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Figure 1. Generation results of PixelDance given text, first frame instruction highlighted in red box (and last frame instruction in green).
Six frames sampled from a 16-frame clip are displayed. Human faces presented in this paper are synthesized using text-to-image models.

Abstract

Creating high-dynamic videos such as motion-rich ac-

tions and sophisticated visual effects poses a significant
challenge in the field of artificial intelligence. Unfortu-
nately, current state-of-the-art video generation methods,
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primarily focusing on text-to-video generation, tend to pro-
duce video clips with minimal motions despite maintain-
ing high fidelity. We argue that relying solely on text in-
structions is insufficient and suboptimal for video genera-
tion. In this paper, we introduce PixelDance, a novel ap-
proach based on diffusion models that incorporates image
instructions for both the first and last frames in conjunction
with text instructions for video generation. Comprehensive
experimental results demonstrate that PixelDance trained
with public data exhibits significantly better proficiency in
synthesizing videos with complex scenes and intricate mo-
tions, setting a new standard for video generation.

1. Introduction
Generating high-dynamic videos with motion-rich actions,
sophisticated visual effects, or complex camera movements,
has been a long-standing and formidable challenge in the
field of artificial intelligence. Unfortunately, most exist-
ing video generation approaches focusing on text-to-video
(T2V) generation [5, 11, 23, 58] are still limited to synthe-
size simple scenes, and often falling short in terms of visual
details and dynamic motions. Recent state-of-the-art mod-
els have significantly enhanced T2V quality by incorporat-
ing an image input [12, 25, 31, 46], which provides finer vi-
sual details for video generation. Despite the advancements,
the generated videos frequently exhibit limited motions as
shown in Figure 2. This issue becomes particularly severe
when the input images depict out-of-domain content unseen
in training data, posing a key limitation of current methods.

To generate high-dynamic videos, we propose a novel
video generation approach that incorporates image instruc-
tions for both the first and last frames of a video clip, in ad-
dition to text instruction. The image instruction for the first
frame depicts the major scene of the video clip. The im-
age instruction for the last frame, which is optionally used
in training and inference, delineates the ending of the clip
and provides additional control for generation. Image in-
structions enable the model to construct intricate scenes and
actions. Moreover, our approach can create longer videos,
where the model is applied multiple times and the last frame
of the preceding clip serves as the first frame instruction for
the subsequent clip.

The image instructions are more direct and accessible
compared to text instructions. We use ground-truth video
frames as the instructions for training. In contrast, recent
work has proposed the use of highly descriptive text an-
notations [4] to better follow text instructions. Providing
detailed textual annotations to precisely describe both the
frames and the motions of videos is not only costly to col-
lect but also difficult to learn for the model. To understand
and follow complex text instructions, the model may need
to significantly scale up. The image instructions overcome

these challenges together with text instructions. Given the
three instructions in training, the model focuses on learning
the dynamics of video content, and better generalizes the
learned dynamics knowledge to out-of-domain instructions
in inference.

Specifically, we present PixelDance, a latent diffusion
model based approach to video generation, conditioned
on <text,first frame,last frame> instructions.
The text instruction is encoded by a pre-trained text en-
coder and is integrated into the diffusion model via cross-
attention. The image instructions are encoded with a pre-
trained VAE encoder [35] and concatenated with either per-
turbed video latents or Gaussian noise as the input to the
diffusion model. In training, we use the ground-truth first
frame to enforce the model to strictly adhere to the instruc-
tion, maintaining continuity between consecutive video
clips. In inference, this instruction can be conveniently ob-
tained with T2I models [35] or provided by users.

Our approach is unique in the way of using the last frame
instruction. We intentionally avoid encouraging the model
to replicate the last frame instruction exactly since it is chal-
lenging to provide a perfect last frame in inference, and the
model should accommodate user-provided coarse drafts for
guidance. Such kind of instruction can be readily created
by the user using basic image editing tools.

To this end, we develop three techniques. First, in train-
ing, the last frame instruction is randomly selected from the
last three frames of a video clip. Second, we introduce noise
to the instruction to mitigate the reliance on the instruction
and promote the robustness of model. Third, we randomly
drop the last frame instruction with a certain probability,
e.g. 25%, in training. Correspondingly, we propose a sim-
ple yet effective sampling strategy for inference. During the
first τ denoising steps, the last frame instruction is utilized
to guide video generation towards the desired ending status.
Then, in remaining steps, the instruction is dropped, allow-
ing the model to generate more temporally coherent video.
The impact of last frame instruction can be adjusted by τ .

Our model’s ability of leveraging image instructions
enables more effective use of public <text,video>
datasets, such as WebVid [2] which only contains coarse
descriptions of videos [40], and lacks of content in diverse
styles (e.g., comics and cartoons). Our model with only
1.5B parameters, trained mainly on WebVid, achieves state-
of-the-art performance on multiple scenarios. First, given
text instruction only, PixelDance leverages T2I models to
obtain the first frame instruction to generate videos, reach-
ing FVD scores of 381 and 242.8 on MSR-VTT [53] and
UCF-101 [41] respectively. With the text and first frame
instructions, PixelDance is able to generate more motion-
rich videos compared to existing models. Second, Pixel-
Dance can generate continuous video clips, outperforming
existing long video generation approaches [9, 17] in tem-
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poral consistency and video quality. Third, the last frame
instructions are shown to be a critical component for cre-
ating intricate out-of-domain videos with complex scenes
and/or actions, as shown in Figure 1. Overall, by actively
interacting with PixelDance, we create the first three-minute
video with a clear storyline at various complex scenes and
characters hold consistent.

Our contributions can be summarized as follows:

• We propose a novel video generation approach based on
diffusion model, PixelDance, which incorporates image
instructions for both the first and last frames in conjunc-
tion with text instruction.

• We develop training and inference techniques for Pixel-
Dance, which not only effectively enhances the quality of
generated videos, but also provides users with more con-
trol over the video generation process.

• PixelDance trained on public data demonstrates remark-
able performance in high-dynamic video generation with
complex scenes and actions, setting a new standard for
video generation.

2. Related Work

2.1. Video Generation

Video generation has long been an attractive and essential
research topic [9, 34, 45]. Previous studies have resorted
to different types of generative models such as GANs [13,
26, 30, 42] and Transfomers with VQVAE [10, 24, 54].
Recently, diffusion models have significantly advanced the
progress of photorealistic T2I generation [3, 37], which
exhibit superior to GANs and are parameter-efficient com-
pared to transformer-based counterparts. Latent diffusion
models [35] are proposed to reduce the computational bur-
den by training a diffusion model in a compressed lower-
dimensional latent space. For video generation, previous
studies typically introduce temporal layers into the 2D UNet
of a pre-trained T2I diffusion models [11, 15, 17, 28, 40,
46, 48, 58]. Although these advancements have paved the
way for the generation of high-resolution videos through
the integration of super-resolution modules [27], the videos
produced are characterized by simple, minimal motions as
shown in Figure 2.

Recently, the field of video editing has witnessed re-
markable progress [29, 55, 57], particularly in terms of con-
tent modification while preserving the original structure and
motion of the video [7, 51]. Despite these achievements, the
necessity to search for an appropriate reference video for
editing is time-consuming. Furthermore, this approach in-
herently constrains the scope of creation, as it precludes the
possibility of synthesizing entirely novel content that may
not exist in any reference video.

Figure 2. Videos generated by state-of-the-art video generation
model [12], compared with our results given the same text prompts
and image conditions in Figure 1 and Figure 5.

2.2. Long Video Generation

Long video generation is a more challenging task which re-
quires seamless transitions between successive video clips
and long-term consistency of the scene and characters.
There are typically two approaches: 1) autoregressive meth-
ods [16, 23, 44] employ a sliding window to generate a new
clip conditioned on the previous clip. 2) hierarchical meth-
ods [10, 16, 18, 56] generate sparse frames first, then inter-
polate intermediate frames. However, the autoregressive ap-
proach is susceptible to quality degradation due to error cu-
mulation over time. As for the hierarchical method, it needs
long videos for training, which are difficult to obtain due to
frequent shot changes in online videos. Besides, generating
temporally coherent frames across larger time interval exac-
erbates the challenges, which often leads to low-quality ini-
tial frames, limiting achieving good results in interpolation
stage. In this paper, we generates continuous video clips in
the auto-regressive way and exhibits superior performance
in synthesizing long-term consistent frames. Concurrently,
we advocate for active user engagement with the genera-
tion process, akin to a film director’s role, to ensure that the
produced content closely aligns with the user’s expectation.

3. Method
In this section, we will elaborate on the model architecture
in Sec. 3.1, and then introduce the training and inference
techniques tailored for our approach in Sec. 3.2.

3.1. Model Architecture

Latent Diffusion Architecture We adopt latent diffusion
model [35] for video generation. Latent diffusion model is
trained to denoise from a perturbed input in the latent space
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Figure 3. Illustration of the training procedure of PixelDance. The
original video clip and image instructions (in red and green boxes)
are encoded into z and cimage, which are then concatenated along
the channel dimension after perturbed with different noises.

of a pre-trained VAE, in order to reduce the computational
burden. We take the widely used 2D UNet [36] as diffusion
model, which is constructed with a series of spatial down-
sampling layers followed by a series of spatial upsampling
layers with inserted skip connections. Specifically, it is built
with two basic blocks, i.e., 2D convolution block and 2D at-
tention block. We extend the 2D UNet to 3D variant with
inserting temporal layers [23], where 1D convolution layer
along temporal dimension after 2D convolution layer, and
1D attention layer along temporal dimension following 2D
attention layer. The model can be trained jointly with im-
ages and videos to maintain high-fidelity generation ability
on spatial dimension. The 1D temporal operations are dis-
abled for image input. We use bi-directional self-attention
in all temporal attention layers. We encode the text instruc-
tion using a pre-trained CLIP text encoder [33], and the em-
bedding ctext is injected through cross-attention layers in
the UNet with hidden states as queries and ctext as keys
and values.

Image Instruction Injection We incorporate image in-
structions for both the first and last frames in conjunction
with text instruction. We utilize ground-truth video frames
as the instructions in training, which is easy to obtain. Given
the image instructions on the first and last frame, denoted as
{Ifirst, Ilast}, we first encode them into the input space of
diffusion models using VAE, result in {ffirst, f last} where
f ∈ RC×H×W . To inject the instructions without loss of the
temporal position information, the final image condition is
then constructed as:

cimage = [ffirst,PADs, f last] ∈ RF×C×H×W , (1)

where PADs ∈ R(F−2)×C×H×W . The condition cimage is
then concatenated with noised latent zt along the channel
dimension, which is taken as the input of diffusion models.

3.2. Training and Inference

The training procedure is illustrated in Figure 3. For the first
frame instruction, we employ the ground-truth first frame

for training, making the model adhere to the first frame in-
struction strictly in inference. In contrast, we intentionally
avoid encouraging the model to replicate the last frame in-
struction exactly. During inference, the ground-truth last
frame is unavailable in advance, the model needs to accom-
modate user-provided coarse drafts for guidance to gener-
ate temporally coherent videos. To this end, we introduce
three techniques. First, we randomly select an image from
the last three ground-truth frames of a clip to serve as the
last frame instruction for training. Second, to promote ro-
bustness, we perturb the encoded latents cimage of image
instructions with noise.

Third, during training, we randomly drop the last frame
instruction with probability η, by replacing the correspond-
ing latent with zeros. Correspondingly, we propose a sim-
ple yet effective inference technique. During inferene, in
the first τ out of the total T denoising steps, the last frame
instruction is applied to guide the video generation towards
desired ending status, and it is dropped in the subsequent
steps to generate more plausible and temporally consistent
videos:

x̃θ =

{
x̂θ(zt, f

first, f last, ctext), if t < τ

x̂θ(zt, f
first, ctext), if τ ≤ t ≤ T

. (2)

τ determines the strength of model dependency on last
frame instruction, adjusting τ will enable various applica-
tions. For example, our model can generate high-dynamic
videos without last frame instruction (τ = 0). Addition-
ally, we apply the classifier-free guidance [20] in inference,
which mixes the score estimates of the model conditioned
on text prompts and without text prompts.

4. Experiments
4.1. Implementation Details

Following previous work, we train the video diffusion
model on WebVid [2], which contains about 10M short
video clips with an average duration of 18 seconds, pre-
dominantly in the resolution of 336 × 596. Each video
is associated with a paired text which generally offers a
coarse description of video. Another nuisance issue of We-
bVid lies in the watermarks placed on all videos, which
leads to the watermark’s presence in all generated videos.
Thus, we expand our training data with other self-collected
500K watermark-free video clips depicting real-world en-
tities such as humans, animals, objects, and landscapes,
paired with coarse-grained textual descriptions. Despite
comprising only a modest proportion, we surprisingly find
that combining this dataset with WebVid for training en-
sures that PixelDance generates watermark-free videos if
the image instructions are free of watermarks.

PixelDance is trained jointly on <text,video>
dataset and <text,image> dataset. For video data, we
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Table 1. Zero-shot T2V performance comparison on MSR-VTT.
All methods generate video with spatial resolution of 256×256.

Method #data #params. CLIPSIM(↑) FVD(↓)

CogVideo (En) [24] 5.4M 15.5B 0.2631 1294
MagicVideo [58] 10M - - 1290
LVDM [17] 2M 1.2B 0.2381 742
Video-LDM [6] 10M 4.2B 0.2929 -
InternVid [49] 28M - 0.2951 -
ModelScope [46] 10M 1.7B 0.2939 550
Make-A-Video [40] 20M 9.7B 0.3049 -
Latent-Shift [1] 10M 1.5B 0.2773 -
VideoFactory [47] - 2.0B 0.3005 -

PixelDance 10M 1.5B 0.3125 381

Table 2. Zero-shot T2V performance comparison on UCF-101.
All methods generate video with spatial resolution of 256×256.

Method #data #params. IS(↑) FID(↓) FVD(↓)

CogVideo (En) [24] 5.4M 15.5B 25.27 179.00 701.59
MagicVideo [58] 10M - - 145.00 699.00
LVDM [17] 2M 1.2B - - 641.80
InternVid [49] 28M - 21.04 60.25 616.51
Video-LDM [6] 10M 4.2B 33.45 - 550.61
ModelScope [46] 10M 1.7B - - 410.00
VideoFactory [47] - 2.0B - - 410.00
Make-A-Video [40] 20M 9.7B 33.00 - 367.23
VidRD [14] 5.3M - 39.37 - 363.19
Dysen-VDM [8] 10M - 35.57 - 325.42

PixelDance 10M 1.5B 42.10 49.36 242.82

randomly sample 16 consecutive frames with 4 fps per
video. Following previous work [22], we adopt LAION-
400M [39] as <text,image> dataset. Image-text data
are utilized every 8 training iterations. The weights of pre-
trained text encoder and VAE model are frozen during train-
ing. We employ DDPM [21] with T = 1000 time steps
for training. A noise corresponding to 100 time steps is in-
troduced to the image instructions cimage. We incorporate
ϵ-prediction [21] as training objective.

4.2. Video Generation

4.2.1 Quantitative Evaluation

We evaluate zero-shot video generation performance of our
PixelDance on MSR-VTT [53] and UCF-101 [41] datasets,
following previous work [6, 17, 24, 58]. MSR-VTT is
a video retrieval dataset with descriptions for each video,
while UCF-101 is an action recognition dataset with 101
action categories. To make a comparison with previous

Figure 4. Human evaluation results. PixelDance outperforms
Gen2 [12] and PiKa [31] in terms of both text faithfulness and
video quality.

Figure 5. Illustration of video generation conditioned on the text
and first frame instructions.

T2V approaches which are conditioned on text prompts
only, we also evaluate only with text instructions. Specif-
ically, we utilize off-the-shelf T2I Stable Diffusion V2.1
[35] to obtain the first frame instructions, and generate
videos given the text and first frame instructions. Following
previous work [8, 47], we randomly select one prompt per
example to generate 2990 videos in total for evaluate, and
report the Fréchet Video Distance (FVD) [43] and CLIP-
similarity (CLIPSIM) [50] on MSR-VTT dataset. For UCF-
101 dataset, we construct descriptive text prompts per cate-
gory and generate about 10K videos, and compare with pre-
vious works in terms of Inception Score (IS) [38], Fréchet
Inception Distance (FID) [19] and FVD, following previous
work [8, 47].

Zero-short evaluation results on MSR-VTT and UCF-
101 are presented in Table 1 and Table 2, respectively. Com-
pared to other T2V approaches on the MSR-VTT, Pixel-
Dance achieves state-of-the-art result in terms of FVD and
CLIPSIM, demonstrating its remarkable ability to generate
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Figure 6. Illustration of complex video generation conditioned on
the text, first frame and last frame instructions.

high-quality videos with better alignment to text prompts.
Notably, PixelDance achieves an FVD score of 381, which
substantially surpasses the previous state-of-the-art Mod-
elScope [46], with an FVD of 550. On UCF-101 bench-
mark, PixelDance outperforms other models across various
metrics, including IS, FID and FVD.

4.2.2 Human Evaluation

Though above automatic evaluation metrics can assess the
performance of models from various perspectives, they
sometimes do not align well with human preference and
fail to reflect the improvements in quality [22, 32, 40]. To
make a more fair comparison, we use human evaluation to
assess the performance of our PixelDance, Gen2 [12] and
PiKa [31]. Specifically, we write 50 different prompts, cov-
ering diverse styles (real-world and cartoon, people and ani-
mal, wide-range landscapes and close-up), then we generate
first frame with Stable Diffusion V2.1 [35] per prompt and
generate one video for each method with <text,first
frame> instructions. Users are asked to sort the randomly
displayed videos per prompt (rating belongs to {3,2,1}, the
higher, the better) w.r.t. two aspects: text faithfulness and
video quality.

The human preference comparison result is demon-
strated in Figure 4, where our PixelDance shows superior
user preference in terms of both of text faithfulness and
video quality, and outperforms Gen2 and PiKa with a clear
margin.

4.2.3 Qualitative Analysis

Effectiveness of Each Instruction In PixelDance, the
text instruction could be concise, considering that the first
frame instruction has delivered the objects/characters and
scenes, which are challenging to be described succinctly
and precisely with text. Nonetheless, the text prompt plays
a vital role of specifying various motions, including but

Figure 7. First two rows: text instruction helps enhance the cross-
frame consistency of key elements like the black hat and red bow
tie of the polar bear. Last row: natural shot transition.

not limited to body movements, facial expressions, object
movements, and visual effects (first two rows of Figure 5).
Besides, it allows for manipulating camera movements with
prompts like ”zoom in/out” and ”rotate”, as shown in the
last row of Figure 5. Moreover, the text instruction helps to
hold the cross-frame consistency of specified key elements,
such as the detailed descriptions of characters (polar bear in
Figure 7).

The first frame instruction significantly improves the
video quality by providing finer visual details. Moreover,
it is key to generate multiple consecutive video clips. With
the text and first frame instructions, PixelDance is able to
generate more motion-rich videos (Figure 5 and Figure 7)
compared to existing models.

The last frame instruction, delineating the concluding
status of a video clip, provides an additional control on
video generation. This instruction is instrumental for syn-
thesizing intricate motions, and becomes particularly cru-
cial for out-of-domain video generation as depicted in the
first two samples in Figure 1 and Figure 6. Furthermore,
we can generate a natural shot transition using last frame
instruction (last sample of Figure 7).

Strength of Last Frame Guidance With the proposed
techniques detailed in Sec. 3, we intentionally avoid en-
couraging the model replicate the last frame instruction ex-
actly. As shown in Figure 8, without our techniques, the
generated video abruptly ends in the given last frame ex-
actly. In contrast, with our proposed methods, the generated
video is more fluent and temporally consistent.
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Figure 8. Illustration of the effectiveness of the proposed tech-
niques (τ = 25) to avoid replicating the last frame instruction.

Generalization to Out-of-Domain Image Instructions
Despite the notable lack of training videos in non-realistic
styles (e.g., science fictions, comics, and cartoons), Pix-
elDance demonstrates a remarkable capability to generate
high-quality videos in these out-of-domain categories. This
generalizability can be attributed to that PixelDance focuses
on learning dynamics, given the image instructions. As Pix-
elDance learns the underlying principles of motions in real
world, it can generalize across various stylistic domains of
image instructions.

4.3. Ablation Study

To evaluate the key components of PixelDance, we conduct
a quantitative ablation study on the UCF-101 dataset fol-
lowing the zero-shot evaluation setting in Sec. 4.2.1.

First, to validate the influence of our self-collected data
which is used for watermark-free video generation, we train
two T2V baselines, ➀ on WebVid and self-collected data,
and ➁ only on Webvid data. These two baselines have sim-
ilar performance, demonstrating that the self-collected data
has negligible influence on improving video generation per-
formance but generating watermark-free videos.

Table 3. Ablation study results on UCF-101. All methods are
trained on WebVid and self-collected data, except ➁ only on We-
bVid.

Method FID(↓) FVD(↓)

➀ T2V baseline 59.35 450.58
➁ T2V baseline (WebVid only) 56.16 454.29

➂ PixelDance 49.36 242.82
➃ PixelDance w/o ctext 51.26 375.79
➄ PixelDance w/o f last 49.45 339.08

Based on the T2V baseline (➀), we further analyze
the effectiveness of different instructions employed in our
model. Considering the indispensable nature of the first
frame instruction for the generation of continuous video

Figure 9. FVD comparison for long video generation (1024
frames) on UCF-101. AR: auto-regressive. Hi: hierarchical. The
construction of long video with PixelDance is in an autoregressive
manner.

clips, our ablation focuses on the text instruction (➂) and
the last frame instruction (➃). The experimental results in-
dicate that omitting either instruction results in a signifi-
cant deterioration in video quality. Notably, even though
the evaluation does not incorporate the last frame instruc-
tion, model trained with this instruction (➁) outperforms the
model trained without it (➃). This observation reveals that
relying solely on the <text, first frame> for video
generation poses substantial challenges due to the signifi-
cant diversity of video content. In contrast, incorporating all
three instructions enhances PixelDance’s capacity to model
motion dynamics and hold temporal consistency.

4.4. Long Video Generation

4.4.1 Quantitative Evaluation

As aforementioned, PixelDance is trained to strictly ad-
here to the first frame instruction, in order to generate long
videos, where the last frame from preceding clip is used as
the first frame instruction for generating the subsequent clip.
To evaluate PixelDance’s capability of long video genera-
tion, we follow the previous work [9, 17] and generate 512
videos with 1024 frames on UCF-101 datasets, under the
zero-shot setting detailed in Sec. 4.2.1. We report the FVD
of every 16 frames extracted side-by-side from the synthe-
sized videos. The results, as shown in Figure 9, show that
PixelDance demonstrates lower FVD scores and smoother
temporal variations, compared with auto-regressive models,
TATS-AR [9] and LVDM-AR [17], and the hierarchical ap-
proach LVDM-Hi. Please refer to the Supplementary for
visual comparisons.

4.4.2 Qualitative Analysis

This qualitative analysis focuses on PixelDance’s capabil-
ities of generating a composite shot. This is formed by
stringing together multiple continuous video clips that are
temporally consistent. Figure 10 illustrates the capability
of PixelDance to handle intricate shot compositions involv-
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Figure 10. Illustration of PixelDance handling intricate shot compositions consisting of two continuous video clips, in which case the last
frame of the Clip #1 serves as the first frame instruction for Clip #2.

Figure 11. Illustration of video generation with sketch image as
last frame instruction (first two examples), and PixelDance for
zero-shot video editing (c).

ing complex camera movements (in Arctic scenes), smooth
animation effects (polar bear appears in a hot air balloon
over the Great Wall), and precise control over the trajectory
of a rocket. These instances exemplify how users interact
with PixelDance to craft desired video sequences. Leverag-
ing PixelDance’s advanced generation capabilities, we have
successfully synthesized a two-minute video that not only
tells a coherent story but also maintains a consistent por-
trayal of the main character.

4.5. More Applications

Sketch Instruction Our proposed approach can be ex-
tended to other types of image instructions, such as se-
mantic maps, image sketches, human poses, and bounding
boxes. To demonstrate this, we take the image sketch as an
example and finetune PixelDance with image sketch [52]
as the last frame instruction. The results are shown in the
first two rows of Figure 11, exhibiting that a simple sketch
image is able to guide the video generation process.

Zero-shot Video Editing PixelDance is able to perform
video editing without any training, achieved by transform-
ing the video editing task into an image editing task. As
shown in the last example in Figure 11, by editing the
first frame and the last frame of the provided video, Pixel-
Dance generates a temporally consistent video aligned with
user expectation on video editing.

5. Conclusion

In this paper, we proposed a novel video generation ap-
proach based on diffusion models, PixelDance, which in-
corporates image instructions for both the first and last
frames in conjunction with text instruction. We devel-
oped training and inference techniques tailored for this ap-
proach. PixelDance trained mainly on WebVid exhibited
exceptional proficiency in synthesizing videos with com-
plex scenes and actions, setting a new standard in video
generation.
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