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Abstract

Pre-trained vision-language models (VLMs) have
achieved high performance on various downstream tasks,
which have been widely used for visual grounding tasks
in a weakly supervised manner. However, despite the per-
formance gains contributed by large vision and language
pre-training, we find that state-of-the-art VLMs struggle
with compositional reasoning on grounding tasks. To
demonstrate this, we propose Attribute, Relation, and Pri-
ority grounding (ARPGrounding) benchmark to test VLMs’
compositional reasoning ability on visual grounding tasks.
ARPGrounding contains 11,425 samples and evaluates the
compositional understanding of VLM in three dimensions:
1) attribute, denoting comprehension of objects’ properties;
2) relation, indicating an understanding of relation between
objects, 3) priority, reflecting an awareness of the part of
speech associated with nouns. Using the ARPGrounding
benchmark, we evaluate several mainstream VLMs. We
empirically find that these models perform quite well
on conventional visual grounding datasets, achieving
performance comparable to or surpassing state-of-the-art
methods but showing strong deficiencies in compositional
reasoning. Furthermore, we propose a composition-aware
fine-tuning pipeline, demonstrating the potential to lever-
age cost-effective image-text annotations for enhancing the
compositional understanding of VLMs in grounding tasks.
Code is available at link.

1. Introduction

Vision-language models (VLMs) have achieved high
performance on various downstream tasks, including many
zero-shot learning and text-guided vision tasks [2, 4, 19,
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(b) pot behind dog

Figure 1. Typical examples of testing compositional understand-
ing of CLIP on visual grounding task. CLIP encounters challenges
in discerning the authentic object from deceptive ones. (Left)
CLIP is misled by a dog of a distinct color. (Right) CLIP is misled
by an object within the phrase. Both instances suggest a deficiency
in CLIP’s grasp of compositional structure.

21, 34, 41]. Many endeavors leverage the intrinsic visual-
linguistic alighment representation within these models and
integrate VLMs with explainability methods [37, 52] for
image localization tasks. This approach serves to alleviate
the significant time and cost required for dense manual an-
notation, particularly in tasks such as weakly supervised vi-
sual grounding [13, 20, 39, 40], weakly supervised segmen-
tation [23, 25] and open-vocabulary segmentation [24, 46].
Visual grounding is a pivotal task in vision-language. We
adopt the widely used Grad-CAM [37] algorithm, integrat-
ing it into VLMs without introducing additional complex-
ity. Our methodology unveils that VLMs can attain state-of-
the-art results in weakly supervised visual grounding tasks
through the application of explainability techniques.
However, we find VLMs encounter challenges in
grounding while compositional reasoning is involved. As
shown in Figure 1, CLIP exhibits difficulty distinguishing
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between the “brown dog” and the “black dog”, and fails to
ground the “pot behind dog” while falsely activating the dog
area. To investigate this problem, we present ARPGround-
ing, a novel grounding benchmark designed to assess the
fine-grained visio-linguistic compositionality across three
dimensions: attribute, relation, and priority. We define two
objects of compositional ambiguity in a single image, each
corresponding to a semantic textual expression. We test
models’ compositional understanding by compelling mod-
els to pick the correct object based on the provided text. Us-
ing ARPGrounding benchmark, we observe that while all
of these VLMs can achieve performance levels comparable
to state-of-the-art results on conventional visual grounding
benchmarks, they struggle to perform beyond chance lev-
els in relatively simple tasks that require compositional un-
derstanding. VLMs encounter difficulty differentiating be-
tween two objects with distinct attributes, falter in distin-
guishing relations, and fail to discern the primary and sec-
ondary targets within the text.

VLMs are pre-trained on extensive datasets featuring in-
tricate scenes and detailed captions. These datasets are no-
table for their rich compositional structure. However, train-
ing on these datasets has been proven insufficient in ad-
dressing the dearth of compositional structure in VLMs.
Recent research has revealed that the challenges faced by
VLMs in compositional understanding stem from an arti-
fact of their contrastive training objective, leading to short-
cut learning while optimizing for the objectives [42, 49].
These shortcuts enable VLMs to get relatively good perfor-
mance in downstream tasks but leave deficiencies in visio-
linguistic tasks that demand a more nuanced understanding
of objects. In response, we propose a novel composition-
aware fine-tuning pipeline to fine-tune VLMs without using
dense annotations. We first generate a text pair for each
image where each component in the pair describes distinct
objects using dependency parsing. Then we introduce a
pretext task that is aimed at augmenting diversity within
the grounding heatmaps of these two texts. This approach
yields substantial improvements in the compositional un-
derstanding of VLMs.

Our main contributions are three-fold:

1. We employ explainability techniques to analyze the
VLMs and attain state-of-the-art results in weakly su-
pervised visual grounding tasks.

2. We present ARPGrounding, a novel grounding dataset
designed to assess the fine-grained visio-linguistic com-
positionality.  Using ARPGrounding, we discover
VLMs’ deficiencies in compositional reasoning.

3. We propose a composition-aware fine-tuning pipeline.
Empirical results show that this training pipeline effec-
tively aids in enhancing compositional understanding of
VLMs.

2. Related Work

Evaluating vision-language compositionality. In recent
studies, researchers have introduced evaluation benchmarks
for assessing the compositional abilities of vision-language
models. These studies have revealed that current mod-
els exhibit a limited understanding of compositionality
[28, 36, 43, 49, 51]. Specifically, VLMs exhibit limita-
tions in accurately counting objects within an image [31],
lack proficiency in commonsense knowledge and reasoning
abilities [47, 48], falter in comprehending verbs [10, 30],
encounter difficulties in integrating objects with their at-
tributes [36], face challenges in understanding spatial re-
lations [14, 35], and demonstrate insensitivity to word or-
der [42]. Our objective is also to evaluate vision-language
compositionality. However, we employ a more fine-grained
grounding task instead of a text-image matching task to ex-
plicitly assess whether the model correctly associates at-
tributes and relations with the objects.

Weakly supervised visual grounding. Many prior meth-
ods [5, 9, 44] for weakly supervised visual grounding rely
on pre-trained object detectors for Region of Interest (ROI)
localization. These methods typically project text and ROIs
into a joint visual-textual embedding space, transforming
the grounding task into a retrieval task. However, detector-
based approaches neglect the holistic context of the entire
image and encounter challenges related to transfer and gen-
eralization when dealing with objects in distinct domains
or belonging to different classes. In contrast, detector-
free methods address this issue by forgoing the use of ob-
ject detectors. These methods perform dense localization
for the given query phrases, thereby generating grounding
heatmaps instead of ranking ROIs. Some earlier works
[1, 3, 12, 45, 50] define and optimize auxiliary tasks us-
ing weakly supervised data. While these auxiliary tasks
may not be identical to the grounding objective, optimiz-
ing them yields the desired results in visual grounding.
More recent research [38, 39] has leveraged VLMs trained
on large-scale visual-text alignment datasets. These ap-
proaches use VLMs’ explainability maps as pseudo-labels
to train grounding models, resulting in state-of-the-art per-
formance in the field.

Gradient-based localization. The technique of pinpoint-
ing the most distinctive regions within an image for a
specific task serves as a prevalent approach to explain a
model’s decision-making process visually. Class activa-
tion maps (CAM) [52] was introduced as a technique to
yield weighted feature maps for various networks with min-
imal adjustments to the model. A subsequent enhancement,
Gradient-weighted Class Activation Mapping (Grad-CAM)
[37], further improves upon CAM by directly employing
gradients to produce weighted feature maps without neces-
sitating model modifications or retraining. The ground-
ing heatmaps generated by these methods can be directly
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(a) pink shirt (b) blue shirt

(d) bear in car

(e) bathroom sink under
bathroom mirror

(f) bathroom mirror above
bathroom sink

Figure 2. Examples from our ARPGrounding dataset, wherein
we primarily evaluate models’ proficiency in comprehending three
types of compositionality. Each sample in ARPGrounding consists
of an image containing two intricately distinguishable objects. (a)
and (b) exemplify a sample of attribute composition, (c) and (d)
illustrate an example of relation composition, while (e) and (f)
demonstrate an example of priority composition. We test whether
the model can pick the correct object according to the text.

optimized to guide the model toward solutions that align
more closely with human-based annotations. Our proposed
method is also based on Grad-CAM heatmaps. We apply
the Grad-CAM algorithm to VLMs, enabling them to lo-
calize objects in images based on textual semantics. We
leverage Grad-CAM for fine-tuning VLMs to guide the gen-
erated heatmaps to be more distinguishable with regard to
samples that have different compositionality.

3. ARPGrounding Benchmark

In this section, we describe how ARPGrounding bench-
mark is constructed and how we use it to evaluate composi-
tional grounding performance of VLMs.

3.1. Dataset

In order to construct a compositional grounding dataset,
we require images containing object bounding box anno-
tations, along with corresponding attribute and relation an-
notations. Therefore we establish ARPGrounding bench-
mark upon Visual Genome (VG) [16], a large-scale dataset
comprising over 100,000 images, annotated with objects,

attributes, and relations. Additionally, we manually filter
the dataset when necessary to ensure data quality.

As shown in Figure 2, ARPGrounding contains three
types of compositionality: attributes, relations, and prior-
ities. Each sample in ARPGrounding consists of an im-
age containing two objects selected with bounding boxes.
These paired objects serve as mutual compositional distrac-
tors. Each sample includes distinct text corresponding to
these two objects, and these texts can be differentiated based
on attributes, relations, or priorities.

Attribute. Our primary goal is to discern two objects within
a single image. These objects belong to the same category
but possess distinct attributes. Our objective is to assess
the model’s ability to accurately identify the correct object
based on the provided textual information. To locate such
object pairs, we initiate the process by traversing the scene
graph annotations of VG for a given image. We identify ob-
jects with identical class labels, excluding those occupying
less than 0.05% of the total image area, and then remove
object pairs that overlap. This procedure results in two non-
overlapping objects of the same class within the image, ap-
propriately sized.

Subsequently, we aim to recognize attributes that can
effectively differentiate between these two objects. A
straightforward approach assumes that distinct attribute
names lead to differentiation. However, we must exercise
caution as captions and scene graphs may not fully encom-
pass all attributes [28]. Therefore, we need to carefully as-
certain these attributes. For instance, if both objects are
“fairy” and “white” dogs, and one object is labeled solely
as “fairy” while the other one is only as ”white,” these at-
tributes, although different, may not effectively distinguish
between the objects. To address this concern, we leverage
WordNet [29] to confirm that the attributes of both objects
share the same grand hypernym while being distinct from
one another. Finally, we concatenate the attribute and ob-
ject name to form a concise and accurate text description
for the respective object. For quantitative analysis, we only
use one attribute for each object.

Relation. The text pair for relation compositionality prob-
ing has to meet the requirement: the two texts should be
distinguishable from each other solely based on their rela-
tion. Firstly, the two texts need to differentiate from each
other through their relation to test the model’s understand-
ing of relation compositionality. Additionally, for quantita-
tive analysis, the text should be identical in all aspects ex-
cept for the relation. In this context, we primarily explore
the simplest case of text, specifically the objectl-relation-
object?2 triplet scenario. To meet the requirements for quan-
titative testing, no attribute should be included in the text
as it could be utilized to distinguish between the two ob-
jects. Moreover, objectl in both texts should possess the
same class label but correspond to different objects in the
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image, thereby eliminating the influence of the object class.
Furthermore, object2 should be identical in both texts.

To identify suitable triplet pairs in the image, we traverse
all triplet pairs in the scene graph, ensuring that objectl in
two texts belong to the same category and that their bound-
ing boxes do not overlap. We also verify that the relations
have distinct names and that object2 are the same. Simulta-
neously, we filter out bounding boxes with an area less than
0.05% of the total image area. However, we find that rela-
tions with distinct names can still have similar semantics,
such as “computer above table” and “computer on top of
table,” as well as “’girl wearing jacket” and “girl in jacket.”
Therefore, we manually filter the relation data, ensuring that
objects in the pair can be distinguished based on text.
Priority. While testing models with the relation dataset, we
observed that models were not only influenced by the rela-
tion but also affected by another object present in the text.
When instructing the model to ground a triplet: objectl-
relation-object2, both instances of objectl are highlighted,
demonstrating the model’s inability to reason about the re-
lation. Furthermore, object2 is also highlighted, indicat-
ing the model’s deficiency in reasoning about the subject
among nouns. To investigate this issue, we propose the pri-
ority dataset. By utilizing the scene graph of an image,
we can easily obtain objectl-relation-object?2 triplet pairs
that reverse the positions of object] and object2. However,
we have observed that the relations in these pairs may not
necessarily align with each other. On one hand, enforc-
ing strict relation consistency could lead to violations of
visual semantics, as exemplified by the contradicting mean-
ings in texts like ”slow cooker on top of microwave” and
“microwave on top of slow cooker.” On the other hand, the
relationship between objects plays a crucial role in distin-
guishing the subject among nouns within a given text.

We utilize VG to construct our ARPGrounding datasets.
Within the 108,249 images from VG, we meticulously gath-
ered a total of 6,632 samples for attribute, 370 samples for
relation, and 4,423 samples for priority. Each sample con-
sists of two object-text pairs, which pertain to distinct object
instances within an image, yet exhibit ambiguity in terms
of compositionality. The relatively lower number of rela-
tion samples compared to the other two categories can be
attributed to the fact that in cases involving two ambigu-
ous objects within an image, it is considerably more likely
for them to possess distinguishable attributes but less likely
for them to exhibit a distinguishable relation with another
object. More detailed statistics of ARPGrounding can be
found in the Appendix.

3.2. Metric

The performance on ARPGrounding is evaluated based
on the mean activation values inside the bounding boxes of
the heatmaps. Each sample in ARPGrounding comprises

two objects, each represented by a bounding box and the
associated text. Correct association between the texts and
their respective bounding boxes defines a sample’s correct-
ness. Given My, M; represent binary masks derived from
object bounding boxes and Hy, H; denote the generated
heatmaps, where masks and heatmaps match the image size,
the mean activation of M; and Hj is defined as:

act(M;, H;) = ﬁzMi@Hj (1)

The ©® is element-wise multiplication. The score of a sam-
ple is computed based on mean activation combinations:

1if act(Mo, Ho) > act(Ml, Ho)
and act(My, H1) < act(My, Hy)
0 otherwise

f(M07HO7M1aH1) =

2)
This metric tests whether the ground truth object for a given
text is scored higher than the alternative object in the image
and whether this holds for the other object-text pair in the
sample as well.
Finally, we compute the mean accuracy across the entire
dataset:

1
ace = == f(Mo, Ho, My, Hy) 3)

3.3. Gradient-based Localization

To enable VLMs to discern objects in the image, we
employ explainability techniques to analyze the VLMs.
Our approach adopts the widely used Grad-CAM algorithm
[37], seamlessly integrating it into VLMs without introduc-
ing additional complexity. While Grad-CAM was originally
tailored for single-modal Convolutional Neural Networks
[17], we guide the model to focus on locating the targets de-
scribed by semantically intricate textual expressions by uti-
lizing the gradient flow from texts to the intermediate layer
of vision transformer.

To compute the grounding heatmap, we first extract an
intermediate attention map A, in the multimodal trans-
former ¢; and denote this function as f,, the input image
and text are symbolized as v and £ respectively:

Az = fz(¢f(vvt)) “4)

Then, we calculate the gradient of A, with respect to the
score of image-text pair. The score denotes the image-text
similarity in the case of being trained with image-text con-
trastive loss or signifies the image-text matching score when
trained with image-text matching loss, depending on the
specific model. We represent the score uniformly as y and
the gradient is calculated as:

Jy

GZZVAZZ@AZ

®)
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m amod

man wearing a red shirt
NOUN VERB DET ADJ NOUN
amod
amod
tall green clock
ADJ ADJ NOUN

Figure 3. Examples of dependency parsing using spaCy [11] (acl:
clausal modifier of a noun, dobj: direct object of a verb, det: deter-
miner, amod: adjectival modifier of a noun). Each arc connects a
parent node to a child node. We utilize the root of the dependency
tree, namely, “man” and “clock,” to ascertain each element in the
pair describes different objects. Bounding boxes serve solely for
visualization purposes.

Next, we calculate the heatmap H using A, and G, as fol-
lows:

H =ReLU(A, ©G,) (6)

where © is an element-wise multiplicaiton. This heatmap
is resized to the resolution of input images and identifies
which area in the image explains the model decision for its
matching score.

4. Composition-aware Fine-tuning

Regarding the identified challenges in VLMs when it
comes to the task of compositional grounding, we sug-
gest a direct solution involving weak supervision. Our
composition-aware fine-tuning pipeline first generates a text
pair for each image where each component in the pair de-
scribes distinct objects. Then we introduce a pretext task
that is aimed at augmenting diversity within the ground-
ing heatmaps of these two texts. This pipeline significantly
aids in enhancing the VLMs’ understanding of composi-
tional semantics. In the following section, we delineate the
methodologies for text pair generation and elaborate on the
loss functions utilized during the training process.

Text pair generation. Existing image-text datasets often
feature multiple descriptions for the same image. We gen-
erate text pairs by sampling different texts for each image.
Incorporating dependency parsing into the text sampling
phase, we analyze the grammatical structure of a sentence to
identify associated words and ascertain their relationships.
An illustration of dependency parsing with spaCy [11] is
depicted in Figure 3. For a given image, all the texts of the
image are represented in a tree structure, with directed arcs
representing the connections between each word in the sen-

tence. We leverage the root of the dependency tree to for-
mulate text pairs that describe distinct objects. Those pairs
contain different objects that are associated with various at-
tributes, relations, and priorities, and provide rich composi-
tional information for the subsequent training phase.
Loss. To harness the rich compositional information in
the text pair, we propose a pretext task to induce vari-
ability in the generated heatmaps. Considering a training
batch crafted through the aforementioned procedure B =
{(v*, ), ¢})},, where v represents the image and ), t}
denote the text pair, we proceed with fine-tuning VLMs uti-
lizing the following loss functions:
1

L= E(v,t07t1)~6[mZHo®H1] (7
Where Hy, H; are the heatmaps generated corresponding
to tyo and t; respectively. w and h stand for the width
and height of Hy, H;. This novel loss leverages coarse-
grained text descriptions instead of dense bounding box an-
notations, thereby applying only weakly supervised guid-
ance to the heatmap. This loss function directs the model
to generate distinct heatmaps for diverse textual inputs, en-
compassing various objects, attributes, relations, and prior-
ities. Consequently, it encourages the model’s outputs to be
more discriminative and alleviates noise arising from com-
positional ambiguity within the generated heatmaps.

5. Experiments

In this section, we report the results of four state-of-the-
art VLMSs on conventional visual grounding datasets and
ARPGrounding dataset. Our findings indicate that VLMs
demonstrate proficiency on conventional visual grounding
datasets but reveal limitations on ARPGrounding. We also
explore our fine-tuning strategy on both CLIP and ALBEF
to demonstrate its effectiveness.

5.1. Datasets and Models

Datasets. In addition to ARPGrounding, we employ three
datasets: VG, Flickr30k entities [33], and ReferlIt [15] fol-
lowing Akbari et al. [1]. We follow Akbari et al. [1] to
report the pointing game [50] accuracy. These datasets
serve as the foundation for demonstrating VLMs’ perfor-
mance on weakly supervised visual grounding tasks. As for
composition-aware fine-tuning, we use region descriptions
in VG to construct the text pair. We apply a filtering process
to the images within VG to ensure that there is no overlap
between the training data and the test splits of any other
datasets. Ultimately, we collect a total of 83,517 images for
fine-tuning.

Models. We evaluate four VLMs. Specifically, we as-
sess OpenAI’s CLIP [34]—a dual-stream model pre-trained
on a dataset comprising 400 million image-text pairs with
contrastive objectives. Additionally, we examine ALBEF
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Table 1. Results on visual grounding and ARPGrounding datasets.

Method Visual Grounding ARPGrounding

VG  Flickr Referlt Mean | Attribute Relation Priority Mean
random 11.15 2724 2430 20.90 25.00 25.00 25.00  25.00
WWbL [39] 6231 7563 6595 67.96 - - - -
WWbLT [38] | 66.63 79.95 70.25 72.28 - - - -
CLIP 5746 7526  56.77 63.16 42.78 9.19 1124 21.07
ALBEF 75.04 8449 69.26 76.26 61.25 29.19 1494 3513
METER 60.52 7528 6641 6740 | 43.70 26.49 38.39  36.19
BLIP2 69.50 8496 6871 74.39 23.46 31.35 1528  23.36

[18], which introduces contextualized multimodal fusion
with a co-attention mechanism and is additionally trained
with masked language modeling and image-text matching
losses. Furthermore, we evaluate METER [6], character-
ized by stacked transformer encoding layers on both vi-
sual and text encoders. Lastly, our analysis includes BLIP2
[21], where a Q-Former is connected to a frozen image en-
coder, aiming to achieve improved image-text alignment
while preserving robust visual representation.

5.2. Evaluation of VLMs

Models perform well on conventional visual grounding
datasets. In Table 1, we present models’ performance on
VG, Flickr, and Referlt to demonstrate their performance on
weakly supervised visual grounding datasets. We also cal-
culate the mean score for convenient comparison. We adopt
the same pointing game accuracy metric and compare our
results against previous state-of-the-art methods WWbL ™"
[38]. We find that all four VLMs can achieve performance
on par with or surpass WWbL** without any training.
Both ALBEF and BLIP2 outperform WWbL™™, setting
new state-of-the-art benchmarks. Additionally, CLIP and
METER exhibit performance levels that are comparable to
WWbL T according to the mean score.

Models exhibit deficiencies in compositional grounding
datasets. Models struggle across the board on ARPGround-
ing, often performing close to or below random chance. As
shown in Table 1, models exhibit suboptimal performance
when assessed in terms of their average performance across
three compositional categories. From a model-specific per-
spective, we observe a meager absolute improvement of ap-
proximately 10% compared to the random chance from the
two top-performing models, namely ALBEF and METER,
while the remaining models perform even worse than ran-
dom chance. Models also demonstrate varying reasoning
capabilities when confronted with distinct forms of compo-
sitionality. Notably, models perform relatively better in the
attribute category with a mean score of 42.80, but their per-
formance is comparatively poorer in relation and priority,
scoring mean values of 24.06 and 19.96, respectively, in-

dicating that detecting relation and priority is a more chal-
lenging problem than attribute recognition. Overall, models
exhibit deficiencies in ARPGrounding.

5.3. Composition-aware Fine-tuning

Training details. We employ composition-aware fine-
tuning on CLIP and ALBEF to showcase its efficacy. In
particular, we initiate the fine-tuning of CLIP and ALBEF
using identical pre-trained weights as used in section 5.2.
Each image in the training dataset is associated with approx-
imately 50 textual descriptions. We select two descriptions
per image, each delineating distinct objects. We implement
our framework on PyTorch [32] and train it for 10 epochs on
an NVIDIA A100 GPU with 80GB of memory. For CLIP,
we resize the input images to 224 x 224 and cap the maxi-
mum length of each text to 77 as suggested by Radford et al.
[34]. We use a batch size of 256 and a learning rate of le-
7. For ALBEF, we resize the input images to 384 x 384
and set the maximum length of each text to 30 as Li et al.
[18]. We use a batch size of 54 and a learning rate of 2e-
7. Both models are optimized using AdamW [27] optimizer
with 50 steps of warmup and a cosine-annealing learning
rate scheduler.

Table 2. Grounding results comparison of fine-tuning two state-
of-the-art VLMs.

Method Visual Grounding ARPGrounding
VG  Flickr Referlt | Attribute Relation Priority

CLIP 57.46 7526  56.77 42.78 9.19 11.24
TSVLC 57.57 75.11  56.78 42.85 9.46 11.15
DAC 5850 7691 5833 42.63 11.35 8.70
CLIP caft. (Ours) 60.43 78.07 63.75 44.56 13.24 21.30
ALBEF 75.04 8449  69.26 61.25 29.19 14.94
ALBEF caft. (Ours) | 74.80 85.93  74.67 66.34 38.65 24.21

Results. In Table 2, we present a comparative analysis be-
tween CLIP and CLIP caft., as well as ALBEF and AL-
BEF caft., where “caft.” denotes composition-aware fine-
tuning. Additionally, we include the results of TSVLC
[7] and DAC [8], both of which are based on CLIP and
have demonstrated promising outcomes in addressing com-
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positional challenges in image-text matching tasks. For
CLIP, composition-aware fine-tuning enhances CLIP’s per-
formance on Attribute from 42.78 to 44.56, on Relation
from 9.19 to 13.24, and on Priority from 11.24 to 21.30.
Conversely, no significant improvement is observed for
TSVLC and DAC. For ALBEEF, this methodology elevates
performance on Attribute from 61.25 to 66.34, on Relation
from 29.19 to 38.65, and on Priority from 14.94 to 24.21.
Notably, it substantially augments the efficacy of both mod-
els in conventional visual grounding datasets as well, only
ALBEEF slightly decreases in VG by 0.24%. Overall, AL-
BEF caft. becomes the best model, in comparison to all
other models, and in ARPGrounding-Priority, it lags be-
hind only METER. Figure 4 illustrates some visualization
results, more visualization results are shown in Appendix.

In general, our proposed composition-aware fine-tuning
yields significant improvements in ARPGrounding and also
enhances performance in conventional visual grounding
datasets. Our results underscore the efficacy of extract-
ing rich information from diverse textual sources related to
an image, even in the absence of dense annotations, lead-
ing to substantial advancements in compositional under-
standing. While diverse vision-language pre-training ob-
jectives contribute significantly to representation learning,
Ma et al. [28] suggests that merely expanding the scale
of pre-training datasets is ineffective in capturing compo-
sitional structures. Hence, we furnish evidence support-
ing the notion that pursuing algorithmic enhancements can
augment model capacity through the utilization of cost-
effective image-text annotations.

5.4. Analysis of Compositional Grounding

In this section, we report the fine-grained score of at-
tribute and relation of ARPGrounding, we also conduct a
case study on priority since categorizing priorities is not
straightforward.

We categorize attributes into action, color, material, size,
and state, and divide relations into action and spatial fol-
lowing Zhao et al. [51]. We use text that falls into these
categories to distinguish two objects, therefore the random
performance is 50%. As shown in Figure 3, for attributes,
models get relatively high sores on color and material, low
on action, size, and state, and perform worst on size. This
might stem from the need for scene-based reasoning when
comprehending size. Size-related terms (e.g., small, large,
giant) may lack consistency in visual size due to influences
such as camera angles and the distance between the object
and the camera. For relations, CLIP and METER excel in
spatial relations, while ALBEF and BLIP2 demonstrate su-
perior performance in action relations. This suggests no
uniform tendencies in relation to grounding performance.
For priority, we plot the ten most frequent object pairs and
count the frequency of each object being chosen, as shown

white boat

plant near bench

runaway has airplane

Figure 4. Visualization of grounding results of ALBEF and AL-
BEF caft. From left to right, the three columns depict the orig-
inal image, the heatmap generated by ALBEF, and the heatmap
generated by ALBEF caft. We demonstrate that our composition-
aware fine-tuning pipeline effectively enhances compositional un-
derstanding.

Model
80 - CLP
ALBEF
=== METER
= BLIP2

Score %

A_Action A_Color  A_Material A_size A_State R Acton  R_Spatial

Figure 5. Analysis of compositional grounding on attribute and
relation splits in ARPGrounding. We further categorize attributes
into action, color, material, size, and state. These are represented
in the figure with X-axis labels starting with *A’. Relations are
divided into action and spatial, denoted in the table with labels
starting with 'R’. A horizontal dashed line signifies chance perfor-
mance.

in Figure 6. We observe that models exhibit a bias toward
specific objects rather than adhering to priority considera-
tions.

5.5. Ablation Studies

In this section, we present ablations to demonstrate
the choices in the proposed composition-aware fine-tuning
pipeline. Particularly we investigate how much does the
text pair generation process and the new pretext task ben-
efit fine-tuning.

As described in section 4, the generation of a text pair in-
volves utilizing a dependency parsing tree to sample a pair

14147



Count

Figure 6. Analysis of compositional grounding on priority. We
plot the ten most frequent object pairs and count the frequency of
each object being chosen by CLIP. The more frequent object in
each pair was manually selected for leftward plotting.

Table 3. Ablation studies of text pair generation process. T, I
represents fine-tuned with text pair (1), (2) respectively. We use
the same loss function with caft. in these ablation studies.

Visual Grounding ARPGrounding

Method VG  Flickr Referlt | Attribute Relation Priority
CLIP 5746 7526  56.77 42.78 9.19 11.24
CLIP 55.67 75.11  53.05 45.67 9.46 5.63
CLIP 60.52 7847 63.61 44.26 11.89 13.90
CLIP caft. (Ours) 6043 78.07  63.75 44.56 13.24 21.30
ALBEF 75.04 8449  69.26 61.25 29.19 14.94
ALBEF f{ 5736 6793 56.46 55.71 17.84 8.61
ALBEF f 72771 8346 7332 65.65 35.95 18.80
ALBEF caft. (Ours) | 74.80 85.93  74.67 66.34 38.65 24.21

Table 4. Ablation studies of the new pretext task. “ft.” repre-
sents fine-tuning CLIP with contrastive loss, and fine-tuning AL-
BEF with image-text matching loss. “caft.” represents trained with
the new pretext task. We use the same training data in these abla-
tion studies.

Method Visual Grounding ARPGrounding

VG  Flickr Referlt | Attribute Relation Priority
CLIP 57.46 7526  56.77 42.78 9.19 11.24
CLIP ft. 57.53 7635  60.20 43.15 11.35 6.67
CLIP caft. (Ours) 60.43 78.07 63.75 44.56 13.24 21.30
ALBEF
ALBEF ft. 65.77 73.58  63.89 58.46 30.54 8.82

ALBEEF caft. (Ours) | 74.80 85.93  74.67 66.34 38.65 24.21

75.04 8449  69.26 61.25 29.19 14.94

of text that pertain to distinct objects. We design two text
pair variants including (1) text pair that refers to the same
object and (2) text pair that is randomly sampled. We fol-
low the composition-aware fine-tuning pipeline but use dif-
ferent training data. Results of fine-tuning CLIP and AL-
BEF with these two variants are shown in Table 3. It can
be observed that fine-tuning with text pair (1) adversely af-
fects grounding performance. Conversely, fine-tuning with
text pair (2) contributes to improved performance. This is
attributed to the fact that, on average, images in the VG
dataset contain approximately 35 objects, making random
sampling likely to yield pairs describing different objects.
However, the optimal results are achieved through sampling

via the dependency parsing tree. Ablation studies of the pro-
posed pretext task are shown in Table 4. We provide CLIP
fine-tuned with contrastive learning loss and ALBEF fine-
tuned with image-text matching loss on our generated text
pairs. The results indicate that both contrastive learning loss
and image-text matching loss diminish the grounding per-
formance of both CLIP and ALBEF across nearly all test
datasets. In contrast, when CLIP and ALBEEF are fine-tuned
on the novel pretext task, there is a noticeable enhancement
in performance across all test datasets. This proves that the
generated text pairs offer valuable compositional informa-
tion. Moreover, the new pretext task effectively extracts this
information compared to contrastive learning and image-
text matching.

5.6. Fully Supervised Methods on ARPGrounding

Table 5. ARPGrounding results of GLIP and Grounding DINO.

Method ARPGrounding

Attribute  Relation  Priority
GLIP-T 3491 12.43 11.76
GLIP-L 37.15 9.46 12.34
Grounding-DINO-T 37.24 6.76 15.42
Grounding-DINO-B 47.03 13.78 25.68

To explore the performance of fully supervised meth-
ods on compositional grounding, we test GLIP [22] and
Grounding DINO [26] on ARPGrounding as shown in Ta-
ble 5. We use models to generate the highest score bound-
ing box of the text and compare the Intersection over Union
(IOU) between the positive bounding box and the negative
bounding box with regard to the text. We find these two
fully supervised visual grounding models do no better than
weakly supervised VLMs. The best performing fully super-
vised method, Grounding-DINO-B, falls short in attribute
against ALBEF, lacks competitiveness with ALBEF, ME-
TER, and BLIP2 in relation, and demonstrates inferior per-
formance compared to METER in priority.

6. Conclusion

In this paper, we first employ explainability techniques
to achieve state-of-the-art results in weakly supervised vi-
sual grounding tasks using VLMs. We then introduce
ARPGrounding, a novel benchmark, and reveal the lim-
itations of VLMs in fine-grained visio-linguistic compo-
sitionality. To address these challenges, we propose a
composition-aware fine-tuning pipeline that significantly
enhances VLMSs’ compositional understanding without re-
lying on dense annotations.
Acknowledgment. This work was jointly sup-
ported by the National Key R&D Program of
China (20227ZD0116309) and the National Natu-
ral Science Foundation of China (62236010 and
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