
JeDi: Joint-Image Diffusion Models for Finetuning-Free Personalized
Text-to-Image Generation

Yu Zeng1 Vishal M. Patel1 Haochen Wang 2 Xun Huang3

Ting-Chun Wang3 Ming-Yu Liu3 Yogesh Balaji3
1Johns Hopkins University 2TTI-Chicago 3NVIDIA Research

Input 

on top of a dirt road

Ours
✅ Diverse results  
✅ Preserve input subject

DreamBooth
❌ Overfit to input 

BLIPDiffusion
❌ Different subject

Text-to-image
with Eiffel tower in the backgroundA monster

Input 

by a frozen pond in front of a castle 

under a starry night

A cat astronaut 

on a cobblestone street

on pink fabrica red cow sculpture

on wooden floor

A cow sculpture

like a tile mosaic

in chef outfit sleepingreading a newspaper 

floating in water

A cat boss

in Grand Canyon

in Sherlock Holmes movie in leather jacket

A mouse

in green cloak

DreamBooth
❌ Overfit to input
❌ Poor input preservation 

BLIPDiffusion
❌ Poor input preservation

Ours
✅ Diverse results  
✅ Preserve input subject

Figure 1. We present Joint-Image Diffusion (JeDi), a finetuning-free image personalization model that can operate on any number of
reference images. JeDi is able to preserve the appearance of custom subjects while generating novel variations. As shown in the top row,
JeDi does not suffer from the issues of overfitting and lack of diversity exhibited by the prior models. The examples in the bottom two
rows demonstrate JeDi’s high-quality results on challenging personalization tasks.

Abstract

Personalized text-to-image generation models enable
users to create images that depict their individual posses-
sions in diverse scenes, finding applications in various do-
mains. To achieve the personalization capability, exist-
ing methods rely on finetuning a text-to-image foundation
model on a user’s custom dataset, which can be non-trivial
for general users, resource-intensive, and time-consuming.
Despite attempts to develope finetuning-free methods, their
generation quality is much lower compared to their fine-
tuning counterparts. In this paper, we propose Joint-Image

Diffusion (JeDi), an effective technique for learning a
finetuning-free personalization model. Our key idea is to
learn the joint distribution of multiple related text-image
pairs that share a common subject. To facilitate learning,
we propose a scalable synthetic dataset generation tech-
nique. Once trained, our model enables fast and easy per-
sonalization at test time by simply using reference images
as input during the sampling process. Our approach does
not require any expensive optimization process or addi-
tional modules and can faithfully preserve the identity rep-
resented by any number of reference images. Experimental
results show that our model achieves state-of-the-art gen-
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eration quality, both quantitatively and qualitatively, signif-
icantly outperforming both the prior finetuning-based and
finetuning-free personalization baselines.

1. Introduction

The state-of-the-art in text-to-image generation has ad-
vanced significantly in the last two years, propelled by
the emergence of large-scale diffusion models and paired
image-text datasets [2, 3, 6, 22, 25, 26, 28]. Despite their
superior capability in generating high-quality images well-
aligned to the input text prompts, existing models cannot
generate novel images depicting specific custom objects or
styles that are only available as few reference images ex-
ternal to the training datasets. To address this important use
case, various personalization methods have been developed.

The key challenge of personalized image generation is
to produce distinct variations of a custom subject while pre-
serving its visual appearance. Most existing approaches
achieve this goal by finetuning a pre-trained model on a ref-
erence set of images to make it memorize the custom con-
cept. Although these methods can yield good synthesis re-
sults, they require substantial resources and a long training
time to fit the custom subject, and more than one reference
image is needed to avoid overfitting. To overcome these
challenges, there has been recent interest in developing
finetuning-free personalization methods [16, 30, 32, 33].
These methods typically encode the reference images into a
compact feature space, and condition the diffusion model on
the encoded features. However, the encoding step results in
information loss, leading to poor appearance preservation,
especially for challenging unusual objects as seen in Fig. 1.
Therefore, the performance of encoder-based personaliza-
tion techniques is inferior to finetuning-based approaches.

In this paper, we present JeDi, a novel approach for
finetuning-free personalized text-to-image generation that
excels at preserving input reference content. Our core idea
is to train a diffusion model to learn a joint distribution of
multiple related text-image pairs that share a common sub-
ject. As illustrated in Fig. 2, this goal is achieved using
two key ingredients: First, we construct a synthetic dataset
of related images in which each sample contains a set of
text-image pairs that share a common subject. We present
a scalable approach for creating such a dataset using LLMs
and pre-trained single-image diffusion models. Second, we
modify the architecture of existing text-to-image diffusion
models to encode relationships between multiple images in
a sample set. Specifically, we adapt the self-attention layers
of the diffusion U-Net so that the attention blocks corre-
sponding to different input images are coupled. That is, the
self-attention layer corresponding to each image co-attends
to every other image in the sample set. The use of the cou-
pled self-attentions at different levels of hierarchy in the

Table 1. In contrast to prior work, JeDi does not require finetun-
ing or the use of image encoders for image personalization.

Method Finetuning-free Encoder-free
DreamBooth [27] ✗ ✓
CustomDiffusion [15] ✗ ✓
ELITE [32] ✓ ✗
BLIPDiffusion [16] Optional ✗
JeDi ✓ ✓

U-Net provides a much stronger representation needed for
good input preservation.

At test time, JeDi can take multiple text prompts as in-
put and generate images of the same subject in different
contexts. By simply substituting reference images as ob-
served variables in the sampling process, JeDi can gener-
ate personalized images based on any number of reference
images. We utilize guidance techniques [11] on reference
images to further improve the image alignment. JeDi can
achieve high-fidelity personalization results even in chal-
lenging cases involving unique subjects (Fig. 1, 7), using
as few as a single reference image.

Our key contributions are summarized as follows:
• We propose a finetuning-free text-to-image generation

method with a novel joint-image diffusion model.
• We present a simple and scalable data synthesis pipeline

for generating a multi-image personalization dataset with
images sharing the same subject.

• We design novel architectural and sampling techniques
such as coupled self-attention and image guidance for
achieving high-fidelity personalization.

2. Related Work
2.1. Text-to-Image Generation

Denoising diffusion models [8, 12, 31] formulate the im-
age generation task as a series of progressive denoising
steps. The denoising network can be trained conditioned on
text embeddings to generate images from an input caption.
DALL-E2 [25] achieves high-resolution text-to-image syn-
thesis using two diffusion models: the first model converts
a CLIP text embedding to a CLIP image embedding, while
the second model converts the image embedding to an out-
put image. Imagen [28] trains a cascaded diffusion model
conditioned on T5 language embeddings [24]. eDiff-I [2]
uses an ensemble of expert denoisers to increase the model
capacity, with each expert specializing in a specific noise
range. Latent diffusion models [6, 22, 26] train the diffu-
sion model in a compact latent space of an autoencoder for
efficient training and sampling.

2.2. Personalized Text-to-Image Generation

Finetuning based methods. Most prior works achieve im-
age personalization by finetuning the diffusion model on a
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Figure 2. Overall framework. (a) We generate training data by using large language models and prompting pretrained single-image
diffusion models. (b) During training, the JeDi model learns to denoise multiple same-subject images together, where each image attends
to every image of the same subject set through coupled self-attention. (c) At inference, personalized generation is performed in an inpainting
fashion where the goal is to generate the missing images of the joint-image set.

custom dataset. Dreambooth [27] finetunes the entire model
weights on the reference set, with a loss on images of sim-
ilar concepts as regularization. CustomDiffusion [15] opti-
mizes only a few parameters to enable fast tuning, and com-
bines multiple finetuned models for multi-concept person-
alization. Textual Inversion [9] projects the reference im-
ages onto the text embedding space through an optimization
process. SVDiff [10] finetunes only the singular values of
the weight matrices to reduce the risk of overfitting. These
finetuning-based methods require a substantial amount of
resources and long training time, and often need multiple
reference images per custom subject.

Finetuning-free methods. To improve the efficiency of
image customization, there has been recent interest in de-
veloping finetuning-free methods. These approaches typ-
ically use an image encoder to encode a reference image
onto a compact feature space, and train the diffusion model
conditioned on this feature vector. BLIPDiffusion [16]
uses BLIP-2 [17] encoder, while FastComposer [33] uses
a CLIP [23] encoder for image encoding. ELITE [32] and
InstantBooth [30] use a learnable image encoder trained
jointly with the diffusion model. These encoder-based
methods produce reasonable results for common subjects,
but often fail to generate uncommon subjects and preserve
fine-grained details due to the information loss in the en-
coding step. In contrast, our approach directly trains a joint-
image diffusion model without an encoding step, resulting
in better input preservation even for challenging objects.

Personalization dataset. To achieve finetuning-free
personalization, a training dataset comprised of same-
subject image sets is required. Methods like [16, 30, 32, 33]
rely on image augmentation and background removal to
construct training data, which often does not provide suf-
ficient variations for the same subject. To improve the

diversity, we present a scalable data generation approach
by prompting pre-trained single-image diffusion models to
produce multi-image photo collages with good variation.

3. Method

3.1. Dataset Creation

Training a model to produce a joint distribution of multi-
ple same-subject images requires a dataset where each sam-
ple is a set of images sharing a common subject. While
there exist some same-subject datasets such as CustomCon-
cept101 [15] and DreamBooth [27], they are small in scale
and lack sufficient variations desired for diffusion model
training. Therefore, we create a diverse large-scale dataset
of image-text pairs containing the same subject, called the
Synthetic Same-Subject (S3) dataset, using large language
models [21] and single-image diffusion models [22].

Fig. 3 illustrates our data generation process. We first
start with a list of common objects and prompt ChatGPT
to generate a text description for each object in the list.
Then, we use the pre-trained SDXL [22] model to generate
a dataset of same-subject photo collages by appending the
text “photos of the same” to each of the text prompt gen-
erated in the previous step. We observed that by prompting
the SDXL model this way, it can generate photo collages of
the same subject with varying poses. However, the gener-
ated images usually contain a close-up view of an object in
a simple background. To increase the data diversity, we em-
ploy a post-processing step that performs background aug-
mentation on the generated objects.

Given a generated photo collage, we first run object de-
tection [18] and segmentation [14] to separate out object
instances and extract foreground region. We discard pairs
of instances with CLIP [23] image scores lower than 0.95
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Figure 3. Data generation process. We construct Synthetic Same-Subject (S3) dataset by first prompting the pretrained text-to-image
diffusion models to generate same-subject photo collages, and then increasing the diversity using text-based background inpainting.
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Figure 4. Samples from the synthetic same-subject (S3) dataset.
Each column denotes different images from one joint-data sample.

as they may not contain the same subject. We then paste the
object at a random location in a blank image, and use the
stable diffusion inpainting model to inpaint the background
based on a new prompt related to the same object name. In
addition, we use InstructPix2Pix [4] to stylize the generated
samples with a probability of 0.5 to increase style variation
using randomly selected style prompts. Fig. 4 shows some
examples of the text-image data generated through this pro-
cess. The generated samples have consistent subjects with
good diversity and pose variations.

3.2. Joint-Image Diffusion

The goal of training a joint-image diffusion model is to
generate multiple related images sharing the same subject.
Conventional diffusion models [2, 20, 26, 28], however, can
only generate individual images independently as the net-
work architecture does not have any connections between
different samples in a batch. We found that with a sim-
ple modification, a single-image diffusion model can be
adapted to a joint-image model which can generate images
having related content (such as the same custom subject).

More specifially, given a set of same-subject noisy in-
put images, we modify the attention layers of the U-Net to

fuse together the self-attention features for different images
in the same set. As illustrated in Fig. 6, a coupled self-
attention layer has features at each spatial location attend-
ing to every other location across all images in the set. Since
the U-Net architecture has attention layers at various reso-
lutions, the use of coupled self-attentions at multiple res-
olutions makes the generated image set to have consistent
high-level semantic features as well as low-level attributes.
Fig. 5 visualizes the pixel-wise correspondences and atten-
tion heat maps of coupled self-attention layers. We observe
that the co-attended regions across different images form
the right correspondences across all resolutions.

After a coupled self-attention layer, the output is fed to
a regular cross-attention layer, which aligns the visual fea-
ture of each image to the corresponding text prompt. The
coupled self-attention layer can be implemented by simply
adding two reshaping operations before and after a regu-
lar self-attention, thus enabling simple and easy adaptation
from pre-trained single-image diffusion models.

Fig. 2 (b) illustrates the training process. We start by cre-
ating noisy same-subject data by adding isotropic Gaussian
noise, and train the joint-image diffusion model to denoise
the data. Ideally, there is no limit on the size of each image
set of the same subject. In our experiments, we randomly
set the size to 2, 3, or 4 during training. The training loss
of JeDi is very similar to that of a regular diffusion model.
We use ϵ-prediction and a simplified training objective in-
troduced in [12]. The loss function is as follows,

L = Eϵ∼N (0,1),t∼[1,T ]

[
∥ϵ− ϵθ(xt)∥22

]
, (1)

where ϵθ represents the network parameterized by θ, T is
the number of diffusion steps, xt is the t-step noised image
set of size N , i.e. x = [x1, x2, ..., xN ]. We omit the text and
timestep conditioning in ϵθ(·) for simplicity. After training,
the JeDimodel can take multiple text prompts as input and
generate images containing the same subject.
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Figure 5. Visualization of the coupled self-attentions. For both scales (8x8 and 16x16), the correspondence map (Corr.) shows the
connections with the highest weights between elements in the two images. The heatmap visualizes the distribution of the attention weights
in an image for a specific element in another image (marked with a red box). We observe that similar regions in different images are
co-attended in the coupled self-attention layers.
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Figure 6. Attention architecture. In a coupled self-attention
block, features corresponding to each spatial location attends to
every location across all images in the image set. Following the
coupled self-attention block, features of each individual image at-
tends to their respective text embedding in cross-attention layers.

3.3. Personalized Text-to-Image Generation

Personalization as inpainting. While the joint-image dif-
fusion model discussed in the previous section can generate
same-subject images, it does not input a reference image
that needs to be personalized. In this section, we propose
to solve the input image personalization problem by cast-
ing it as an inpainting task. That is, given a few text-image
pairs as reference, the task of generating a new personalized
sample can be viewed as inpainting the missing images of a
joint-image set containing reference images (Fig. 2 (c)).

We design the inpainting model by modifying the input
layer of the diffusion U-Net so that it can be conditioned on
reference images. More specifically, the input to the diffu-
sion model is a concatenated list of noisy images, reference
images and a binary mask indicating whether the reference
image is used or not. When the binary mask is all 0’s, the
reference image is used. On the other hand, when the bi-
nary mask is all 1’s, the reference image is an empty black
image (indicating the missing images that need to be gen-

erated). During training, for every image in the joint-image
set, we use the reference image with a probability of 0.5
i.e., we assign the binary mask to 0 with probability 0.5.
The training training loss can then be written as follows,

L = Eϵ∼N (0,1),t∼[1,T ],m∼(N
0.5)

[
∥ϵ− ϵθ(xt, x̂,M)∥22

]
,

(2)
where M is the spatially repeated tensor of a binomial vari-
able m; x̂ = x⊙M denotes the reference images, with the
unknown elements set to zero.

During inference, we utilize the replacement trick [19,
31] in which the known part of the joint-image set is re-
placed with the forward diffusion response of the clean ref-
erence image. Let x̂ = [x̂1, x̂2, ..., x̂n] be the reference im-
ages, which are the known elements in the image set x =
[x̂1, ..., x̂n, xn+1, ..., xN ] to be generated. During sampling,
at each diffusion step t, we only keep the backward diffu-
sion output for the unknown elements xn+1, ..., xN while
replacing the known part with the forward diffusion out-
put, i.e. the noised real images x̂1

t , ..., x̂
n
t .

Image guidance. Classifier-free guidance is a popular
technique used in single-image diffusion models to make
the image generations more aligned to the input condition-
ing [11]. To improve the faithfulness of the generated sam-
ples to the input reference images, we use image guidance
in addition to the text guidance during sampling. The score
function with the use of image guidance is as follows:

ϵ̃(xt, x̂,M) = ϵ0 + λ[ϵθ(xt, x̂,M)− ϵ0] (3)

where ϵ0 = ϵθ(xt,0,M) represents the unconditional
score when the text prompt and all reference images are
set to null; λ is the guidance scale. We find that the use
of image guidance can significantly improve the fidelity to
the input reference images.
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Figure 7. Personalized text-to-image generations. We show the generations obtained by our JeDi model on challenging uncommon
input subjects shown in the left column. JeDi accurately preserves the reference image content while being faithful to the text prompt.

4. Experiments
Dataset. We construct the Synthetic Same-Subject dataset
(S3 dataset) for training as described in Sec. 3.1. After CLIP
filtering, we obtain 1.6M sets of images with each set con-
taining 2-4 images. We also include the video frames from
WebVid10M [1] and rendered multi-view images from Ob-
javerse [7] during training, as the frames from the video and
the rendered images from the asset usually have the same
subject. We use the original video caption or asset cap-
tion as text prompts for all images obtained from the same
video/asset. Additionally, we include the single-image data
from LAION aesthetic dataset [29] and use a set size of 1
for these images. To evaluate our models, we use the test
dataset proposed in DreamBooth [27]. DreamBooth test
set contains 30 real-world subjects with 4-6 images and 25
prompts for each subject.

Evaluation metrics. The two main evaluation criteria
for personalized text-to-image generation include (1) align-
ment between generated images and the input text prompts,
and (2) faithfulness of the generations to the input reference
images. We use the CLIP image-text similarity (CLIP-T)

between the generated images and the input captions for (1).
For (2), we follow prior works [16, 27, 32] and use the co-
sine similarity of CLIP [23] image embedding (CLIP-I) and
DINO [5] image embedding (DINO) between the generated
images and the reference images. DINO is considered to
be a preferred metric for measuring image similarity as it is
sensitive to the appearance variations of different images in
the same concept class. Additionally, we also report CLIP-I
and DINO scores only on the foreground masked images,
i.e., images with foreground objects cutout using object de-
tection and segmentation [13, 18]. This helps remove the
background variations when computing the image similar-
ity scores to better reflect the faithfulness to the reference
subject. We call these metrics MCLIP-I and MDINO.

Implementation details. We implement our method
based on StableDiffusion V1.4 to enable fair comparison
with prior approaches. We train the model with batch size
2048 and a learning rate 5e−5. We initialize the weights us-
ing the pre-trained StableDiffusion model. For each batch,
we randomly sample image sets from S3, WebVid10M, Ob-
javerse and LAION datasets with equal probability. We ran-
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Figure 8. Visual comparison with finetuning-free methods. JeDi can faithfully preserve the details of input content even for challenging
uncommon objects (row 2 and 3). ELITE and BLIPD fail in such cases and can get good results only in common object classes (row 1).

A toy on top of a purple rug in a forest 

A backpack with a tree and autumn leaves in the background

A toy on top of a wooden floor

A backpack on top of a dirt road

Input DB CD Ours DB CD Ours

Figure 9. Visual comparison with finetuning methods. Finetuning methods memorize the input images (DB outputs) or result in poor
input preservation (CD outputs) when the number of reference images is small. On the other hand, JeDi can generate images that are
faithful both to the input images and the text prompt.

domly choose the image set size between 2-4 except for
LAION, where the set size is always 1. Our model takes
36 hours to train on 32 A100 GPUs for 140K steps.

4.1. Comparison

We compare our method with the state-of-the-art
finetuning-free methods - BLIPD [16] and ELITE [32],
along with two finetuning-based methods - DreamBooth
(DB) [27] and CustomDiffusion (CD) [15]. For each sub-
ject, we use one input reference image for finetuning-free
approaches and three for finetuning-based approaches.

Comparison to finetuning-free methods. Fig. 8 shows

the visual comparison of our results to BLIPD and ELITE.
It can be seen that our method can faithfully capture the vi-
sual features of the input reference image, including both
semantic attributes and low-level details. However, the gen-
erations from BLIPD and ELITE can only roughly resemble
the color patterns and semantic features of the input. We
also observe that BLIPD and ELITE can produce reason-
able results for common object classes such as dogs. This is
because their encoder can easily recognize the common ob-
ject categories (such as the dog breed) which makes the per-
sonalized generation easier. However, for unique uncom-
mon objects, their results tend to be much worse, e.g. the
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Table 2. Quantitative comparisons. All finetuning-based methods use 3 input images, while the finetuning-free methods use 1 input
image. JeDi model with 1 input image outperforms all finetuning-free baselines, while the JeDi model with 3 input images outper-
forms all finetuning baselines. JeDi obtains a much higher masked DINO scores, which suggests that we achieve stronger input subject
preservation compared to other baselines.

Method CLIP-T (↑) CLIP-I (↑) MCLIP-I (↑) DINO (↑) MDINO (↑)

Finetuning-based DreamBooth [27] 0.2812 0.8135 0.8683 0.6341 0.7115
Custom Diffusion [15] 0.3015 0.7952 0.8640 0.6343 0.7109

Finetuning-free

BLIP Diffusion [16] 0.2934 0.7899 0.8620 0.5855 0.6692
ELITE [32] 0.2961 0.7924 0.8615 0.5922 0.6805
JeDi (1 input) 0.3040 0.7818 0.8764 0.6190 0.7510

JeDi (3 inputs) 0.2932 0.8139 0.9011 0.6791 0.8037

Table 3. Effect of varying the S3 dataset size.

Dataset size
0 0.6M 1.2M 1.6M

DINO (↑) 0.8895 0.7501 0.7443 0.7467
MDINO (↑) 0.8931 0.8639 0.8572 0.8636
CLIP-T (↑) 0.2524 0.3020 0.3017 0.3015

Table 4. Ablation of different joint-image diffusion designs.

CLIP baseline JeDi (+) CLIP emb w/o IG

DINO (↑) 0.3411 0.7501 0.7432 0.4652
MDINO (↑) 0.4394 0.8639 0.8617 0.5922
CLIP-T (↑) 0.3325 0.3020 0.3041 0.3259

toy in the second row and the image in the third row. Note
that even for the common classes such as the dog example
in the first row, the generations from BLIPD and ELITE
can miss some input features (different haircuts despite be-
ing the same breed). In contrast, our method eliminates in-
formation loss caused by the encoder and results in much
better preservation of the custom concept. This is also re-
flected in the quantitative comparison Table 2, where our
method outperforms BLIPD and ELITE by a large margin.

Comparison to finetuning-based methods. Fig. 9
shows the visual comparison of our approach with Dream-
Booth (DB) and CustomDiffusion (CD). When the num-
ber of reference images is limited, it is challenging for
finetuning-based methods to avoid overfitting and gener-
ate novel variations of the input subject. From Fig. 9, we
see that DB often directly copies the input image due to
overfitting, while the images generated by CD do not faith-
fully preserve the features of the input subject. In contrast,
our method creates proper variations of the reference sub-
jects without changing its key visual features. Even without
any expensive finetuning, our method outperforms DB and
CD in quantitative comparisons when we provide the same
number of reference images (JeDi-3), as shown in Table 2.

4.2. Ablation Study

Size of S3 dataset. Table 3 reports the results of training our
model using different numbers of synthetic images. Dataset
size 0 refers to training the model on only videos and multi-
view images. This setting yields the best image alignment
(DINO and MDINO) and the worst text alignment as the
model learns a shortcut to ignore the text prompts and copy
the input images. The performance of columns 2-4 are
roughly similar, which shows that we do not obtain much
gains by increasing the size of the synthetic dataset.

Joint-image diffusion model. In Table. 4, we report
the ablation study of different design choices in the train-
ing of JeDi. The first column shows the results of a CLIP
encoder baseline, which is a single-image diffusion model
conditioned on the CLIP image features of the reference im-
age. Our JeDimodel yields a much better image alignment
than the CLIP encoder baseline, which demonstrates the ad-
vantages of using the joint-image model over the image en-
coders. We also find that adding CLIP image embedding as
extra conditional input to JeDi (+ CLIP emb) does not im-
prove the performance as shown in column 3. This implies
that the joint-image model already captures the information
extracted in the image embedding. The last column reports
the results without image guidance (w/o IG). By comparing
the second and the last columns, we can see that image guid-
ance is crucial to obtaining good personalization results.

5. Conclusion

This paper presents JeDi, a novel approach for finetuning-
free personalized text-to-image generation using a joint-
image diffusion model. We show how a single image diffu-
sion U-Net can be adapted to learn a joint image distribution
using coupled self-attention layers. To train the joint-image
diffusion model, we construct a synthetic dataset called S3,
in which each sample contains a set of images sharing the
same subject. The experimental results show that the pro-
posed JeDi model outperforms the previous approaches
both quantitatively and qualitatively in benchmark datasets.
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