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Abstract

Zero-shot image captioning (IC) without well-paired
image-text data can be divided into two categories,
training-free and text-only-training. Generally, these two
types of methods realize zero-shot IC by integrating pre-
trained vision-language models like CLIP for image-text
similarity evaluation and a pre-trained language model
(LM) for caption generation. The main difference be-
tween them is whether using a textual corpus to train
the LM. Though achieving attractive performance w.r.t.
some metrics, existing methods often exhibit some com-
mon drawbacks. Training-free methods tend to produce
hallucinations, while text-only-training often lose gener-
alization capability. To move forward, in this paper,
we propose a novel Memory-Augmented zero-shot image
Captioning framework (MeaCap). Specifically, equipped
with a textual memory, we introduce a retrieve-then-filter
module to get key concepts that are highly related to the
image. By deploying our proposed memory-augmented
visual-related fusion score in a keywords-to-sentence LM,
MeaCap can generate concept-centered captions that keep
high consistency with the image with fewer hallucina-
tions and more world-knowledge. The framework of Mea-
Cap achieves the state-of-the-art performance on a se-
ries of zero-shot IC settings. Our code is available at
https://github.com/joeyz0z/MeaCap.

1. Introduction

Image captioning (IC) aims to understand visual con-
tent and generate text descriptions. Using well-annotated
image-text pairs, supervised models [7, 17, 23, 34, 39, 41,
48, 49, 56] have achieved promising results on typical IC
benchmarks [1, 25, 32, 63]. Due to the high costs of an-
notation, the training sets of these benchmarks often in-
volve limited image styles/contents, which is a hard obsta-
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CLIP_ BLIP-Z]
Score Score

MAGIC: A plate topped with cake and spoon. 076 0.89
DeCap: A piece of cake on a white plate with a spoon. 077 087

Text-only-training

ViECap: Cake with white frosting on a white plate on a table. 0.75 0.73
\' | MeaCapr,r: concepts: [slice lemon pie, serving plate]

N N N N N 0.83 0.83
caption: A slice of lemon pie with spoon on serving plate on table.

Training-free

ZeroCap: A large dessert eaten in the 2016 New Hampshire State Hotel. 087 0.75
ConZIC: A butter pie served at the famous Mary Teresa restaurant. 1.00 0.77
MeaCapyp: concepts: [slice lemon pie, serving plate]

caption: A slice of lemon pie with a spoon on a serving plate. 084 0.82

(a) Hallucination phenomenon.

CLIP BLIP-2

Text-only-training Score Score

MAGIC: A red and white locomotive is being docked. 0.32 030
DeCap: A person that is on the ground and is holding his device. 0.51 0.22
ViECap: Before and after shots of a man in a suit and tie. 042 031

MeaCapr,r: concepts: [spiderman]
- - " g 0.68 0.65
caption: A picture of a spiderman comics.
Training-free
ZeroCap: Image of a Web Hero. 0.74 027
ConZIC: A very attractive spiderman typical marvel definition. 082 0.59
MeaCapry: concepts: [spiderman]
caption: A comic book superhero called spiderman.

(b) Image contains world knowledge.

Figure 1. The motivation of our proposed MeaCap where the red
is incorrect and green is correct. (a) Training-free methods asso-
ciate the pie with incorrect location information, which actually
get high marks in CLIPscore. This might be due to the fact that
CLIP is trained on web-scale noisy image-text data. (b) Exist-
ing text-only-training (ToT) methods fail to generate spiderman as
some training-free methods do, but the ToT version of our method
(MeaCaprot) can also do that.

cle for those supervised models to be generalized to images
in the wild. To realize IC without human-annotated image-
text pairs, recently, zero-shot IC has drawn increasing at-
tention. Existing works can be mainly divided into two
groups, training-free methods and text-only-training meth-
ods. Training-free approaches [53, 54, 64] realize zero-shot
image-to-text generation using pre-trained models without
fine-tuning. Specifically, they employ a pre-trained vision-
language model like CLIP to guide a pre-trained language
model (LM), such as BERT [8] or GPT-2 [44], to gener-
ate sentences that match the given image. With iterative
inferences, this line of work does not require any training.
Though having achieved superior generalization ability and
higher CLIPscore [16], these methods show extrinsic hal-
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lucination phenomenon, i.e., they tend to generate a story

containing imaginary information that may not exist in the

given image, as shown in Fig. la.

To alleviate this issue, another line of works trains or
fine-tunes the text decoder based on high-quality text data
without corresponding images, termed as text-only-training
methods [12, 29, 40, 51, 55]. For testing images con-
taining objects described in the training corpus, text-only-
training methods generate captions objectively, achieving
significant improvements w.r.t. reference-based scores such
as BLEU [42], METEOR [4], and CIDEr [57]. However,
due to the limited training corpus, the knowledge contained
in the pre-trained LM is gradually forgotten during train-
ing, resulting in severe performance degradation on out-of-
domain data, as shown in Fig. 1b. Although training on
web-scale high-quality corpus is a potential solution, which
hence produces extremely high computational costs.

To maintain good generalization ability to images in the
wild and to get rid of unreasonable imagination, this pa-
per proposes a novel Memory-Augmented zero-shot im-
age Captioning framework, namely MeaCap, based on the
memory-guided mechanism, which provides an alternative
scheme to use captioning corpus rather than using it to
train the LM. Specifically, from an external textual mem-
ory, we develop a retrieve-then-filter module to find key
concepts that are highly related to the given image. In-
troducing our proposed memory-augmented visual-related
fusion score to a keywords-to-sentence LM, CBART [15],
MeaCap can generate concept-centered captions that keep
high consistency with the images. This new visual-related
score not only considers image-text cross-modal similar-
ity as most zero-shot IC methods [51, 53-55, 64] do by
CLIP but also considers text-text in-modal similarity by
evaluating the similarity between captions and retrieved
image-related memory. Our proposed MeaCap can be ei-
ther training-free named MeaCaprr or text-only-training
named MeaCapr,r by fine-tuning CBART.

Our contributions are summarized as follows:

* We employ the text-only captioning corpus as the ex-
ternal memory to enhance training-free zero-shot IC. To
this end, We introduce a retrieve-then-filter module to ex-
tract key concepts from the memory and perform concept-
centered generations by CBART to alleviate the halluci-
nation issue of previous training-free methods.

* Based on the retrieved textual memory, we develop
a memory-augmented visual-related fusion score into
CBART, improving the correlation between image and
generated captions while reserving the world-knowledge.

* Extensive experiments under zero-shot, in-domain,
and cross-domain scenarios demonstrate our proposed
memory-augmented design can significantly improve the
consistency with image content in both the training-free
and text-only-training settings.

2. Related work
2.1. Supervised image captioning

Supervised IC typically uses well-aligned image-text pairs
and trains an encoder-decoder model. For example, some
early attempts [9, 13, 58, 60] construct CNN-based encoder
to extract visual features and RNN/LSTM-based decoder
to generate output sentence. For better visual understand-
ing, some methods [3, 7, 17, 18, 26, 43, 59] employ an
object detector to extract attentive image regions. To en-
courage more interactions between two modalities, atten-
tion mechanism [7, 17, 39, 41, 48, 49] and graph neural
network [61, 62] have been widely adopted.

2.2. Zero-shot image captioning

Recently, zero-shot IC has gained more and more attention,
which targets at generating image captions under two cases:
i) without any data for training named training-free zero-
shot IC; ii) just using text from the captioning dataset to
train the LM named texz-only-training zero-shot IC.

Training-free methods realizes the zero-shot IC via the
pre-trained vision-language model [45], to guide the gener-
ation of a pre-trained LM. Specifically, ZeroCap [54] and
its extension [53] for video captioning are proposed based
on the gradient-search iteration. To make the zero-shot IC
controllable, ConZIC [64] is proposed by combining Gibbs-
sampling with a non-autoregressive LM, improving the di-
versity and inference speed of IC. Although they achieve
superior generalization ability with higher CLIPscore [16],
they may generate some descriptions that do not appear in
the image, called hallucination as shown in Fig. la.

Text-only-training methods train or fine-tune the text
decoder just using the corpus from the captioning dataset.
Concretely, after fine-tuning the off-the-shelf simCTG [52]
directly on the specific corpus, MAGIC [51] and ZERO-
GEN [55] are proposed by introducing a CLIP-induced
score to regularizes the generated process of simCTG, mak-
ing the caption semantically related to a given image. By
regarding the original sentence or sentence embedding as
the prompt to train a LM, DeCap [29], CapDec [40] and
ViECap [12] are developed by mapping the visual feature
to the text feature, which is then fed into the this LM for
caption generation.

Our proposed MeaCap can perform both training-free
and text-only-training zero-shot IC. For the training-free
setting, because we introduce the memory mechanism for
key concept identification (Sec. 3.1) and guidance for LM
generation (Sec. 3.3), our method can generate more accu-
rate captions with less hallucination. For text-only-training
setting, the use of the corpus as the external memory in our
method can alleviate the problem of existing methods that
forget the world-knowledge learned by pre-trained LM due
to the corpus-specific fine-tuning.
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Subject-Predicate-Object triplets

Memory

3. Four teddy bears are posed on a rock.

4. A group of woman holding teddy bears and resting on a the wall.
5. A group of stuffed bears sit in front of a wall.

1. Collection of stuffed toy bears sit on rock in outdoor scene.

Parse
v S o &)
Yi ' |12. Four teddy bears from font sitting on ledge with patchwork grass. bears bears

siton siton poseon  hold reston sitin frontof

tedd

s‘ ngal’l
Merge Toors @vall
Se ¢ And @ teddybears) on
. T A Sit o
Filter . =7 rock ».ledge
plm pIT5 pTTS . i
A teddy bears sitting rock. ] ]
keywords Ateddy bears stan?ling rock. Key concepts: teddybears rock
to A teddy bears holding rock. —1 1 1t" : A teddy bears sitting rock
sentence A teddy bears with rock. + + | 2t" : A stuffed teddy bears sitting on rock
— |Refine | ., L
LM A teddy bears on rock. ] 3% : A group stuffed teddy bears sitting on a rock
: : : : 4t : A group of stuffed teddy bears sitting on a rock
. . h, itti
Memory-augmented visual-related fusion score 5% A group of stuffed teddy bears sitting on a rock

A teddy bears <M> rock

Figure 2. Overview of our proposed MeaCap. The overall data flow is clockwise. i) Given an image, we first retrieve Top-N relevant
descriptions from the memory, which is transformed to the subject-predicate-object triplets; we merge and filter nodes to get the key
concepts Sec. 3.1. ii) With the memory-augmented visual-related fusion score (Sec. 3.3), starting from key concepts, the keywords-to-
sentence LM can complete the image description by iterative refining (Sec. 3.2). E;, Ey, S; are CLIP visual encoder, CLIP text encoder,

and Sentence-BERT text encoder, respectively. () denotes the cosine similarity. The p™p

TTs

ITs p are fluent score in Eq. (7), image-

caption cross-modal similarity Eq. (8), and memory-caption in-modal similarity Eq. (9), respectively.

2.3. External memory in image captioning

It has been proven that introducing external memory is
useful for various visual and language tasks, like natu-
ral language process [6, 14, 21, 22, 37], visual recog-
nition [33, 35], image synthesis [5, 10], open-domain
question-answering [20, 27], and IC included [29, 46]. For
instance, SmallCap [46] is a supervised IC method that uti-
lizes CLIP to retrieve a few relevant captions and then takes
these captions as the prompt for the LM, demonstrating the
memory can help LM to generate accurate captions with
fewer training parameters. In zero-shot captioning, De-
Cap [29] trains a LM to invert the CLIP text embeddings
to the corresponding sentence. It projects the CLIP visual
embeddings into a weighted sum of the textual memory em-
beddings and takes the final textual embedding as a soft
prompt to the LM to guide caption generation.

Compared with DeCap and SmallCap, which leverage
the whole memory sentence as a prompt to guide genera-
tion, we propose a training-free filter that removes the noisy
information to get the key concepts from retrieved textual
memory. Unlike the memory in DeCap is only designed
for text-only-training methods, our explicit memory design
can be applied to both training-free and text-only-training
scenarios and shows superior capability to generate more
accurate captions.

3. MeaCap

For better zero-shot IC with less hallucination and reserv-
ing more world-knowledge, as shown in Fig. 2, we propose
a novel framework called MeaCap. i) To solve the prob-

lem of existing training-free methods [53, 54, 64] that may
bring hallucination in the captions, MeaCap identifies some
key concepts from the retrieved textual memory which is
highly related to the image, and performs concept-centered
captioning (Sec. 3.1). ii) We develop a memory-augmented
visual-related fusion score (Sec. 3.3), considering both
image-text cross-modal similarity and text-text in-modal
similarity (between textual memory and captions), which is
introduced to the keywords-to-sentence LM, CBART [15]
(Sec. 3.2), improving the image-caption correlations.

3.1. Retrieve-then-filter to get key concepts

The existing text-only-training zero-shot IC methods [12,
29, 40, 51, 55] usually train or fine-tune a LM on the texts
from the captioning dataset, which brings more suitable de-
scriptions with less hallucination. However, such methods
make the generated captions overfit to a specific corpus,
lacking the out-of-distribution generalization. Motivated by
this phenomenon, instead of training or fine-tuning a LM on
the texts, we just build an augmented textual memory to get
the key concepts, which can then guide the zero-shot IC.

Build augmented memory. For this end, we firstly
construct a large textual memory M which contains vari-
ous visual-related sentences with abundant visual concepts.
This memory is significant for removing the hallucination
for the training-free case and can alleviate the knowledge-
forgotten for the text-only-training case.

Retrieve image-related descriptions. Having obtained
the memory, given an image I, we use CLIP for the eval-
uation of image-text similarity to retrieve Top-N image-
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related descriptions from the memory as {m,, }2<,:

{(ma} Y2, = TopNleos(E,(D). By(m))]. (1)
meM

where E;(-) and F,(-) denote the image and text encoder
in the CLIP, respectively; cos(+, -) is the cosine similarity.

Subject-Predicate-Object triplets. To further reduce
the impact of some less-information words in the image-
related descriptions {m,t}flvil, such as article and prepo-
sition, we use an off-the-shelf textual parser, TextGraph-
Parser [31], to transform each description m, to a
text-graph g, including multiple subject-predicate-object
triplets, where subjects and objects are nodes while pred-
icates are the relation. These nodes are regarded as candi-
date concepts which will be filtered and merged to form a
set of the key concepts. The relations will decide the order
between two concepts. We define {v,,}V<, as the set of all
nodes from all N text graphs {g, } .

Merge and filter to obtain the key concepts. As shown
in Fig. 2, some nodes denoting concepts may represent the
same object in the image (e.g., "bear” and “teddy bear”),
while some ones may be irrelevant to the image (e.g.,
”woman’’), which should be merged and filtered before get-
ting the key concepts.

i) Merge. With the help of text encoder from Sentence-
BERT [47], S¢(-), we can obtain the concept embedding set
{fFeyNe as f¢ = S,(vy,). Then we evaluate the similarity
between any two concept embeddings as

dij = cos (f{, f5);4,5 =1,---, N )

Then, we set a hyper-parameter 7 as the threshold, where
d;; > T denotes that i-th concept and j-th concept belong
to the same cluster. After this, totally we have N, con-

N

N, \ Ve

cept clusters as {cn = {vi}i:f} , where N, denotes
n=1

the number of nodes in n-th concept cluster ¢,,.

2) Filter. In this step, we need to decide whether the n-
th concept cluster c¢,, is removed or reserved. For this end,
a reasonable assumption is that the word irrelevant to the
image has a lower appearance in the retrieved descriptions
{mn,}N4  in Eq. (1). Therefore, we calculate the concept-
cluster frequency C'F(c,,) by gradually seeing whether v;
from c,, appearing in my, as

e N (v € my)

CF(e,) = N 3)
1 v; €myg
1) i € ) = .
(v; € my) {0 v & M

where C'F(c,,) indicates the frequency of the n-th cluster
appearing in the retrieved descriptions {mn}flvil. Empiri-
cally, if CF(c,,) > 0.5, we reserve this cluster ¢,, and other-
wise delete it. Finally, we filter out n,, key concept clusters
from original IV, ones, which are highly related to images.

3) Find key concepts. Having obtained n, key concept
clusters {c,, },,>, where each cluster may contain multiple
similar concepts, we need to identify one concept to repre-
sent this cluster. For this target, we use CLIP to select one
concept from one cluster by finding the maximum image-

concept similarity as

cﬁey = max [cos(E;(I), E,(v;))];n=1,--- ,ny, ()

vjECy

where c*¢Y is the selected concept for the cluster c,,.

After these three steps, we have the set of key concepts as
{ckev}™ | that is highly visual-related. Before using these
concepts to generate captions by the following keywords-
to-sentence LM, we need to decide their orders, which is
realized by the relations in subject-predicate-object triplets.

3.2. Keywords-to-sentence LM

To generate a fluent visual-related caption starting from
key concepts {ck®¥}"*  we employ a pre-trained lexi-
cally constrained language model, CBART [15]. Specif-
ically, CBART is developed to generate a sentence S =
(71, ..., x,) given the ordered K keywords {c; }X | by max-

imizing the conditional probability.

S:argmsa}xP(:vl,...,xn|{ci}iT:1), 5)

where z1, ..., ,, are words. To this end, CBART has an ac-
tion encoder and a language decoder for iteratively refining
the sentence starting from keywords. At ¢-th iteration, the
encoder is responsible for predicting which word-level ac-
tion (copy, replacement, and insertion) should be taken. In
other words, the encoder takes an incomplete sentence Sy
having n’ words as input and outputs the corresponding ac-
tion sequence L; = {l; 1, - ,l¢n }, Where [; ; denotes the
action of i-th word at ¢-th iteration.

i) Copy. Copy means current word remains unchanged.

ii) Replacement. Replacement suggests the current word
should be replaced. Specifically, CBART uses a mask to-
ken < M > to replace current word and sample a new word
based on the conditional probability p!™(zys |z <M ),
where z_ <> denotes unmasked tokens.

iii) Insertion. Insertion indicates the decoder should
insert a word before the current word. Similar to the
replacement action, CBART inserts a < M > token be-
fore the current word and then samples a word from
le($<M> |7 <M>)-

Accordingly, the decoder can refine the sentence from S
to S;+1. Therefore, the complete encoder-decoder sentence
refinement by CBART at ¢-th iteration can be formulated as

Lt :LMEncoder(St) (6)
StJrl :LMDeCOder(St7 Lt)
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After a few iterations, CBART will terminate the refinement
when the encoder outputs a full-copy action sequence.
According to the above introduction, existing CBART
does not meet our needs because for replacement and inser-
tion actions, the word only drawn from probability by pre-
trained LM p'™ (2 -\ |z <\ ), which just ensures the
fluency but does not consider the visual-text relations.

3.3. Memory-augmented visual-related fusion score

To make the captions highly-related to the given image
I, we need a visual guidance for the generation of words
in the action of insertion and replacement. Motivated by
the widely-used CLIP contrastive score for evaluating the
visual-text similarity, we develop a memory-augmented
visual-related fusion score to adapt the original word pre-
diction distribution of CBART to tie with the given image,
considering both i) image-text cross-modal similarity and ii)
text-text in-modal similarity.

Specifically, when sampling' a word z; at position 4,
CBART first predicts a conditional probability p!™ and
select top-K,, candidate words {xzk}sz“l with the corre-
sponding fluent score, as:

P i) = pH M (@ilzo) k=1, Ky (D)
Then K, candidate  sentences {sk =
(1, .y Tik, ...,x,,,)}ngl are formed by combining candi-
date word x;;, with the context x_;.

i) image-text cross-modal similarity. This similarity is
denoted as p!”*, which can be computed by taking candi-
date sentences {sk}kK:”l and the image I as input to calculate

the CLIP cross-modality similarity as
T8 (21) = cos(Ei(1), Ey(sy)). (8)

i) text-text in-modal similarity. Notice that the retrieved
memory {m,,}'*, in Eq. (1) is also image related. There-
fore, we introduce a memory-augmented visual-related sim-
ilarity as p” 7 to further improve the image-caption corre-
lation by using Sentence-BERT text encoder S; to evaluate
the similarity between {s; }5*, and {m, N4 as

Ng
1
pTT3 (241,) = N > cos(Se(ma), Se(sk)). (9
n=1

Finally, after a weighted sum of Eq. (7), Eq. (8) and
Eq. (9), we have the memory-augmented visual-related fu-
sion score as

pfusion _ aplm + ﬁpITS + P)’pTTS (10)

As a result, when sampling ¢-th word for replacement or
insertion in CBART for our model, we select the candidate
word with the highest fusion score as

INo matter for replacement or insertion, the essence is the same, i.e.,
sampling a word to replace the mask.

T; :argrrllaxpf“sw”(xik),k: 1,---, Ky (11)
ik

Up to now, our proposed MeaCap can achieve training-
free zero-shot IC with less hallucination, which is named as
MeaCaprr in the experiments.

Moreover, Like most of text-only-training zero-shot IC
models [51, 55] that just use text to fine-tune the lan-
guage model, we can also fine-tune the CBART firstly and
then perform text-only zero-shot IC, which is named as
MeaCapr,7 in the experiments.

4. Experiments

To demonstrate that MeaCap can efficiently achieve im-
pressive performance in different zero-shot settings, we fol-
low the previous works [12, 29] to conduct comprehensive
experiments on Task One: zero-shot IC in Sec. 4.1, and
Task Two: unpaired IC in Sec. 4.2. For each setting, we
report both results of training-free version MeaCaprr and
the text-only-training version MeaCapr,r. In Sec. 4.3, we
further evaluate the validity of our proposed memory-based
zero-shot IC framework with other LM. In Sec. 4.4, we con-
duct detailed ablation studies for MeaCap.

Dataset. We conduct experiments on three widely
used image captioning benchmarks, i.e. MSCOCO [32],
Flickr30K [63], and NoCaps [1]. For MSCOCO and
Flickr30K dataset, we follow previous works [7, 11, 12, 29]
and use Karpathy split [19]. We use the validation set of
NoCaps to evaluate the transferability of IC models trained
on other datasets. Besides, for Task One, we follow pre-
vious works [29] that transfer the model from a web-scale
corpus CC3M [50] to MSCOCO and NoCaps. CC3M con-
tains three million image-description pairs collected from
the web and we only use the text for building the memory
or finetuning the LM.

Implementation Details. There are various pre-trained
modules used in MeaCap. i) CLIP: we use the pre-
trained VIT-B/32 CLIP. ii) Sentence-BERT: we use the
pre-trained model from HuggingFace’. iii) CBART: we
use the pre-trained model on One-Billion-Word corpus®.
iv) TextGraphParser: we use the off-the-shelf textual
scene graph extractor [31]. For the training-free version
MeaCaprr, we concat a prefix “The image above de-
picts that” at the start position of the sentence. For the
text-only-training version MeaCapr,T, we further fine-tune
the CBART on the corresponding training corpus with
AdamW [24] optimizer. For Task One, we use CC3M to
serve as the memory, while for Task Two, we use the train-
ing corpus of the source dataset as the memory. More ex-
periments with other textual memory are presented in Ap-
pendix C. We set the concept similarity threshold 7 = 0.55

Zhttps://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
3https://www.statmt.org/Im-benchmark/
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Methods Text Corpus MSCOCO NoCap val (CIDEr)
Training Memory | B@4 M C S CLIP-S BLIP2-S | In Near Out Overall

ZeroCap [54] X X 26 115 146 55 0.87 0.70 133 149 197 16.6
Tewel et al. [53] X X 22 127 172 73 0.74 0.68 137 158 183 16.9
ConZIC [64] X X 1.3 112 133 5.0 1.00 0.76 154 160 203 17.5
CLIPRe [29] X CC3M 46 133 256 92 0.84 0.70 233 268 365 282
DeCap [29] CC3M CC3M 8.8 160 421 109 0.76 - 348 377 499 397
MeaCaprr X CC3M 7.1 166 425 11.8 0.84 0.81 353 39.0 451 40.2
MeaCapr,t CC3M CC3M 90 178 483 127 0.79 0.75 385 436 50.0 45.1

Table 1. Zero-shot captioning results on MSCOCO Karpathy-test split and NoCaps validations set. In, Near, and Out denote in-domain,
near domain, and out-of-domain. MeaCaprr is the training-free version and MeaCapor is text-only training version.

Methods MSCOCO Flickr30K

B@e4 M C S |B@4 M C S

Training on image-text pairs
Bottom-Up [3] 362 27.0 1135 203 | 273 21.7 56.6 16.0
OSCAR [30] 36.5 303 1237 23.1 - - - -
VinVL [65] 409 309 1406 25.1
ClipCap [38] 33,5 275 1131 21.1
SmallCap [46] 37.0 279 119.7 21.3 - - -
[-Tuning [36] 348 283 1167 21.8 | 252 228 615 169
‘ Text-only-training, zero-shot inference
ZeroCapt [54] 70 154 493 92 | 54 118 168 6.2
MAGIC [51] 129 174 493 113 | 64 13.1 204 7.1
ZEROGEN [55] | 155 187 554 12.1 | 13.1 152 264 83
CLIPRe [29] 124 204 534 148 | 9.8 18.2 31.7 120
MeaCaprr 91 206 569 155| 72 178 36,5 13.1
MeaCapror 177 243 848 18.7 | 153 206 50.2 145
Table 2. In-domain captioning results on MSCOCO Karpathy-

test split and Flickr30K Karpathy-test split. T means text-only re-
implemented version from [51].

for CC3M memory and 7 0.6 for other memories.
Ny, Ky, o, 3,7 are set as 5,200,0.1,0.4,0.2 among all
experiments. All experiments are conducted on a single
RTX3090 GPU. We preprocess the textual corpus into text
embeddings by CLIP text encoder and store text embed-
dings as our memory for fast retrieval. For example, re-
trieval on CC3M costs an average of 0.05s on RTX3090
GPU or an average of 1s on CPU. More analysis of compu-
tation costs is shown in Appendix E.

Metrics. To evaluate the accuracy of the generated
caption, we use the traditional supervised metrics BLEU
(B@n) [42], METEOR (M) [4], CIDEr (C) [57], and SPICE
(S) [2] which compute the similarity between candidate sen-
tences and human references. As for training-free methods,
we use the CLIPScore (CLIP-S) [16] to measure the image-
text similarity. Additionally, considering that CLIP-S is in-
sensitive to the hallucination of those CLIP-based methods
as shown in Fig. 1b, we employ another pre-trained large
model BLIP-2 [28] to evaluate image-text similarity, i.e.
BLIP2Score (BLIP2-S). More details are in Appendix D.

Methods MSCOCO — ickr30 Flickr30k—MSCOCO

croes B@4 M B@4 M C S
MAGIC [51] | 6.2 122 175 59 2 125 183 5.7
CLIPRe [29] | 9.8 16.7 30.1 10.3 6 0 160 265 102
MeaCaprr 7.1 16.6 344 1 4 74 162 464 11.2
MeaCapror | 134 185 40.3 98 174 517 120

Table 3. Cross domain captioning results on MSCOCO and

Flickr30K Karpathy-test split.
4.1. Zero-shot image captioning

In this section, we conduct zero-shot IC experiments to
evaluate the ability of models to transfer from a general
web-collected corpus to different downstream IC datasets.
Baselines. In this study, we compare two types of
baselines. i) Training-free methods: ZeroCap [54], Tewel
et al. [53] and ConZIC [64]. Those methods leverage pre-
trained CLIP and freezed LM (BERT or GPT-2) to achieve
zero-shot IC. ii) Text-only-training methods*: DeCap [29],
which is also a memory-based method discussed in Sec. 2.3.
Instead of using pre-trained LM, DeCap trains a language
decoder from scratch. Besides, authors of Decap set up
a baseline called CLIPRe, which generate image descrip-
tions by retrieving the most relevant texts from memory
directly. Following Decap, for MeaCaprr, we just use
CC3M as the memory, and for MeaCapt,T, we use CC3M
as the memory and also tuning the CBART. Tab. 1 shows the
results on MSCOCO and NoCaps, and MeaCap achieves
new state-of-the-art results. Training-free Results. Con-
cretely, our training-free version MeaCaprr has shown su-
perior performance on reference-based metric (B@4, M,
C, S) than all previous training-free baselines, ZeroCap,
Tewel et al. and ConZIC on both MSCOCO and NoCaps
datasets by a large margin, demonstrating the effectiveness
of our memory-augmented design. For reference-free met-
rics (CLIP-S and BLIP2-S), MeaCaprr achieves better re-
sults on BLIP2-S and is inferior on CLIP-S. As discussed
in the introduction, previous training-free methods are fa-
vored by CLIP-S because of the hallucination phenomenon.
Besides, Our MeaCaprr also surpasses the retrieval-based

4Other text-only-training methods except DeCap do not have experi-
mented in this setting, we compared them in Task Two (Sec. 4.2)
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= oz S AR
T:A group of skiers are gathered together as
they get ready to ski.
ConZIC: A California commercial filming
undergraduate college students in google
photo.
ZeroCap: A video crew showing the scene of a
recent study.
MAGIC: Group of people skiing down a snowy
hill.
DeCap: A group of people on skis are standing
in the snow

[people, sKi poles]

MeaCaprg: Group of people with ski poles
and snow boards outdoors.

MeaCapr,t: A group of people standing
around with skKi poles on.

GT:There are many men preparing to cuta
red ribbon.

ConZIC: A urban roadway opening with a
bicycle wheel beside the marin county park
attorney office.

ZeroCap: A recent opening in San Gabriel
bikeway.

MAGIC:A picture of a stop sign with a man
standing behind it.

DeCap:A man in a suit and tie is giving a
bike line to a business sign .

[ribbon]

MeaCaprg: Someone cutting the ribbon.
MeaCapr,r: A ribbon cutting ceremony on
astreet.

GT: A giant airplane sitting on the tarmac of
an airport.

ConZIC: A japanese jet airliner and truck
running brown and blue at kyoto midway
terminal.

ZeroCap: A Boeing 707 in Japan.

MAGIC:A blue airplane sitting on top of a
runway.

DeCap: A passenger jet parked on the tarmac
atan airport.

[airport, tarmac]

MeaCapyg: An airliner parked behind a jet at
airport tarmac.

MeaCapr,r: A large jet airliner sitting on an
airport tarmac.

GT: A dragon flying through cloud on a
sketch artwork.

ConZIC: A flying dragon genre design
completed with charcoal on paper.

ZeroCap: A dragon in the form of the dragon.

MAGIC: A bird riding on a large body of
water.

DeCap: A person on a big kite flying through
the air.

[dragon]

MeaCaprg: A dragon sketch of the artwork.
MeaCapr,r: An illustration of a mythical
dragon in flight.

GT: A bedroom has many posters on the wall,
ConZIC: A bedroom page surrounded by
nine pink music student posters.

ZeroCap: A bedroom with posters on the
walls.

MAGIC: A picture of a bedroom with a lot of
pictures on the wall.

DeCap: A bedroom with a bed and many
pictures on the wall .

[bedroom, posters, wall]

MeaCapyg: A bedroom with various
posters and paintings on the wall.
MeaCapr,r: A bedroom with many posters
on the wall and a bed.

Figure 3. Examples of zero-shot IC compared with other zero-shot baselines. GT denotes the Ground Truth. ConZIC and ZeroCap are
training-free, while MAGIC and DeCap are text-only-training. MeaCap displays the extracted concepts in green and generated caption.

ConZIC: A lakers player peeking
through his sleeves prior to

ConZIC: Triangular tower picture
atvirtual domain about france

ConZIC: A dark knight
representing a gray landscape

retiring. website. background shaded.

ZeroCap: A great NBA star dead. ZeroCap: A French landmark is ZeroCap: A Dark Knight in the
MAGIC:A man in a wetsuit with a the name of the song. film.

wetsuit with a big. MAGIC: A view of a big tower with  MAGIC: A black and white photo
DeCap: A man that is in the middle aclock on it. of a black and white zebra.

of a game with a tennis racket . DeCap: A tower that is in the

center of a tall tower . the dark.
[basketball, shooting guard]
MeaCapry: The basketball star
shooting guard Kobe.
MeaCapr,r: The basketball star
of shooting guard.

[tower]

MeaCaprg: The famous Eiffel
tower in Paris.

MeaCapr,r: The famous tower
of tourist attraction.

[character, batman]
known as the batman.
MeaCapr,t: A character of
batman in the picture.
Figure 4. Examples of real-world knowledge. MeaCaproT can
alleviate the world-knowledge-forgotten problem of existing text-
only-training methods, such as “batman” in the third image.

baseline CLIPRe by a large margin, indicating that only
retrieving the most relevant caption is deficient in accu-
racy. Moreover, even compared with the text-only-training
method Decap, MeaCaprr shows superior or comparable
performance on both MSCOCO and NoCap.
Text-only-training Results. To explore the potential
of our MeaCap with further text-only-training on the web-
scale corpus following DeCap, we also fine-tune CBART
on CC3M corpus, i.e. MeaCapr,. It can be observed that
MeaCapr,r significantly improves the performance, espe-
cially on NoCap. Specifically, under the same training and
memory condition, MeaCapr,1 surpasses DeCap in both
the MSCOCO dataset and the NoCaps dataset, showing the
superiority of our method to use the external memory.
Qualitative results. Besides quantitative compare, we
visualize the generated captions in Fig. 1, 3, and 4. Clearly,

DeCap: A man that is standing in

MeaCapry: A fictional character

MeaCap can achieve better captions with more knowledge
and less hallucination. More results are in Appendix F.

4.2. Task Two: Unpaired image captioning
4.2.1 In-domain captioning

To explore more potential of MeaCap for in-domain setting,
where the training data, the memory, and the test set are
from the same dataset, but do not use image-text pairs to
build the model and memory.

Baselines. In this study, we compare with other text-
only-training methods ZeroCapt [54], MAGIC [51], and
ZEROGEN [55] and a retrieval-based approach CLIPRe.
ZeroCap is a training-free method which is extended to text-
only-training version ZeroCapt [54]. Those methods freeze
the CLIP and fine-tune the LM on corresponding training
texts. Under the in-domain setting, we also report both
the training-free version MeaCaprr, which only employs
the training text as memory, and the text-only-training ver-
sion MeaCapr,1 which utilizes the training text to fine-tune
CBART and serve as memory as well.

Results. As shown in Tab. 2, MeaCaprr outperforms
CLIPRe and other text-only-training baselines on C and S
scores. Compared with B@4 and M scores, The C and S
scores pay more attention to the accuracy of entities and re-
lationships. The superior performance on these two scores
demonstrates the high quality of our proposed memory-
based retrieval-then-filter method to get the key concepts.
Moreover, MeaCapr,T outperforms all baselines by a large
margin, indicating that our proposed method has greater po-
tential with further in-domain training.

4.2.2 Cross-domain captioning

We evaluate the MeaCap for cross-domain IC with train-
ing and testing data from different datasets. We use the
text from the training set as the memory for MeaCaprr and
MeaCaprot, and fine-tune the CBART for MeaCapr,t.
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Methods MSCOCO Flickr30K
) B@4 M C S Be@e4 M C S
DeCap [29] 247 250 912 187 | 212 218 56.7 152

CapDec [40] 264 251 918 - 17.7  20.0 39.1 -
VIiECap [12] 272 248 929 182 | 214 20.1 479 136
MeaCapr,yrv | 272 253 954 19.0 | 223 223 594 15.6

‘ MSCOCO — Flickr30K ‘ Flickr30K—MSCOCO
DeCap [29] 16.3 179 357 11.1 | 121 18.0 444 109
CapDec [40] 173 18.6 35.7 - 92 163 273 -

VIiECap [12] 174 180 384 112 | 12.6 193 542 125
MeaCapr,,rv | 185 195 439 128 | 131 19.7 564 13.2

Table 4. In-domain and cross-domain captioning results with
CLIP-invert language decoder.

Results. We compare MeaCap with the text-only-
training baseline MAGIC (fine-tunes GPT-2), and a
retrieval-based baseline CLIPRe.  Results in Tab. 3
show MAGIC suffers a performance degradation on tar-
get data, even worse than the retrieval-based method
CLIPRe. Equipped with proposed memory-augmented de-
sign, MeaCaprr surpasses the CLIPRe on most metrics and
MeaCapr,r outperforms all baselines, demonstrating the
effectiveness of the proposed memory-augmented design.

4.3. Flexibility of MeaCap with other LM

Our proposed memory mechanism for finding key concepts
in Sec. 3.1 is a plug-and-play module to further improve
most of the existing text-only-training SOTA methods [12,
29, 40]. For this end, we just replace the CBART (Sec. 3.2)
in MeaCap with another LM used in these methods (do not
need fusion score in Sec. 3.3) described as follows.

Baselines. DeCap [29], CapDec [40] and ViECap [12]
train a LM from scratch to invert the CLIP text encoder,
denoted as InvLM in the following. They project the visual
embeddings extracted by the CLIP visual encoder to the text
embedding space of the CLIP text encoder. Then, they use
InvLM to reconstruct the text from text embeddings. To
generate descriptions based on our extracted key concepts,
we first use a prompt template as “There are [c1, Ca, ..., Cp ]
in the image” to inject the concepts into a concept-aware
sentence following ViECap, where c,, are the n-th concepts.
After encoding the concept-aware sentence to text embed-
dings by CLIP text encoder, we get a concept-aware prompt.
We concat the concept-aware prompt with textual embed-
dings as the input of InvLM, named as MeaCapr,,1.m-

Results. Tab. 4 shows that MeaCapryy1,m outperforms
all baselines on all metrics under in-domain and cross-
domain scenarios, demonstrating the effectiveness of our
proposed memory-based key concepts, and also indicating
its flexibility for various LM and different zero-shot set-
tings, with detailed analysis in the Appendix A.

4.4. Ablation studies

To explore the impact of each key module in MeaCap,
i.e. the retrieve-then-filter module (ReF), the image-text

MSCOCO

Methods ReF ITs TTs B@4 M c S

4 X X 50 133 311 56

MeaCapre X v X 1.8 9.7 1277 48
4 4 X 57 13.6 386 85

v v 4 7.1 166 425 118

4 X X 79 149 371 104

MeaCaprror X v X 32 99 173 52
© v v X 81 156 447 11.1

4 v 4 9.0 178 483 127

Table 5. Ablation studies on zero-shot IC. ReF, ITs, TTs denote the
retrieve-and-filter module, ITs (8) and TTs (1) are image-text and
text-text similarity from memory-augmented visual-related score.

similarity score (ITs), and the text-text similarity score
(TTs), we conduct comprehensive ablation studies on the
MSCOCO dataset based on the Task One of zero-shot set-
ting. We evaluate both the training-free version MeaCaprg
and the text-only training version MeaCapt,t whose re-
sults are provided in Tab. 5. As we can see, only combined
with the ReF and original LM (the first row) can surpass the
only ITs results in the second row (ITs is the only visual
guidance of previous training-free methods by CLIP), in-
dicating the key concepts extracted by the ReF module are
critical for zero-shot IC. The third row shows that combin-
ing ReF with ITs yields more improvements than individ-
ual modules alone. Finally, by incorporating the TTs, the
performance is further improved, highlighting the efficacy
of the memory-augmented visual-related fusion score. We
conduct analysis of the effect of memory in Appendix B.

5. Conclusion

In this paper, we propose a novel memory-augmented zero-
shot IC framework, MeaCap. We introduce a retrieve-then-
filter module to extract key concepts from external textual
memory. Based on the retrieved textual memory, we further
develop a memory-augmented visual-related fusion score to
guide the generation of captions. Combined with CBART,
we can generate concept-centered descriptions to alleviate
the hallucination of previous training-free methods and en-
hance the accuracy of text-only-training methods. Exten-
sive experiments on various zero-shot captioning settings
show that MeaCap outperforms previous methods.
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