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Figure 1. A gallery of generated texture results by Paint3D. Our method is capable of generating lighting-less, high-quality, and high-
fidelity textures across diverse objects from numerous categories.

Abstract

This paper presents Paint3D, a novel coarse-to-fine
generative framework that is capable of producing high-
resolution, lighting-less, and diverse 2K UV texture maps
for untextured 3D meshes conditioned on text or image
inputs. The key challenge addressed is generating high-
quality textures without embedded illumination informa-
tion, which allows the textures to be re-lighted or re-edited
within modern graphics pipelines. To achieve this, our
method first leverages a pre-trained depth-aware 2D diffu-
sion model to generate view-conditional images and per-
form multi-view texture fusion, producing an initial coarse
texture map. However, as 2D models cannot fully repre-
sent 3D shapes and disable lighting effects, the coarse tex-
ture map exhibits incomplete areas and illumination arti-
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facts. To resolve this, we train separate UV Inpainting and
UVHD diffusion models specialized for the shape-aware re-
finement of incomplete areas and the removal of illumina-
tion artifacts. Through this coarse-to-fine process, Paint3D
can produce high-quality 2K UV textures that maintain se-
mantic consistency while being lighting-less, significantly
advancing the state-of-the-art in texturing 3D objects.

1. Introduction
The rise of deep generative models has ushered the era
of Artificial Intelligence Generated Content, catalyzing ad-
vancements in natural language generation [46, 58, 70],
image synthesis [42, 48, 50, 51], and 3D generation [31,
43, 61]. These 3D generative technologies have signif-
icantly impacted various applications, revolutionizing the
landscape of current 3D productions. However, the gener-
ated meshes, characterized by chaotic lighting textures and
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complex wiring, are often incompatible with traditional ren-
dering pipelines, such as physically based rendering (PBR).
The lighting-less texture diffusion model, capable of gen-
erating diverse appearances of 3D assets, should augment
these pre-existing 3D productions for the gaming industry,
film industry, virtual reality, and so on.

Recent advancements in texture synthesis have shown
significant progress, particularly in the utilization of 2D
diffusion models such as TEXTure [49] and Text2Tex [4].
These models effectively employ pre-trained depth-to-
image diffusion models to generate high-quality textures
through text conditions. However, these methods have is-
sues with pre-illuminated textures. This can damage the
quality of final renderings in 3D environments and cause
lighting errors when changing lighting within common
graphics workflows, as shown in the bottom of Fig. 2. Con-
versely, texture generation methods trained from 3D data
offer an alternative approach such as PointUV [68] and
Mesh2tex [2], which typically generate textures by com-
prehending the entire geometries for specific 3D objects.
However, they are often hindered by a lack of generaliza-
tion, struggling to apply their models to a broad range of 3D
objects beyond their training datasets, as well as generate
various textures through different textual or visual prompts.

Two challenges are crucial for texture generation. The
first is achieving broad generalization across various objects
using diverse prompts or image guidance, and the second is
eliminating the coupled illumination on the generated re-
sults obtained from pre-training. Recent advancement of
conditioned image synthesis works [50, 69] using billion-
level images, capable of “rendering” diverse image results
from 3D views, can help overcome the size limitation of
3D data in texture generation. However, the pre-illuminated
textures can interfere with the final visual outcomes of these
textured objects within rendering engines. Furthermore,
since the pre-trained image diffusion models only provide
2D results in the view domain, they struggle to maintain
view consistency for 3D objects due to the lack of compre-
hensive understanding of their shapes. Therefore, our focus
is on developing a two-stage texture diffusion model for 3D
objects. This model should be able to generalize to various
pre-trained image generative models and learn lighting-less
texture generation while preserving view consistency.

In this work, we propose a coarse-to-fine texture gener-
ation framework, namely Paint3D, that leverages the strong
image generation and prompt guidance abilities of pre-
trained image generative models for texturing 3D objects.
To enable the generalization of rich and high-quality texture
results from diverse prompts, we first progressively sam-
ple multi-view images from a pre-trained view depth-aware
2D image diffusion model and then back-project these im-
ages onto the surface of the 3D mesh to generate an ini-
tial texture map. In the second stage, Paint3D focuses on
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(a) textured meshes with ambient lighting (b) textured meshes with three lighting conditions

Figure 2. Illustration of the pre-illumination problem. The texture
map with free illumination is compatible with traditional rendering
pipelines, while there are inappropriate shadows when relighting
is applied on the pre-illumination texture.

generating lighting-less textures. To achieve this, we con-
tribute separate UV Inpainting and UVHD diffusion models
specialized in the shape-aware refinement of incomplete re-
gions and removal of lighting influences. We train these
diffusion models on UV texture space, using feasible 3D
objects and their high-quality illumination-free textures as
supervision. Through this coarse-to-fine process, Paint3D
can generate semantically consistent high-quality 2K tex-
tures devoid of intrinsic illumination effects. Extensive ex-
periments demonstrate that Paint3D achieves state-of-the-
art performance in texturing 3D objects with different texts
or images as conditional inputs and offers compelling ad-
vantages for graphics editing and synthesis tasks.

We summarize our contributions as follows: 1) We pro-
pose a novel coarse-to-fine generative framework that is ca-
pable of producing high-resolution, lighting-less, and di-
verse 2K UV texture maps for untextured 3D meshes; 2)
We separately design a shape-aware UV Inpainting diffu-
sion model and a shape-aware UVHD diffusion model as
the refinement of incomplete regions and removal of light-
ing influences; 3) Our proposed Paint3D supports both tex-
tual and visual prompts as conditional inputs and achieves
state-of-the-art performance on texturing 3D objects.

2. Related Work
Traditional methods [18, 24, 25, 60, 62, 63, 71] of synthe-
sizing texture to 3D assets concentrated on placing sim-
ple exemplar patterns on a surface or levering global op-
timization for painting the 3D shape. However, the recent
learning-based approaches [7, 20, 28, 40, 44, 47, 56, 64, 72]
have succeeded in generating plausible textures for more
complex 3D shapes. The following discusses the related
learning-based methods.

Iteratively Texturing via 2D Diffusion Models. The
rapidly expanding large-scale 2D text-to-image (T2I) diffu-
sion models [48, 50, 51] have yielded remarkable outcomes,
and subsequently, [27, 31, 32, 52, 57] harness the capabil-
ities of T2I models to facilitate texture synthesis on 3D as-
sets. TEXTure [49] devises an iterative texturing scheme
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Figure 3. The overview of our coarse-to-fine framework. The coarse stage (Sec. 3.1) samples multi-view images from the pre-trained
2D image diffusion models, then back-projects these images onto the mesh surface to create initial texture maps. The refinement stage
(Sec. 3.2) generates high-quality textures with a diffusion model in UV space, conditioned on the position map and the coarse texture map.

and succeeds in synthesizing high-quality textures. It lever-
ages a pretrained depth-to-image diffusion model and grad-
ually paints the texture map of a 3D model from multi-
ple viewpoints. Although TEXTure [49] samples a par-
tial texture map under each viewpoint conditioned on pre-
vious results, the generative process still lacks global infor-
mation modeling, leading to the view-inconsistency results.
Later, TexFusion [3] proposes to aggregate texture informa-
tion from different viewpoints during the denoising process
and synthesize the entire texture map, which improves the
view consistency. Besides, Text2Tex [4] developed an auto-
matic method to select viewpoints for saving human efforts.
These methods improve the global texture modeling but still
suffer from the inherited lighting bias from 2D Priors, lead-
ing to inconsistent results. In contrast, our framework in-
volves a texture refinement model trained with illumination-
free data, significantly alleviating the illumination artifacts.

Optimization-based 3D Generation via 2D diffusion
model. Before the emergence of large-scale text-to-image
models, early optimization-based texturing approaches [17,
26, 34, 36, 37] endeavored to utilize the large-scale vision-
language model, CLIP [45], for optimizing texture map of
3D models. Subsequently, the introduction of Score Dis-
tillation Sampling (SDS) in DreamFusion [43] has paved
the way for numerous text-to-3D approaches [6, 8, 30, 35,
54, 55, 59, 61]. Latent-nerf [35] and Fantasia3D [6] extend
SDS for optimizing the texture map with texture-less 3D
shapes as input. Those methods consider inputting an ini-
tial shape and simultaneously optimize the texture map and
geometry. They could produce multi-view consistent tex-
ture but cannot guarantee geometry fidelity. Moreover, they
struggle with the Janus problem due to the semantically am-
biguous. Different from these methods, our model learns on

the whole texture map, preserving the 3D geometry.
Generative Texturing from 3D Data. Various learning-

based approaches usually train generative texturing models
based on the 3D data [11, 12, 19, 29, 33, 38] from scratch.
Early methods [5, 14, 15, 39] learn implicit texture fields to
assign a color to each pixel on the surface of the 3D shape.
However, since the texture on the surface of 3D shapes is
continuous, discrete supervision is unlikely to train a model
for synthesizing high-quality textures. Texturify [53] de-
fines texture maps on the surface of polygon meshes and de-
vises a convolution operator for mesh structures by incorpo-
rating SytleGAN [21–23] architecture for predicting texture
on each face. Such methods are limited by the mesh resolu-
tion and the lack of global information modeling, although
the recent Mesh2tex [2] further integrates an implicit tex-
ture field branch for improvements. Moreover, some meth-
ods (AUV-net [9], LTG [67], TUVF [10], PointUV [68])
learn to synthesize UV-Maps for 3D shapes, avoiding the
above mentioned limitations. Unfortunately, these methods
usually struggle when handling more general objects due to
the variations between 3D objects in different categories.

3. Method

To synthesize high-quality and diverse texture maps for 3D
models based on desired conditional inputs like prompts or
images, we propose a coarse-to-fine framework, Paint3D,
which progressively generates and refines texture maps, as
shown in Fig. 3. In the coarse stage (see Sec. 3.1), we sam-
ple multi-view images from the pre-trained 2D image diffu-
sion models, then back-project these images onto the mesh
surface to create initial texture maps. In the refinement
stage (see Sec. 3.2), we enhance coarse texture maps by
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performing a diffusion process in the UV space, achieving
lighting-less, inpainting, high-definition functions to ensure
the final texture’s completeness and visual appeal.

Given an uncolored 3D model M and an appearance
condition c, such as text prompts [4, 49] or an appearance
reference image [2], our Paint3D aims to generate the tex-
ture map T for the 3D model. Here, we represent the 3D
model’s geometry using a surfaced mesh, denoted as M =
(V, F ), with vertices V = {vi}, vi ∈ R3 and triangular
faces F = {fi}, where each fi is a triplet of vertices. The
texture map is represented by a multi-channel image in UV
space, denoted as T ∈ RH×W×C . The proposed Paint3D
framework P consists of two stages: the coarse texture gen-
eration stage C : (M, c) 7→ T̂ and the texture refinement
stage F : T̂ 7→ T , that is T = P(M, c) = F(C(M, c)).
Furthermore, we define a conditional diffusion model as
D(·; τθ), where τθ is a domain-specific encoder and can be
substituted for varying conditions.

3.1. Progressive Coarse Texture Generation

In this state, we generate a coarse UV texture map for untex-
tured 3D meshes based on a pre-trained view depth-aware
2D diffusion model. Specifically, we first render the depth
map from different camera views, then sample images from
the image diffusion model with depth conditions, and finally
back-project these images onto the mesh surface. To im-
prove the consistency of textured meshes in each view, we
alternately perform the three processes of rendering, sam-
pling, and back-projection, progressively generating the en-
tire texture map [4, 49].

Initial Viewpoint. With the set of camera views {pi}ni=1

focusing on the 3D mesh, we start to generate the texture of
the visible region. We first render the 3D mesh to a depth
map d1 from the first view p1, where this rendering process
is denoted as R : (M,p1) 7→ d1. We then sample a tex-
ture image I1 given an appearance condition c and a depth
condition d1, denoted as

I1 = D(z, c, d1; τc, τd), (1)

where z ∈ Rh×w×e is a random initialized latent, τc is
condition encoder, and τd is depth encoder. Subsequently,
we back-project this image onto the 3D mesh from the first
view, generating the initial texture map T̂1, where this back-
projecting process is denoted as R−1 : (M, I1, p1) 7→ T̂1.

Next Non-initial Viewpoint. For these viewpoints pk,
we execute a similar process as mentioned above but the
texture sampling process is performed in an image in-
painting manner. Specifically, taking into account the tex-
tured region from all previous viewpoints T̂{1,k−1}, the
rendering process outputs not only a depth image dk but
also a partially colored RGB image Îk and an uncol-
ored area mask mk in the current view, denoted as R :
(M,pk, T̂{1,k−1}) 7→ (dk, Îk,mk). We use a depth-aware

image inpainting model, with a new inpainting encoder τi,
to fill the uncolored area within the rendered RGB image,
denoted as

Ik = D(Îk,mk, c, dk; τi, τc, τd). (2)

The inpainted image is back-projected onto the 3D mesh
under the current view, generating the current texture map
T̂k from the view pk, denoted as R−1 : (M, Ik, pk) 7→ T̂k.
The textured region from previous viewpoints T̂{1,k−1} is
kept and the uncolored area is updated by the current texture
map T̂k, formatted as

T̂{1,k} = mUV
k−1 ⊙ T̂{1,k−1} + (1−mUV

k−1)⊙ T̂k, (3)

where mUV
k−1 is the colored area mask in the UV plane and

can be calculated from the texture map T̂{1,k−1}. Therefore,
the texture map is progressively generated view-by-view
and arrives at the entire coarse texture map T̂ = T̂{1,n}.

3.2. Texture Refinement in UV Space

Although the appearance of the coarse texture map is co-
herent, it still has some issues like lighting shadows in-
volved by the 2D image diffusion model, or the texture
holes caused by self-occlusion during the rendering process.
We propose to perform a diffusion process in the UV space
based on the coarse texture map, aiming to mitigate these
issues and further enhance the visual aesthetics of the tex-
ture map during texture refinement. However, refining tex-
ture maps in the UV space with mainstream image diffusion
models [50, 69] presents the challenge of texture disconti-
nuity [68]. The texture map is derived through UV mapping
of the 3D surface texture, which cuts the continuous texture
on the 3D mesh into a series of individual texture fragments
in the UV plane. This fragmentation complicates the learn-
ing of the 3D adjacency relationships among the fragments
in the UV plane, leading to texture discontinuity issues.

Position Encoder. To refine the texture map in UV
space, we perform the diffusion process guided by adja-
cency information of texture fragments. Here, the 3D adja-
cency information of texture fragments is represented as the
position map in UV space O ∈ RH×W×3, where each non-
background element is a 3D point coordinate. Similar to the
texture map, the position map can be obtained through UV
mapping of the 3D point coordinates. To fuse the 3D adja-
cency information during the diffusion process, we add an
individual position map encoder τp to the pre-trained image
diffusion model. Following the design principle of Control-
Net [69], the new encoder has the same architecture as the
encoder in the image diffusion model and is connected to it
through a zero-convolution layer.

UV Inpainting. We can simultaneously use the position
encoder and other conditional encoders to perform various
refinement tasks in UV space. Here we introduce two spe-
cific refinement capabilities, namely UV inpainting and UV
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High Definition (UVHD). The UV inpainting is used to fill
texture holes within the UV plane, which can avoid self-
occlusion problems during rendering. To achieve UV in-
painting, we add the position map encoder τp on an image
inpainting diffusion model as

Tinpainting = D(T̂ ,mUV , c, O; τi, τc, τp), (4)

which takes as input a coarse texture map T̂ , texture map
mask mUV , condition c, and position map O, and produces
as output an inpainted texture map Tinpainting .

UV High Definition (UVHD) is designed to enhance the
visual aesthetics of the texture map. We use the position en-
coder τp and an image enhance encoder τt with a diffusion
model D(·; τc) to achieve UVHD, denoted as

Ttiling = D(T̂ , c, O; τt, τc, τp). (5)

In our refinement stage, we perform UV inpainting followed
by UVHD to get the final refined texture map T . By inte-
grating the UV inpainting and UVHD, Paint3D is capable
of producing lighting-less (Fig. 7), complete (Fig. 8), high-
resolution, and diverse UV texture maps (Fig. 9).

Training. The module of UV inpainting and UVHD
share a position encoder τp, and we only train this encoder
with the collected texture data. For inpainting encoder τi
and enhance encoder τt, we reuse corresponding encoders
provided in ControlNet [69]. Though those encoders are
trained in image space, they work well in UV space because
they focus on processing local textures in refinement. First,
most of the textures are generated in the coarse stage. Sec-
ond, the position map can provide information on meaning-
less areas in the texture map, making the encoders focus on
meaningful areas around the coarse texture.

Our texture diffusion model is trained using a dataset
consisting of paired position maps and texture maps
{Oi, Ti}ni=1. The position encoder is added to a pre-trained
text2image model, following the design principle of Con-
trolNet [69]. In the training stage, we add Gaussian noise
to the texture map with the DDPM scheduler at different
timesteps. The texture diffusion model with a position en-
coder is trained to reconstruct the texture map from noise.
Specifically, given a set of conditions including time step t,
appearance condition c, as well as a position map O , our
texture diffusion model learns to predict the noise added to
the noisy latent zt with

L = Ez0,t,c,O,ϵ∼N (0,1)

[
∥ϵ− ϵθ (zt, t, c, τp(O))∥22

]
. (6)

For an image diffusion model with a trained denoiser ϵθ,
we freeze ϵθ as suggested by [69] and only optimize the
position encoder τp with Eq. (6). Since texture maps in UV
space are lighting-less, our model can learn this prior from
data distribution, generating lighting-less texture.

4. Experiments
We provide extensive comparisons to evaluate our models
on both quality and diversity in the following. Firstly, we
introduce the dataset settings, evaluation metrics and imple-
mentation details Sec. 4.1. Importantly, we show the com-
parisons on two texture generation tasks, including text-to-
texture (Sec. 4.2), image-to-texture (Sec. 4.3). Lastly, we
conduct ablation studies to demonstrate the effectiveness of
each module in our Paint3D (Sec. 4.4). More qualitative re-
sults, comparisons, and details are provided in supplements.

4.1. Implementation Details

We apply the text2image model from Stable Diffusion
v1.5 [50] as our texture generation backbone. To handle
the image condition, we employ the image encoder intro-
duced in IP-Adapter [65]. For additional conditional con-
trols such as depth, image inpainting, and image high defi-
nition, we utilize the domain encoders provided in Control-
Net [69]. In the coarse texture generation, we define six
axis-aligned principal viewpoints, and sample two texture
images from a pair of symmetric viewpoints during a sin-
gle diffusion progress. The denoising strengths are set as 1
and 0.75 for the coarse and refinement stages, respectively.
Our implementation uses the PyTorch [41] framework, with
Kaolin [13] used for rendering and texture projection. For
the UV unwarping process, we utilize the original UV map
if the mesh contains texture coordinates, or we use an open-
source UV-Atlas tool [66] to perform UV unwarping.

Datasets. We conduct experiments on a subset of tex-
tured meshes from the Objaverse [12] dataset. We first
exclude 3D scenes composed of multiple meshes, and 3D
meshes without a texture map. We then filter texture maps
with resolutions lower than 128×128. For each filtered tex-
tured mesh, we can obtain the position map and texture
map via the UV unwrapping process. The filtered subset
contains 105,301 texture meshes, with 105,000 meshes uti-
lized for training the position encoder and 301 meshes em-
ployed for evaluating our model. Additionally, we gather
30 meshes in the wild to assess our model. This brings the
total to 331 high-quality textured meshes for evaluation.

Evaluation metrics. We access the generated textures
with commonly used metrics for image quality and diver-
sity. Specifically, we report the Frechet Inception Distance
(FID) [16] and Kernel Inception Distance (KID ×10−3) [1].
To calculate the generated image distribution, we render
512 × 512 images of each mesh with the synthesized tex-
tures, captured from 20 fixed viewpoints. The real distri-
bution is made up of renders of the meshes under identical
settings, but using their original textures.

4.2. Comparisons on Text-to-Texture

We first evaluate the texture generation effect of Paint3D
conditioned on the text prompt. We compare our
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“a brown armadillo”“hanfu-style clothing” “teapot, blue and white porcelain” “a next gen nascar”

Figure 4. Qualitative comparisons on texture generation conditioned on text prompt. We compare our textured mesh against Latent-
Paint [35], TEXTure [49], and Text2Tex [4]. Compared to the baselines, our method generates an illumination-free texture map, as well as
more exquisite texture details (cf. supplements for more our results).

Methods FID↓ KID ↓ User Study
Overall Quality↑ Text Fidelity↑

Latent-Paint [35] 62.22 15.81 2.83 3.29
TEXTure [49] 43.13 11.13 3.36 4.12
Text2Tex [4] 38.93 7.94 3.57 4.27
Ours 27.28 4.81 4.45 4.74

Table 1. Quantitative comparisons on text-to-texture task. Ours
outperforms other approaches on both FID and KID (×10−3).

method with state-of-the-art approaches, including Latent-
Paint [35], TEXTure [49], and Text2Tex [4]. Latent-Paint
is a texture generation variant of the NeRF-based 3D object
generation framework, explicitly manipulating the texture
map via the text2image model from Stable Diffusion. TEX-
Ture devises an iterative texture generation scheme to ma-
nipulate the texture map, and successfully synthesizes high-
quality textures. Following a similar principle, Text2Tex
develops an automatic viewpoint selection strategy in the
iterative process, representing the current state-of-the-art in
the field of text-conditioned texture generation. For the
category-specific texture generation approaches [2, 53, 68],
we provide more comparisons in the supplements.

Qualitative comparisons. As shown in Fig. 4, our ap-
proach is able to generate an illumination-free texture map
while excelling at synthesizing high-quality texture details.
Firstly, Latent-Paint [35] tends to generate blurry textures,
which can lead to suboptimal visual effects. Additionally,
while TEXTure [49] is capable of generating clear textures,
the generated textures may lack smoothness and exhibit no-
ticeable seams or splicing(e.g., the teapot in Fig. 4). Lastly,
even though Text2Tex [4] demonstrates the ability to gener-
ate smoother textures, it may compromise in generating fine
textures with intricate details. Notably, all baselines gener-

ate pre-illumination texture maps that led to inappropriate
shadows when relighting was applied.

Quantitative comparisons. In Tab. 1, we present the
quantitative comparisons with the previous SOTA methods
in text-driven texture synthesis. Following [4, 68], we re-
port the FID [16] and KID [1] to access the quality and
diversity of the generated texture maps. Our method out-
performs all baselines by a significant margin (29.93% im-
provement in FID and 39.42% improvement in KID). These
improvements demonstrate the superior capability of our
method in generating high-quality textures across diverse
objects from numerous categories.

User study. We further conduct a user study to ana-
lyze the overall quality of the generated textures and their
fidelity to the input text prompts. We randomly select 60
meshes and corresponding text prompts to perform the user
study. Those meshes are textured by both Paint3d and base-
line models, and displayed to users in random sequence.
Each object displays full-view texture details in the form
of 360-degree rotation. Each respondent is asked to eval-
uate the results based on two aspects: (1) overall quality
and (2) fidelity to the text prompt, using a scale of 1 to
5. We collected the evaluation results of 30 users, as pre-
sented in Tab. 1, where we show the average results across
all prompts for each method. As can be seen, our approach
outperforms all baselines in terms of both overall quality
and text fidelity by a significant margin.

4.3. Comparisons on Image-to-Texture

We then evaluate the texture generation capability of
Paint3D conditioned on the image prompt. Here, we
provide TEXTure [49] as our comparison baseline. We
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Figure 5. Qualitative comparisons on texture generation condi-
tioned on image prompt. Compared to TEXTure, our method can
better represent texture details contained in the image condition.

Methods FID↓ KID ↓ User Study
Overall Quality↑ Image Fidelity↑

TEXTure [49] 40.83 9.76 3.56 3.73
Ours 26.86 4.94 4.71 4.89

Table 2. Quantitative comparisons on image-to-texture task. Our
method achieves a significant improvement over the baseline.

use the texture transfer capability of TEXTure to generate
its image-to-texture results. To handle the image condi-
tion, our Paint3D employs the image encoder introduced
in [65] based on the txt2image model from Stable Diffu-
sion v1.5 [50]. As depicted in Fig. 5, our approach excels
in synthesizing exquisite texture while maintaining high fi-
delity with respect to the image condition. TEXTure [49]
is capable of generating a similar texture as the input im-
age, but it struggles to accurately represent texture details
in the image condition. For instance, in the samurai case,
TEXTure generates a golden armor texture but fails to syn-
thesize high-frequency line details present on the armor.

As shown in Tab. 2, we also report the FID [16] and
KID [1] scores under the image condition. Our method
demonstrates a significant improvement over the baseline,
as evidenced by the FID score decreasing from 40.83 to
26.86 and the KID score decreasing from 9.76 to 4.94. For
the user study, we follow a similar evaluation setting as de-
scribed in Sec. 4.2, but replace the text prompt with the
image prompt. Each participant needs to assess the gener-
ated texture based on its overall quality and fidelity to the
image prompt, using a rating scale ranging from 1 to 5. The
average scores of all users are reported in Tab. 2. Notably,

Coarse Stage Refinement Stage FID↓ KID ↓UV inpainting UVHD
✓ 41.84 10.91

✓ ✓ 48.81 11.98
✓ ✓ 37.84 7.13
✓ ✓ 33.42 6.19
✓ ✓ ✓ 27.28 4.81

Table 3. Evaluation of modules in the Paint3D framework. This
demonstrates the effectiveness of each component, including the
coarse stage, UV inpainting, and UVHD. By integrating the gen-
eration prior in the coarse stage and the illumination-free prior in
the refinement stage, our full model achieves the optimal result.

(a) without our coarse stage (b) with our coarse stage

Figure 6. Illustration of the effect of the coarse stage. The absence
of our coarse stage may result in semantic confusion in the texture.

(a) without our refinement stage (b) with our refinement stage

Figure 7. Visualization of the effect of the refinement stage. With
our refinement stage, the generated textures are illumination-free.

Paint3D gets a 4.89 average score on image fidelity, indicat-
ing our method is able to accurately represent texture details
contained in the image condition.

4.4. Ablation Studies

Evaluation of Coarse-to-fine Framework. To demon-
strate the effectiveness of our coarse-to-fine texture gen-
eration framework, we conduct experiments on two base-
lines “w/o coarse stage” and “w/o refinement stage”. The
“w/o coarse stage” configuration refers to directly generat-
ing the texture map using the texture refinement modules in
UV space, performing UV inpainting followed by UVHD
without initialization from the coarse stage. The “w/o re-
finement stage” configuration represents the outcome of the
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(a) without our UV inpainting module (b) with our UV inpainting module

Figure 8. Illustration of the effect of UV inpainting. UV inpainting
can effectively fill texture holes that are located in projecting blind
spots (e.g. the inner side of a pleated skirt).

(a) without our UVHD module (b) with our UVHD module

Figure 9. Illustration of the effect of UVHD module. This displays
the capability of UVHD to enhance existing texture details and can
even generate new textures in monochromatic areas.

coarse stage, where the uncolored area is assigned a color
using bilinear interpolation. In both scenarios, the model
produces inferior results compared to our full model, as re-
ported in Tab. 3. We visualize the results of “w/o coarse
stage” in Fig. 6. Absent the coarse stage, the generated
textures may display noticeable semantic problems, as the
texture map in UV space consists of separate texture frag-
ments. As shown in in Fig. 7, without the refinement stage,
the generated textures are pre-illuminated.

Evaluation of UV inpainting and UVHD. To demon-
strate the effectiveness of two texture refinement modules,
UV inpainting and UVHD, we further conduct experiments
on two baselines “w/o UV inpainting” and “w/o UVHD”.
The “w/o UV inpainting” configuration refers to filling the
uncolored area with the bilinear interpolation instead of
UV inpainting, followed by the UVHD module. The “w/o
UVHD” configuration represents the inpainted result of the
coarse stage with the UV inpainting module. As indicated
in Tab. 3, the performance shows a significant decrease
when UV inpainting or UVHD is not utilized, indicating
their irreplaceable function during texture refinement pro-
cessing. We visualize the results of “w/o UV inpainting”
in Fig. 8. UV inpainting can effectively fill texture holes

#Viewpoint FID↓ KID ↓ #Viewpoint FID↓ KID ↓Total One Iter Total One Iter
2 1 42.31 11.67 2 2 41.74 10.19
4 1 36.07 7.85 4 2 32.60 6.37
6 1 29.02 5.10 6 2 27.28 4.81
8 1 30.15 5.65 8 2 27.71 4.93

Table 4. Evaluation of the number of viewpoints in the coarse
stage. The viewpoints are not the more the better, as the pretrained
2D image diffusion model may involve illumination artifacts.

that are located in blind spots, as this inpainting process-
ing is performed within the UV plane, without occlusion
problems. As depicted in Figure 9, UVHD demonstrates
its capability to enhance existing texture details and even
generate new textures on monochromatic areas.

Evaluation of the Number of Viewpoints. The selec-
tion of viewpoints has shown a significant influence on the
texture generation result in the coarse stage [4]. We con-
duct ablation studies to analyze the impact of the number
of viewpoints on both overall coarse texture generation and
the single diffusion process. As shown in Tab. 4, we can
see that increasing the number of viewpoints can improve
the quality of generated textures, but it is not that the more
the viewpoints the better the results. We achieve the best
result when the viewpoint is set to 6. The result is further
improved when we sample two texture images from a pair
of symmetric viewpoints during a single diffusion progress.

5. Disscusion
This paper presents Paint3D, a novel coarse-to-fine gener-
ative framework that is capable of generating high-quality
2K UV textures that maintain semantic consistency while
being lighting-less, conditioned on text or image inputs. To
achieve this, our method first leverages a pre-trained depth-
aware 2D diffusion model to generate view-conditional im-
ages and perform multi-view texture fusion, producing an
initial coarse texture map. Subsequently, we train distinct
UV Inpainting and UVHD diffusion models, specifically
designed for shape-aware refinement of incomplete areas
and the removal of illumination artifacts. Through this
coarse-to-fine process, Paint3D can produce high-quality,
lighting-less, and diverse texture maps, significantly ad-
vancing the state-of-the-art in texturing 3D objects.

Our method has inherent limitations as follows. Our
approach still suffers from the multi-faces problem in the
coarse stage which will result in a failure case. This issue
primarily arises from the inconsistency of multi-view tex-
ture images sampled by the pre-trained 2D diffusion model,
as it is not explicitly trained on multi-view datasets. It re-
mains a challenge for Paint3D to generate material maps,
which are commonly used in modern physically based ren-
dering pipelines. Furthermore, unlike optimization-based
3D generation methods [6, 30, 35, 61], Paint3D is not capa-
ble to generate or edit the geometry of 3D assets.
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