily depend on the quality of the proposals, leading to
the development of integrated approaches that combine pro-
posal generation with classification and/or boundary regres-
sion [11, 31, 39, 68, 78], referred to One-stage methods.
Notable contributions include the introduction of the anchor
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mechanism for TAD by [39] and the exploration of anchor-
free schemes [38, 60], further advanced the field by merg-
ing the advantages of both anchor-based and anchor-free
methods [76]. Recently, transformer-based models, which
have shown remarkable success in various vision tasks, have
been adapted to TAD [85]. Other advances like Graph Con-
volution are also introduced to this task [75, 83] and end-
to-end architectures have been explored in [41, 42, 77]. De-
spite their success, they focused on training and testing on a
benchmark dataset with little distribution shift from training
to testing samples, which poses challenges for real-world
applications. This paper aims to investigate the robustness
of TAD models and enhance their performance, particularly
under conditions of corruptions.

2.2. Robustness of Neural Networks

Image Domain. Despite the outstanding performance of
deep neural networks, they are not robust to image cor-
ruptions [29]. To address this, recent work explores re-
calibrating batch normalization statistics [8, 48, 58] or uti-
lizing the frequency domain [56] to improve corruption ro-
bustness. However, data augmentation methods such as
[18, 20, 28, 29, 55] represent the most prominent and suc-
cessful line of work, ranging from simple Gaussian noise
augmentation [55], over well-known schemes such as Au-
toAugment [18] to strategies specifically targeted towards
corruption robustness such as AugMix [28] or DeepAug-
ment [29]. Besides random corruptions, deep networks are
susceptible to adversarial examples [21, 65]. While plenty
of approaches for defending against adversarial examples
have been proposed [1, 5, 10, 16, 22, 51, 64, 74, 81], ad-
versarial training (AT) has become the de facto standard
[44]. On the other hand, many efforts have been made
to design or train a robust architecture to improve model
robustness. Due to the success of Vision Transformers
(ViTs) [19, 30, 70], many works seek to study and improve
the robustness of ViTs [4, 7, 9, 24–26, 46, 52, 61, 89]. In-
terestingly, ViTs are often more robust than convolutional
networks against corruptions [54, 66, 69] and adversarial
attacks [6, 23, 37, 43, 45, 50, 59, 67]. Nevertheless, most of
them mainly focus on the robustness issue in the image do-
main, leaving the robustness in the temporal domain (e.g.,
inside videos) unexplored.
Video Domain. Data augmentation techniques have been
shown effective in improving the robustness of video anal-
ysis models. Li et al. [36] utilized temporal cropping
as video data augmentation. Mixup, cutmix, and cutout
operations from the image domain were introduced to the
video domain [34, 35, 82]. Isobe et al. [32] proposed
the application of the same transformation across all frames
in each mini-batch of video clips. In another line of re-
search, Zhang et al. [86] used a Generative Adversar-
ial Network (GAN) to create dynamic images that encap-

sulate motion information from video. Wu et al. [72]
developed a generator to produce a frame encompassing
all motion feature information. The robustness of video
models against common corruptions has recently been an-
alyzed [57, 79]. They benchmark the robustness of com-
mon convolutional- and transformer-based spatio-temporal
architectures, against several corruptions in video acquisi-
tion and video processing. The corruptions they used can
be generated across a set of continuous frames or depend
solely on the content of a single frame. Their benchmarks
apply corruptions to all frames of a trimmed video, aiming
to measure the robustness of action recognition models. In
this paper, we are particularly interested in examining the
temporal detection robustness of TAD models and creating
benchmarks by applying corruptions to a subset of the video
frames to disrupt the temporal continuity.

3. Temporal Robustness Benchmark Creation
3.1. TAD Formulation and Notation

Temporal action detection (TAD) requires a machine to
recognize the action instances and simultaneously identify
their temporal positions in a video. Given an untrimmed
video as V = {It}Tt=1, where It denotes the frame at the
time slot t, TAD predicts a set of action instances ΦV =
{ϕi = (tsi , tei , ki)}Ni=1, where N is the number of action
instances in V , tsi , tei and ki are the starting time, ending
time, and category of the i-th action instance, respectively.

3.2. Temporal Corruptions in Videos

Our study begins with a scenario commonly encountered
in daily life. We observed that during video playback, cer-
tain frames may suddenly experience interference and im-
mediately disappear. For instance, an object might abruptly
enter and then exit the frame during recording, or sudden
changes in lighting might cause overexposure, which is then
corrected by the camera. For humans, such interferences
have minimal impact on our ability to locate actions in a
video. However, our preliminary experiments (see Figure 1)
demonstrate that even a single corrupted frame in an action
sequence can significantly impair the temporal localization
performance of TAD models.

Consequently, our research focuses on temporal corrup-
tions that appear abruptly and vanish just as quickly dur-
ing video recording—a common phenomenon in videos but
one not previously addressed in research. Formally, given
a video V = {I1, I2, . . . , It, . . . , IT }, our approach to cor-
ruptions does not encompass all frames. Instead, we replace
specific clean frames with corrupted ones, resulting in a cor-
rupted video V c = {I1, I2, . . . , Ict , . . . , IT } to disrupt the
temporal continuity, where Ict represents the corrupted ver-
sion of It. We study five categories of real-world corrup-
tions, as depicted in Figure 3, including:

18265



Figure 3. Our temporal robustness study introduces 5 types of temporal corruptions that are frequently encountered in real-world scenarios,
including black frame [17], motion blur, overexposure, occlusion and packet loss [79]. Each type of corruptions has 3 levels of severity
and each level refers to the l% (l ∈ {1, 5, 10}) action center frames being corrupted, eventually resulting in 15 distinct corruptions.

• Black frame [17]: caused by transferring tape-based con-
tent to digital files or temporary network disconnections
during video streaming

• Motion blur [27]: occurs when the camera undergoes
swift and rapid movements

• Overexposure [27]: due to fluctuations in daylight inten-
sity, or sudden changes in photographic conditions

• Occlusion: resulting from the camera being accidentally
blocked by another object while filming

• Packet loss [79]: arising from video transmission over
imperfect channels in real-world settings

Discussion: Existing video robustness benchmarks apply
corruptions across all frames, such an approach does not ef-
fectively validate temporal localization performance. With
TAD models requiring both localization and recognition, it
is challenging to ascertain whether issues arise in localiza-
tion or recognition. By defining temporal corruptions where
the majority of frames in a video remain clean, the impact
on recognition is minimized. However, the few corrupted
frames we introduce, although limited in number, directly
disrupt the temporal continuity. Experiments have validated
that our proposed corruption method effectively tests the lo-
calization capabilities of TAD models (see Section 4.2).

3.3. Benchmark Datasets

To benchmark the robustness of the TAD models against the
temporal corruptions, we create two benchmark datasets,
including THUMOS14-C and ActivityNe-v1.3-C.
THUMSO14-C. As a standard benchmark for action de-
tection, THUMOS14 [33] contains a training set, known
as the UCF-101 dataset, which consists of 13320 videos.
The validation, testing, and background sets contain 1010,
1574, and 2500 untrimmed videos, respectively. The tem-
poral action detection task of THUMOS14, which contains
videos over 20 hours from 20 sports classes, is very chal-
lenging since each video has more than 15 action instances
and its 71% frames are occupied by background items. In

this study, we apply 5 distinct corruptions, each at 3 levels
of severity, to the 213 annotated videos from the testing set.
Specifically, we introduce corruptions to the central l% of
frames in each action instance, where l ∈ {1, 5, 10}. Level
1 indicates a minimal temporal corruption that affects only
1% of the frames within a given action instance while Level
3 signifies a more substantial temporal corruption that af-
fects 10% of the frames. We choose to corrupt the cen-
tral frames since we empirically found that the robustness
of TAD models degrades more significantly when the cor-
rupted frame is located closer to the center of an action in-
stance (see Section 4.3 for more results).
ActivityNet-v1.3-C. ActivityNet [13] is a popular bench-
mark for TAD on untrimmed videos. We create a bench-
mark on ActivityNet-v1.3, which contains approximately
10K training videos and 5K validation videos correspond-
ing to 200 different activities. Each video has an average of
1.65 action instances. Similarly, we apply the proposed 5
corruptions with 3 severity levels to the validation set.

3.4. Robustness Metrics

We first introduce the standard mean Average Precision
(mAP) that is widely used to evaluate TAD models. We fur-
ther take the mAP on clean data into account and develop
a new metric to measure how large the performance drop
would be between the mAP on clean and corrupted data.
Mean Average Precision (mAP) is a commonly used eval-
uation metric for action detection performance. A predicted
temporal bounding box is considered to be correct if its tem-
poral IoU with the ground-truth instance is larger than a cer-
tain threshold and the predicted category is the same as this
ground-truth instance. On THUMOS14-C, the tIOU thresh-
olds are chosen from {0.1, 0.2, 0.3, 0.4, 0.5} and we report
mAP@tIoU=0.5 for comparisons; on ActivityNet-v1.3-C,
the tIoU thresholds are from {0.5, 0.75, 0.95}, and we re-
port the average mAP of the tIoU thresholds between 0.5
and 0.95 with the step of 0.05.
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Table 1. Corruption robustness of TAD models on THUMOS14-
C. ∗ denotes end-to-end methods. Existing TAD models are par-
ticularly vulnerable to temporal corruptions, regardless of whether
they are based on transformers or CNN.

Model Feature Clean
mAP

Corrupted
mAP

Relative
Robustness

BasicTAD∗ [77] SlowOnly 59.17 37.72 (21.45 ↓) 63.75
E2E-TAD∗ [41] SlowFast 56.41 30.55 (25.86 ↓) 54.16
TemporalMaxer [68] I3D 60.72 47.82 (12.90 ↓) 78.76
ActionFormer [85] I3D 61.53 50.61 (10.92 ↓) 82.25
ActionFormer [85] VideoMAEv2 73.84 58.33 (15.51 ↓) 78.99
AFSD∗ [38] I3D 46.05 34.47 (11.58 ↓) 74.85
TriDet [60] I3D 61.33 51.71 (9.62 ↓) 84.31
TriDet [60] VideoMAEv2 75.16 61.10 (14.06 ↓) 81.29
TriDet [60]+Ours VideoMAEv2 75.60 68.28 (7.32↓) 90.31

Relative robustness. We introduce a new metric, termed
as relative robustness γr to measure the robustness of TAD
models. We first calculate the mAP Mclean on the clean test
set given a trained model g. Then, we test g on a corruption
c at each of the severity levels s, and obtain mAP Mc,s. It
should be noted that different models exhibit diverse per-
formances on identical test videos, thus, an absolute drop in
performance is also influenced by the model’s performance
on clean videos. Therefore, we determine relative perfor-
mance drop as a measure of the model’s robustness. Each
severity level s and corruption c has its own relative robust-
ness γr

c,s computed as γr
c,s = 1− (Mclean−Mc,s)/Mclean.

We average across all severity levels and corruptions to
yield to yield γr of a TAD model.

4. Benchmarking Robustness of TAD Models
In our benchmark study, we train the TAD models with
clean data and evaluate them on the corrupted data. It is a
standard setting under the robust generalization study [80],
which assumes that the model is unable to know the exact
problem in the deployment in advance.
Model Variants. Our experiments evaluate seven popu-
lar TAD models, employing various architectural frame-
works such as CNN, Transformer, and Graph Convolu-
tion. Regarding the detection heads, ActionFormer [85] and
E2E-TAD [41] employs a Transformer architecture, while
TriDet [60], AFSD [38], BasicTAD [77], and Temporal-
Maxer [68] are CNN-based models. VSGN [87] is con-
structed based on graph architectures. Note that E2E-TAD,
BasicTAD and AFSD are trained in an end-to-end manner
while others rely on pre-trained feature extractors. We ex-
ploit three different feature extractors, including I3D [14],
VideoMAEv2 [71], and TSP [3]. Among these, the I3D
model leverages 3D convolutions, whereas VideoMAEv2
adopts a Transformer-based approach, trained using a dual
masking strategy. TSP, on the other hand, utilizes a ResNet-
based backbone pre-trained on temporal sensitive tasks. In
our experimental setup, we use the official implementations
and pre-trained weights of these models.

Table 2. Corruption robustness of TAD models on ActivityNet-
v1.3-C. ∗ denotes end-to-end methods. TAD models remains
highly susceptible to temporal corruptions, suggesting that the vul-
nerability is not specific to any particular dataset.

Model Feature Clean
mAP

Corrupted
mAP

Relative
Robustness

VSGN [87] I3D 31.85 30.08 (1.77 ↓) 94.44
TriDet [60] TSP 36.66 15.18 (21.48 ↓) 41.41
ActionFormer [85] TSP 36.50 27.79 (8.71 ↓) 76.12
ActionFormer [85] VideoMAEv2 38.47 33.93 (4.54 ↓) 88.19
AFSD∗ [38] I3D 32.49 29.56 (2.93 ↓) 90.98
AFSD∗ [38]+Ours I3D 32.86 30.78 (2.08 ↓) 93.68

4.1. Existing TAD Models are Particularly Vulner-
able to Temporal Corruptions

The robustness against temporal corruptions of TAD mod-
els on the THUMOS14-C dataset is presented in Table 1.
All TAD models assessed in this study show susceptibil-
ity to temporal corruptions, evidenced by a reduction in de-
tection mAP ranging from 9.62% to 25.86%. This vulner-
ability is observed regardless of the type of features em-
ployed or whether the model is end-to-end trained. When
considering the relative robustness calculated as an aver-
age across five types of corruptions and three levels, the
highest-performing model, Tridet, achieves only 84.31%,
while the lowest, E2E-TAD, scores 54.16%. This indicates
that the robustness of TAD models is influenced by both
the model architecture and the input data characteristics.
Furthermore, we observe that methods employing end-to-
end training, such as BasicTAD, E2E-TAD, and AFSD, are
more susceptible to temporal corruptions compared to those
utilizing a fixed feature extractor approach (when using the
same backbone). We also compare the temporal robustness
of existing TAD models on ActivityNet-v1.3-C and report
the results in Table 2. On this dataset, the performance of
TAD models remains highly susceptible to temporal corrup-
tions. The range of decrease in terms of mAP spans from
1.77% to 21.48%. This suggests that the limited temporal
robustness of TAD models is not specific to any particular
dataset. Please refer to the supplementary material for de-
tailed performance on each type of corruption at every level.

4.2. Vulnerability Mainly Comes from Localization
Error rather than Classification Error

We follow DETAD [2] to analyze the results predicted by
the TriDet model. We categorize the causes leading to false
positives predicted by the model into five types, including
1) Background Error: predict action as background, 2) Con-
fusion Error: low-quality boundary with wrong category, 3)
Localization Error: low-quality boundary with correct cat-
egory, 4) Wrong Label Error: high-quality boundary with
correct category, 5) Double Detection Error: two predic-
tions match one action. Figure 4 illustrates the enhance-
ment in the performance of the model when a certain type
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Figure 4. False positive profiling of the TriDet’s predictions on
THUMOS14-C. The Wrong Label (classification) Error remains
relatively consistent, whereas the Localization Error increases sig-
nificantly on corrupted data, revealing that vulnerability mainly
comes from localization error rather than classification error.

of error is eliminated. It is evident that the impact of Lo-
calization Error escalates from 5.5% to 8.1% upon the cor-
rupted video, while the Wrong Label Error (0.6% v.s. 0.5%)
remains relatively stable, indicating a minor influence on
classification. This suggests that our proposed benchmark
primarily assesses the robustness of the model’s temporal
localization in the face of temporal corruptions. Compared
to other benchmarks designed for action recognition robust-
ness [57, 79], ours is more suitable to examine the temporal
robustness of TAD models. Please kindly refer to the sup-
plementary material for more analysis of other TAD mod-
els.

4.3. Corrupting the Central Frames of Action Re-
sults in the Strongest Attack

To investigate the impact of corruption’s location within ac-
tion instances, we evaluate the robustness of ActionFormer
and TemporalMaxer on the THUMOS14-C dataset. We
sample five continuous frames at every 10%, 20%, . . . ,
and 90% of each action instance and introduce black frame
corruption. From Figure 5, when corruption is centered
within an action instance, both models exhibit the most pro-
nounced performance degradation. Interestingly, we also
discover that the models’ performance improved when cor-
ruptions are introduced near the boundaries of the action,
surpassing the performance of clean data. We posit that this
is due to the models interpreting the position of the black
frame as the boundary of the action, thus improving the lo-
calization performance. Consequently, we opt to replace the
frames at the center of each action instance with corrupted
frames, in order to construct temporal corrupted datasets
that maximally disrupt model performance.

5. Defending against Temporal Corruptions
With the above observations, we seek to improve exist-
ing TAD models’ temporal robustness from two perspec-
tives. First, in Section 5.1, we propose a FrameDrop strat-

m
A

P 
(t

Io
U

=0
.5

) %

Corruption Location within an Action Instance (%)
Figure 5. The performance of TAD models with varying corrup-
tion locations within an action instance on THUMOS14-C. The
horizontal dashed lines refer to the model’s performance on clean
videos. As corruptions approach the center, its impact on the
model becomes increasingly significant.

egy to simulate temporal corruptions. Our intuition is that
during model training, introducing corruptions to the input
video forces the model to better leverage the uncorrupted
temporal context for localizing action and identifying ac-
tion categories. Second, in Section 5.2, we develop a new
Temporal-Robust Consistency (TRC) loss to improve the
localization capability by guiding the model to predict tem-
poral bounding boxes that are temporally related to actions.

5.1. FrameDrop Strategy

We propose to randomly drop frames from the input video
to corrupt the temporal continuity. In particular, we di-
vide the input video into multiple Action-Background (AB)
pairs (i.e., V = {PAB

i }Np

i=1), where each pair is composed
of adjacent action and background segments and Np is the
number of the resultant pairs. Then, within each AB pair
PAB = { Ia1 , I

a
2 , . . . , I

a
Na

, Ib1, I
b
2, . . . , I

b
Nb

}, where Na and
Nb refer to the number of frames in the action and back-
ground segment, we randomly select a single frame to drop
(i.e., replace with a black frame). The video, once subjected
to FrameDrop, is then forwarded to a specific feature extrac-
tor (e.g., I3D, VideoMAEv2) or directly fed into the TAD
model (e.g., the end-to-end method BasicTAD).

It is noteworthy that our method performs FrameDrop
operations in both action and background segments. This
prevents the model from memorizing that corruptions will
occur in the action segments, thus circumventing a trivial
solution. Further experiments are detailed in the supple-
mentary materials. We empirically show that our Frame-
Drop is able to consistently improve the robustness of var-
ious TAD models against different corruptions that are un-
seen during training (see Section 6.2 for more results).

5.2. Temporal-Robust Consistency Loss

When both corruppted videos and clean videos processed
through FrameDrop are fed into the TAD model, two sets
of temporal bounding box Φ̂c = {ϕc

i = (tcsi , t
c
ei , k

c
i )}

Nc
i=1
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Figure 6. Our approach towards training a robust TAD model. We propose a FrameDrop strategy to interrupt the temporal continuity
by first grouping the adjacent action and background instance into pairs and randomly replacing a clean frame within each pair with a
black frame. Then, we perform action-centric sampling to find high-quality predictions from clean and corrupted videos and propose a
temporal-robust consistency loss to align them in terms of their tIoU distributions w.r.t ground-truth actions.

and Φ̂d = {ϕd
i = (tdsi , t

d
ei , k

d
i )}

Nd
i=1 are predicted, where

Nc and Nd are the number of predictions. A simple train-
ing approach would be to ensure consistency between these
two prediction sets. However, this strategy presents two
issues. The first is computational efficiency, as a single
video can contain numerous predictions. More critically,
the TAD method’s primary focus is the localization of ac-
tions, hence our attention should be primarily focused on
predictions temporally related to action instances. As a re-
sult, we propose an action-centric sampling strategy for se-
lecting action-related predictions.

Without loss of generality, let a ground-truth action in-
stance be ϕ = (ts, te, k), where we omit i for simplicity. We
compute the timestamp of its central frame by t∗ = te+ts

2 as
a reference. Similarly, for the predicted temporal bounding
boxes in Φ̂c and Φ̂d, we could also calculate the timestamp
of their central frame and obtain two central location sets
T c = {tcj}

Nc
j=1 and T d = {tdj}

Nd
j=1, respectively. Then, we

choose the top-K predictions from T c (or T d) with the min-
imal distance w.r.t t∗ and calculate the temporal Intersection
over Union (tIoU) between the selected K predictions and
the ground truth (GT) action instance ϕ. Thus, we obtain
two tIoU distributions - one corresponding to the corrupted
input pc ∈ RK , and the other to the clean input pd ∈ RK .
To align the predictions under these two circumstances, we
average pc and pd to serve as the target tIoU distribution pt,
and then separately calculate the Kullback-Leibler (KL) di-
vergence of the predicted distribution w.r.t pt. In this way,
we derive the temporal-robust consistency loss

LTRC =
1

2
(KL[pt||pc] + KL[pt||pd]). (1)

Note that we could instead compute the KL divergence be-
tween pc and pd or adopt the Mean Squared Error (MSE)
as the loss function, but these do not perform as well. More

Table 3. Results of defending against temporal corruptions with
the help of our proposed training strategy on THUMOS14-C. Our
method consistently improves the robustness of various TAD mod-
els with different features.

Backbone(feature) Clean
mAP

Corrupted
mAP

Relative
Robutness

TemporalMaxer(I3D) 60.72 47.82 78.76
+ Ours 61.04 (0.32 ↑) 51.95 (4.13 ↑) 85.10 (6.34 ↑)
TriDet(I3D) 61.33 51.71 84.31
+ Ours 62.63 (1.30 ↑) 54.07 (2.36 ↑) 86.32 (2.01 ↑)
TriDet(VideoMAEv2) 75.16 61.10 81.29
+ Ours 75.60 (0.44 ↑) 68.28 (7.18 ↑) 90.32 (9.03 ↑)
ActionFormer(I3D) 61.53 50.61 82.25
+ Ours 61.63 (0.10 ↑) 53.95 (3.34 ↑) 87.54 (5.29 ↑)
ActionFormer(VideoMAEv2) 73.84 58.33 78.99
+ Ours 74.06 (0.22 ↑) 68.29 (9.96 ↑) 92.21 (13.22 ↑)

ablated results of the loss function can be found in the sup-
plementary material.

6. Improved Robustness and Further Analysis

6.1. Improved Robustness of TAD Models

In addressing the performance drop caused by temporal cor-
ruptions, we propose to enhance temporal robustness in
training. Table 3 depicts the performance gain of differ-
ent TAD models trained using our method and tested with
varying corruptions on the THUMOS14-C dataset. The ro-
bustness of different models has markedly improved, even
the model with the least improvement displays an absolute
mAP rise of 2.36% (averaged on 3 levels of 5 corruptions).
When using the videoMAEv2 feature, the increase in ro-
bustness of ActionFormer is substantial. Specifically, both
the mAP and relative robustness have an increase of 9.96%
and 13.22% respectively. This indicates that our method
can enhance the temporal anti-interference ability of the
detection head, allowing it to better pair with VideoMAE
and thereby achieve satisfactory results on clean data whilst
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Table 4. Results of defending against temporal corruptions with
the help of our proposed training strategy on ActivityNet-v1.3-C.
Despite the challenges of this large-scale dataset, our method still
yields consistent robustness improvements.

Backbone(feature) Clean
mAP

Corrupted
mAP

Relative
Robutness

ActionFormer(TSP) 36.50 27.79 76.12
+ Ours 36.01 (0.49 ↓) 28.41 (0.62 ↑) 78.91 (2.79 ↑)
ActionFormer(VideoMAEv2) 38.47 33.93 88.19
+ Ours 38.44 (0.03 ↓) 34.17 (0.24 ↑) 88.90 (0.71 ↑)
TriDet(TSP) 36.66 15.18 41.42
+ Ours 36.42 (0.24 ↓) 17.28 (2.10 ↑) 47.45 (6.03 ↑)
AFSD(End-to-End) 32.49 29.56 90.98
+ Ours 32.86 (0.37 ↑) 30.78 (1.22 ↑) 93.68 (2.70 ↑)

Table 5. Ablation study on our proposed training strategy, mea-
sured by the performance of TriDet on THUMOS14-C. Using
FrameDrop and TRC loss simultaneously yields improvements in
robustness and even mAP gain on clean videos.

Feature FrameDrop TRC Loss mAP (tIoU=0.5) Relative
RobustnessClean Corrupted

I3D
61.33 51.71 84.31

✓ 62.37 52.56 84.27
✓ ✓ 62.63 54.07 86.33

VideoMAEv2
75.16 61.10 81.29

✓ 74.75 65.53 87.67
✓ ✓ 75.60 68.28 90.31

maintaining commendable robustness. Table 4 displays the
experimental results on the ActivityNet-v1.3-C dataset. It
can be observed that, when trained with our method, the
model is likewise capable of achieving consistent improve-
ments in relative robustness across datasets with different
levels of corruptions.

6.2. Further Investigation of Our Training Strategy

Effectiveness of our proposed training strategy. Our
proposed training strategy comprises two components: the
FrameDrop strategy and the Temporal-Robust Consistency
(TRC) loss. We conduct experiments by gradually adding
them to the baseline. According to Table 5, using only
the FrameDrop strategy enhances the robustness of the
TAD model across two types of features. However, when
employing VideoMAEv2 features, the FrameDrop strategy
alone does not improve the model’s performance on clean
videos. If both the FrameDrop strategy and TRC loss are
utilized concurrently, not only is there a significant im-
provement in robustness, but the action detection perfor-
mance on clean videos is also enhanced.
Generality of our proposed training strategy. The length
of the corruptions is fixed at one frame in our proposed
training method. Our experiments show improvements on
both datasets with the corruptions of varying lengths, sug-
gesting that our method is applicable to corruptions of dif-
fering lengths. We also conduct experiments by training
TAD models under one corruption while testing them on
distinct corruptions. Table 6 reveals that even if the corrup-

Table 6. Performance comparison using different corruptions in
the training, measured by the mAP of TriDet on THUMOS14-C.
Our method is general and not limited to specific corruptions, and
it consistently improves robustness on unseen corruptions.

Test
Train

Clean Motion Blur Black Frame

Black Frame 43.47 43.61 (0.14 ↑) 56.44 (12.97 ↑)
Packet Loss 63.54 64.90 (1.36 ↑) 70.36 (6.82 ↑)
Overexposure 64.70 64.77 (0.07 ↑) 70.01 (5.31 ↑)
Motion Blur 70.36 73.62 (3.26 ↑) 74.84 (4.48 ↑)
Occlusion 63.44 67.24 (3.80 ↑) 69.76 (6.32 ↑)
Average 61.10 62.83 (1.73 ↑) 68.28 (7.18 ↑)

tions are unseen during the training, our method still sig-
nificantly enhances the model’s robustness. This not only
demonstrates the generality of our approach, unconstrained
by any specific corruption but also indicates that our method
does not simply train the model to memorize corruptions.
Rather, it enhances the model’s temporal robustness via our
unique mechanism of disrupting temporal continuity and
aligning localization distributions during the training.

7. Conclusion
In this study, we have introduced a temporal robustness
benchmark (THUMOS14-C and ActivityNet-v1.3-C),
specifically designed for evaluating temporal action de-
tection (TAD) methods. Unlike other video robustness
benchmarks that apply corruptions to all frames of a video,
we have designed a temporal corruption approach by
corrupting a subset of frames within the video to disrupt
its temporal continuity. We have conducted a robustness
analysis on seven leading TAD methods, encompassing
one-stage, two-stage, CNN-based and Transformer-based
architectures. Our evaluation revealed that current TAD
models are notably susceptible to temporal corruptions,
with this vulnerability largely stemming from localization
errors, rather than classification errors. We also observed
that when corruption occurs in the middle of an action
instance, TAD models tend to yield the largest performance
drop. These observations might suggest a promising
direction for future research towards robust TAD. Further-
more, we have proposed a simple yet effective strategy for
training temporally robust TAD models. This approach not
only enhanced robustness but also improved performance
on clean data. Given its universality and significance,
robustness in TAD emerges as a new research dimension to
be systematically explored in future studies.
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