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Abstract

Hyperspectral images (HSIs) have extensive applica-
tions in various fields such as medicine, agriculture, and
industry. Nevertheless, acquiring high signal-to-noise ra-
tio HSI poses a challenge due to narrow-band spectral fil-
tering. Consequently, the importance of HSI denoising is
substantial, especially for snapshot hyperspectral imaging
technology. While most previous HSI denoising methods
are supervised, creating supervised training datasets for
the diverse scenes, hyperspectral cameras, and scan pa-
rameters is impractical. In this work, we present Diff-
Unmix, a self-supervised denoising method for HSI us-
ing diffusion denoising generative models. Specifically,
Diff-Unmix addresses the challenge of recovering noise-
degraded HSI through a fusion of Spectral Unmixing and
conditional abundance generation. Firstly, it employs a
learnable block-based spectral unmixing strategy, comple-
mented by a pure transformer-based backbone. Then, we
introduce a self-supervised generative diffusion network to
enhance abundance maps from the spectral unmixing block.
This network reconstructs noise-free Unmixing probability
distributions, effectively mitigating noise-induced degrada-
tions within these components. Finally, the reconstructed
HSI is reconstructed through unmixing reconstruction by
blending the diffusion-adjusted abundance map with the
spectral endmembers. Experimental results on both simu-
lated and real-world noisy datasets show that Diff-Unmix
achieves state-of-the-art performance.

1. Introduction

Hyperspectral images (HSIs) offer richer spectral informa-
tion compared to RGB images, making them valuable for
various applications such as face recognition [48, 49], veg-
etation detection [6], and medical diagnosis [54]. However,
the substantial number of spectral bands in HSIs, combined
with scanning designs [3] and narrow band spectral filter-
ing, results in limited photon counts per band, making HSIs
susceptible to noise [62]. This noise not only degrades
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Figure 1. Comparison (wavelength 600nm) between diffusion
based DDS2M [36] and the proposed Diff-Unmix on a hyperspec-
tral image Toy corrupted with Gaussian noise N (0, 0.3). Diff-
Unmix shows the ability to restore fine details by leveraging a pre-
trained diffusion model on RGB images.

visual quality but also hinders downstream tasks, which
makes denoising a crucial pre-processing step.

Similar to RGB images, HSIs exhibit spatial self-
similarity, implying that similar pixels can be jointly de-
noised. Furthermore, HSIs possess inherent spectral cor-
relations due to their nominal spectral resolution. Conse-
quently, effective denoising methods for HSIs must con-
sider the prior within both spatial and spectral domains.
Traditional model-based HSI denoising approaches [11, 17,
22] rely on handcrafted priors to capture spatial and spec-
tral correlations through iterative optimization. These meth-
ods often employ priors like total variation [20, 22, 68],
non-local similarity [18], low-rank [9, 10] properties, and
sparsity [53]. Nonetheless, the effectiveness of these meth-
ods relies heavily on the precision of manually crafted pri-
ors. Furthermore, model-based denoising entails significant
computational demands due to iterative processes and may
struggle to generalize across a wide range of scenarios.

To achieve robust noise removal, deep learning ap-
proaches [7, 44, 52, 60] have been applied to HSI denois-
ing, achieving impressive results. However, many of these
methods employ convolutional neural networks (CNNs) for
feature extraction, relying on local filter responses within
a limited receptive field to distinguish noise from signal.
Recently, vision Transformers have shown promise in var-
ious tasks, including both high-level [16, 50] and low-
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level [2, 15, 61] tasks. They excel at modeling long-range
dependencies in image regions. However, efficiently bal-
ancing the strength of noise reduction and details keeping
remains a challenge for HSI denoising Transformers.

The spectral correlation also indicates that HSIs exhibit
spectral low-rank sub-spaces [8, 10, 19, 31, 72], enabling
them to retain valuable prior while suppressing noise. Thus,
exploiting low-rank spectral statistics is essential for HSI
denoising. However, existing methods [26, 57] mainly
leverage low-rank characteristics through matrix factoriza-
tion, relying on a single HSI and requiring substantial com-
putation. Moreover, these methods are sensitive to noise
reduction and high-frequency detail recovery due to hyper-
parameter tuning, e.g., rank and trade-off coefficients.

Based on the theory of spectral low-rank subspaces, it
is natural to represent HSIs by decomposing mixed pixel
spectra into their constituent endmembers and correspond-
ing abundances, resulting in the product of two tensors [42].
One of these tensors possesses the same spatial dimensions
as the HSI but significantly reduced spectral dimensions, re-
ferred to as abundance map. The other tensor represents the
spectral endmembers, describing how the HSI is spanned
by the abundance map. However, it is evident that this de-
composition factorization is not unique [42], and the fea-
tures of the base tensor generated by common decompo-
sition strategies like Principal Component Analysis (PCA)
and sparse representation do not resemble those of real im-
ages. Consequently, it becomes inconvenient to explicitly
leverage well-established knowledge of image distribution.

To reconstruct details with high-quality while reduce
noise effectively, we introduce a physically explainable dif-
fusion model for HSI restoration, known as Diff-Unmix.
Our approach aims to integrate the advantages of physical
spectral unmixing models and generative networks. Diff-
Unmix formulates HSI restoration as a spectral unmixing
problem and conditional image generation task. In the spec-
tral unmixing, we incorporate Transformer-based character-
istics [33, 61] and meticulously design a Spectral Unmixing
Transformer network (STU) to enhance the decomposition
applicability. STU decomposes the HSI into endmembers
and corresponding abundances. Subsequently, we employ a
self-supervised conditioning function guided generative dif-
fusion network to denoise the abundance while preserving
high-frequency details and achieving improved restoration
results. The main contributions are three folds:
- We rethink HSI restoration from the perspective of condi-

tional abundance generation. Rather than being limited
to enhancing the original low-quality HSI, we propose
a generative Unmixing framework to further compensate
for content loss and spectral deviation caused by noise.

- Considering the issues of decomposition in spectral un-
mixing models, we propose a novel Transformer decom-
position network. It can take full advantage of multi-scale

attention to efficiently unmix HSI.
- We proposed a state matching and conditioning strategy,

which enables the representation of noisy abundances
as samples from an intermediate state in the diffusion
Markov chain. This facilitates the generation of detailed,
clean abundance maps without the need for ground truth.

2. Related Work
HSI denoising is an essential pre-processing step with ap-
plications in computer vision [10, 18, 56] and remote sens-
ing [43, 60]. The field has seen the development of two
main categories of denoising methods: model-based and
deep learning-based approaches. Traditional model-based
methods [11, 34, 34, 59, 69] typically approach noise re-
moval through iterative optimization, guided by handcrafted
priors. These methods include adaptive spatial-spectral dic-
tionary methods [17] and the hyper-Laplacian regularized
unidirectional low-rank tensor recovery method introduced
by Chang et al. [10]. Additionally, some approaches in-
tegrate spatial non-local similarity and global spectral low-
rank properties [18] for denoising, while others use spatial
regularizers [34, 68] and low-rank regularization techniques
[9] to model the spatial and spectral prior.

Deep learning methods [7, 37, 52, 57] have demonstrated
great potential for automatically learning and representing
features for HSI denoising. These approaches have ex-
plored spectral-spatial features using residual convolutional
networks [60], spatial-spectral global reasoning networks
[7], and hybrid convolutional and recurrent neural networks
[37, 52]. Model-guided interpretable networks have also
been actively investigated [5, 56]. Our proposed method
stands out by exploring spectral unmixing transformer and
multi-path generative diffusion networks to effectively re-
cover high-quality spatial and spectral information.

Recently, there has been a growing trend in applying
Transformers to HSI restoration [2, 47, 67] and HSI classi-
fication [25, 32]. While these techniques exhibit robust fit-
ting capabilities for underlying data, the inherent variability
between test and training data poses a challenge in effec-
tively reducing noise while preserving fine-grained details.
In this context, we propose a transformer based diffusion
model with self-supervised conditioning function for HSI.
This model adeptly captures the spectral-spatial properties,
two pivotal characteristics of HSIs, and additionally gener-
ates high-quality textures through the diffusion process.

3. Methodology
Main Idea. Given a noisy HSI Y , the inverse problem for
HSI denoising is to separate the clean image X , Gaussian
noise N defined by:

Y = X +N . (1)

Given the inherently ill-posed nature of HSI reconstruction
as an inverse problem, extant methodologies continue to
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Figure 2. The overall framework of Diff-Unmix consists of three distinct yet interrelated modules. These modules include the spectral
unmixing based on Spectral Transformer Unmixing Network (STU, Fig. 3), serving as a latent space decomposition method with physical
significance in the context of Hyperspectral Imaging. Additionally, we have the Conditioning Function (CF) and Abundance Diffusion
Adjustment (ADA) modules, which play pivotal roles in refining the spectral unmixing process.

grapple with several notable challenges in the simultane-
ous achievement of accurate detail reconstruction and ef-
fective noise reduction. The denoising diffusion model, en-
dowed with its generative capability, stands out as a promis-
ing solution to this predicament. Nevertheless, (i) the dearth
of HSI datasets relative to RGB images, along with the
substantially higher dimensionality inherent in HSI data,
presents a formidable hurdle when endeavoring to retrain
a diffusion model tailored specifically for HSI applications.
(ii) Using pre-trained 2-D diffusion models for individual
HSI bands along the spectral axis is a potential strategy.
However, this approach may lead to incoherent reconstruc-
tions due to the lack of consideration for inter-band depen-
dencies and spectral correlations [21, 35, 51]. (iii) Further-
more, the iterative diffusion process for HSIs with tens or
hundreds of bands can be time-intensive.

To answer these questions, in this section, we demon-
strate that refined approximations of clean HSI X̂ , can be
produced through the integration of a spectral unmixing
model, where X = A ×3 E, and a diffusion model op-
erating on the abundance map, A. ×3 is mode-3 tensor
matrix product [29]. To condition the diffusion sampling
process on the noisy input, denoted as Y , our approach in-
volves representing Ay(Y = Ay ×3 E) as a sample drawn
from a posterior distribution at an empirically derived in-
termediate state, denoted as At, within the Markov chain.
Subsequently, we initiate the sampling procedure directly
from Ay via the conditional distribution p(AT |Ay).

3.1. Transformer Unmixing Network
The spectral unmixing theory assumes that an image can be
decomposed into abundance and spectral endmembers as:

X = A×3 E, (2)

where X is the input HSI. A and E denote the abundance
maps and spectral endmembers, respectively. It is essen-
tially an ill-posed problem and many potential solutions ex-
ist. The abundance refers to the relative proportion of differ-
ent pure materials, known as endmembers, present within a
mixed pixel. These abundances signify the contribution of
each endmember to the overall spectral signature observed
in that pixel. For instance, in a landscape image, the abun-
dance values would represent the percentages of materials
like grass, soil, water, and rocks within a given pixel. On
the other hand, endmembers represent the pure spectral sig-
natures of individual materials in a scene, ideally devoid of
any mixture [28]. They serve as reference spectra for known
materials, so it tends to be constant in different noise degra-
dation conditions. Thus, the noise is decomposed into the
abundance map, and a visual illustration is shown in Fig. 3.
The optimization objective to realize spectral unmixing in
our method is generally represented via Eq. (3):

min
A,E

τ(A×3 E) + αϕ(A) + βψ(E), (3)

where τ(A ×3 E) ensures that the image can be recon-
structed from the decomposed abundance and spectral end-
members. ϕ(A), ψ(E) constrain the consistency of abun-
dance map and spectral endmembers. α, β are the hyper-
parameters. Subsequently, a self-supervised loss function is
designed in next subsection.

3.1.1 Loss Functions
Utilizing the formulation presented in Equation (3), we
formulate distinct loss functions: the reconstruction loss,
abundance consistency loss, and spectral endmembers loss,
which are integral components in the optimization process
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Figure 3. Detailed architecture of STU Unmixing network, which
consists of two parallel branches, and the details of Global Spectral
Attention (GSA) is shown in Fig. 4.

of the Transformer Unmixing Network. To address the need
for abundance consistency under varying noise conditions,
our training dataset comprises paired sets of noisy HSIs,
denoted as In, and their corresponding noise-variant coun-
terparts, denoted as Im. The abundance maps derived from
these datasets are denoted as An and Am respectively. Ad-
ditionally, the respective spectral endmembers are denoted
as En and Em.
Reconstruction Loss τ(A ×3 E): This loss term ensures
that the decomposed abundance maps A and spectral end-
members E accurately reconstruct the original hyperspec-
tral image. It is defined by considering the fidelity of the
reconstructed images:

Lrec = ∥In−An×3En∥1+αrec∥Im−Am×3Em∥1, (4)

where αrec serves as a hyper-parameter, allowing for the
adjustment of the contribution of different noise levels.
Abundance Fidelity Loss ϕ(A): The abundance loss term
is used to ensure abundance fidelity, which is defined as:

Laf = ∥An −Am∥1. (5)

Spectral Endmembers Consistency Loss ψ(L): This loss
term enforces the consistency of spectral endmembers un-
der varying noise conditions, considering that the abun-
dance of objects remains invariant,

Lse = ∥En − Em∥1. (6)

Finally, the comprehensive decomposition loss is given
by:

L = Lrec + γafLaf + γseLse, (7)

where γaf and γse represent hyper-parameters.

3.1.2 Network Architecture

As shown in Fig. 3, Spectral Transformer Unmixing net-
work (STU) consists of two branches, i.e., the Abundance
Decomposition (AD) branch and the Spectral Endmember
Decomposition (SED) branch.
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Figure 4. Detailed network architecture of GSA. The attention is
calculated in the direction of cross spectral mode to realize the
efficient unmixing of a hyperspectral image.

In the spectral endmember decomposition branch, mul-
tiple convolutional layers are employed to reduce compu-
tational complexity while ensuring effective decomposi-
tion, as discussed in [58]. In the abundance decomposi-
tion branch of the AD, a multi-stage spectral Transformer
encoder and decoder are utilized to preserve the intrinsic
characteristics of abundance and spectral endmember maps.
This approach enhances recovery performance and infor-
mation retention in the abundance map. Specifically, both
the Transformer encoder and decoder incorporate a Global
Spectral Attention module and a mapping layer. Given an
image I of size H ×W × B to be decomposed, AD first
obtains its embedding features Finit ∈ RH×W×C through a
convolutional projection, and the subsequent computations
in the AD block can be summarized as:

F̂i = GSA(Norm(Fi−1)) + Fi−1, (8)

Fi = Mapping(F̂i) + F̂i, (9)

where Norm denotes normalization. Fi−1 represents the
input feature map of the current AD block.

The time complexity of transformer scales quadratically
with the image size, posing computational challenges for
high-dimensional HSI data. Spectral unmixing primarily
relies on spectral correlations among spectral bands. Con-
sequently, allocating equal computational resources to both
spatial and spectral modes during spectral unmixing decom-
position may not be optimal. To solve this problem, inspired
by the spectral attention in [30], we utilize a novel global
spectral-wise attention (GSA) mechanism for computing at-
tention in AD, as shown in Fig. 4. On the premise of main-
taining the spectral unmixing performance, it reduces the
attention computation complexity to a great extent.

In the GSA module, a feature tensor X ∈ RH×W×C ,
obtained after applying Layer-Norm, is initially rotated as
X ′ for ease of correlating its spectral direction using a con-
volution operation. This leads to projections of the feature
into Q, K, and V . Specifically, the projections result in
Q = W qX ′, K = W kX ′, and V = W vX ′. This enables
the computation of attention in the spectral mode direction
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Figure 5. Comparison on reverse diffusion start from noisy A′, (a)
without condition, and conditioned on (b) A′, (c) Ac = Φ(A′).

via a transformer module. Mathematically, it can be ex-
pressed as shown in Equation (10):

X̂ = softmax(QK/d) · V + X , (10)

where d represents a scale factor.

3.2. Diffusion Generation Adjustment

This section introduces a methodology for generating pre-
cise abundance approximations (Â) using a pre-trained off-
the-shelf diffusion model enhanced with a trainable condi-
tioning function. To condition the diffusion sampling on
noisy input (A′), we represent it as a sample from a data-
driven intermediate state (At) in the Markov chain. We then
initiate the sampling process directly from A′ through the
conditional probability p(At|A′), as shown in Fig. 2.

This formulation raises two key questions: (i) What
methodology maps A′ to an intermediate state within the
Markov chain? and (ii) How to control the pre-trained diffu-
sion model to generate images with the intended semantics
when the best-matched states is available? To streamline pa-
rameter tuning, we devise Diff-Unmix in two stages, each
addressing these questions: (I) Markov chain state match-
ing; and (II) Diffusion model reverse conditioning.
Forward Diffusion Process. The forward diffusion pro-
cess can be viewed as a Markov chain progressively adding
Gaussian noise to the data. The data at step t is only depen-
dent on that at step t − 1. Given t ∈ [0, T ], the transition
probability is usually assumed to be a Gaussian distribution:

q(At|At−1) = N (At|
√
αtAt−1, (1− αt)I), (11)

and its parameter αt is preset as constant. By using repa-
rameterization, we can find the conditional distribution
about At and S0 as

q(At|A0) = N (At|
√
ᾱtA0, (1− ᾱt)I), (12)

where ᾱt =
∏t

i=1 αt. Then, in the forward process, the
distribution q(At|A0) approximates N (0, 1) with gradually
adding noise to the previous state.
Conditioning Function Design. Denoising diffusion is
known as its generation capability. However, due to the in-
herent stochastic nature of the generative process in DDPM,

generating images with the intended semantics remains
challenging even if we start with a state AT on A′.

Using the observed noisy image Y or A′ as direct con-
ditions is a natural approach. However, the noisy image
is of low quality and doesn’t offer effective guidance for
both low-frequency structure and high-frequency texture, as
demonstrated in Fig. 5. To exert more precise control over
unconditional DDPM using observed noisy measurements,
we employ Φ as a conditioning function to derive a condi-
tional variable Ac = Φ(STU(Y)) in a self-supervised man-
ner. Specifically, in signal processing, it is often assumed
that noisy signals arise from the introduction of noise, based
on a specified model, into clean signals [40, 55]. How-
ever, establishing an effective mapping between the input Y
and the output X becomes challenging when we lack prior
knowledge of this corruption process. Building upon the J-
Invariance theory [4], we propose training a denoising neu-
ral network directly on noisy images. Using the noisy signal
Y as input, the denoising function Φ approximates a refined
abundance matrix:

Ac ≈ Â = Φ(A′),A′ = STU(Y). (13)

This method equips Φ to perform regression on low-
dimensional abundances while incorporating spectral end-
members to form Y ′ = Â ×3 E, which is important for un-
supervised learning. This approach makes that: (i) training
only weight-light Φ on A for the entire spectral sequence
in a unsupervised manner, (ii) maintaining stable denoising
quality even with heavy noise, and (iii) achieving improved
spatial-spectral consistency in denoised bands. Here, we
learn Φ via an U-Net-like “hourglass” architecture, and its
detailed structure can be found in supplementary materials.

Here, we propose an unsupervised loss that ensures con-
sistency, that is

argmin
Φ

EY
{
∥Y − Φ(A′)×3 E −N∥2

}
+ Es

{
∥X̂ − Φ(STU(X̂ ), As)×3 E∥2

}
, (14)

where X̂ = Φ(A′) ×3 E, As is a transform randomly se-
lected from a given set of transforms T , N is Gaussian
noise with known deviation. The first term ensures mea-
surement consistency Y = Φ(A′) ×3 E +N , whereas the
second term enforces consistency across transforms, i.e.,
Φ(A′) = Φ(STU(AsΦ(A′)×3 E), As) for all As ∈ T .
Markov Chain State Matching. Once an optimal mapping
function is learned by Φ, noise model can also be obtained
by fitting the approximated residual noise N̂ to a Gaussian
distribution N (σ2I) with zero mean and a variable standard
deviation σ (G-Fit) [55]. Without any constraints, N̂ may
not necessarily have a mean value of zero, and direct fitting
can lead to a shift in the distribution mean. To address this,
we propose to explicitly adjust the mean value of N̂ , de-
noted as µN̂ = 1

||N̂ ||

∑
N̂ , to be zero: N̂ := N̂ − µN̂ ,
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Figure 6. Comparison on reverse diffusion conditioned on Φ(A′),
started from manual steps T = 500 and the matched state t = 61.

The adjusted N̂ can then be used to model the noise distri-
bution G and estimate the parameter σ. Recall that in the
diffusion model, a noise schedule β1,··· ,T is predefined to
represent the noise level at every state in the Markov chain.
We identify a matching state of A′ by comparing the noise
model with all possible posteriors p(At) in terms of σ and√
βt. Specifically, a state is considered a match when a time

stamp t is found that minimizes the distance:

argmin
t

||
√
βt − σ||p, σ = G-Fit(N̂ ,N (σ2I)), (15)

where || · ||p denotes the p-norm distance. Since t is a dis-
crete integer within a finite interval: {1, · · · , T}, we refor-
mulate the optimization problem as a surrogate search [55].
Controlled Reverse Diffusion Process. A match at state
At indicates that, given the specific noise schedule β, there
exists at least one potential sample from the posterior at
state At in the baseline unconditional generation process
that closely approximates the provided input A′. Conse-
quently, a more precise image can be sampled at state A0

through an iterative reverse process denoted as p(A0|At)
with condition Ac from (13). With the matched state t and
trained ϵθ(·, t), reverse diffusion process [24] starting from
At with noisy abundance At = A′, and the reverse process
is updated as follows:

At−1 =
1

√
αt

(
At −

1− αt√
1− ᾱt

ϵθ(At, t)

)
+
√
1− αtzt, (16)

where zt ∼ N (0, 1), t ∈ [T ]. As [42, 46], we formulate
the ancestral sampling process (16) as the discretization of
reverse SDE. Together with condition Ac and the estimated
endmembers E as conditioning variables, we can reformu-
late the reverse SDE concerning A as

dA =
[
f(A, t)− g2(t)∇A(t) log pt(A(t)|Ac, E)

]
dt+ g(t)dw̄,

(17)

where f(A, t) = −1

2
(1 − α(t)) and g(t) =

√
1− α(t),

w̄ is the reverse of the standard Wiener process. The gradi-
ent ∇A(t) log pt(A(t)) is commonly referred to as the score
function of A(t). Then, we discretize the reverse SDE (17)

using the form of ancestral sampling process (16):

At−1 =
1

√
αt

(
At + (1− αt)∇A(t) log pt(A(t)|Ac, E)

)
≈ 1

√
αt

(
At −

1− αt√
1− ᾱt

ϵθ(At, t)

)
+
√
1− αtzt

− η∇At
∥Ac − Â0 ×3 E∥F , (18)

where η =
1− αt√
αt

γ. At time t, we can see that the sam-

pling consists of two parts. The first part is equal to sam-
pling from parameterized p(At−1|At) with fixed variance√
1− αt. The second part pushes the sample towards the

consistent form with constraint on abundance. See sup-
plementary materials for the detailed inference of (17) and
(18). Finally, the HSI is reconstructed through unmixing
reconstruction, achieved by mixing the diffusion generative
adjusted abundance map with the spectral endmembers,

Xdiff = Â0 ×3 Ey. (19)

4. Experiment
4.1. Implementation Details and Datasets
Implementation Details. The proposed Diff-Unmix model
undergoes two self-supervised training stages. Initially,
the STU is trained, then we fix the pre-trained diffusion
model [1] with unconditional mode and train the condition-
ing function associated with the diffusion generation adjust-
ment. The transform set T includes shift, flip, rotation. The
input image are cropped to patches of size 256 × 256. All
experiments are conducted using PyTorch on two NVIDIA
RTX 4060Ti GPUs running Ubuntu 22.04.2.
Datasets. To assess generalization capabilities, we train
the conditioning function and STU block on CAVE dataset
in a self-supervised manner, then test Diff-Unmix on
KAIST [14], CAVE, CAVE-Toy [38] datasets with simu-
lated Gaussian noise: N (0, 0.2), and N (0, 0.3), and Ur-
ban 1 dataset with real-world noise including stripes, dead-
lines, atmospheric interference, water absorption, and other
unidentified sources.

4.2. Synthetic Noise
In simulated noise case, we compare the proposed
Diff-Unmix with 15 SOTA denoising methods within
five categories: (1) optimization based NonLRMA [12],
LRTDTV [63], LLRSSTV [21], TLRLSSTV [65],
LLxRGTV [64], 3DTNN [70], 3DTNN FW [71], LRTD-
CTV [63], E3DTV [39], FGSLR [13], (2) deep prior based
DIP [45], (3) plug and play framework based LLRPnP [66],
(4) self-supervised tensor network HLRTF [35], (5) diffu-
sion based DDRM [27] and DDS2M [36]. The STU unmix-
ing block and conditioning function are trained on CAVE

1http://www.tec.army.mil/ hypercube/
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Toy Dataset

GT Patch Noisy Patch 3DTNN [70] 3DTNN-FW [71] NonLRMA [12] FGSLR [13] LLRSSTV [21] LLxRGTV [64] TLRLSSTV [65]

LLRPnP [66] E3DTV [39] LRTDCTV [63] LRTDTV [51] DIP [45] DDRM [27] HLRTF [35] DDS2M [36] Diff-Unmix

Figure 7. Visual comparison of HSI denoising methods on Toy dataset.

KAIST Dataset

GT Patch Noisy Patch 3DTNN [70] 3DTNN-FW [71] NonLRMA [12] FGSLR [13] LLRSSTV [21] LLxRGTV [64] TLRLSSTV [65]

LLRPnP [66] E3DTV [39] LRTDCTV [63] LRTDTV [51] DIP [45] DDRM [27] HLRTF [35] DDS2M [36] Diff-Unmix

Figure 8. Visual comparison of HSI denoising methods on KAIST dataset.

CAVE Dataset

GT Patch Noisy Patch 3DTNN [70] 3DTNN-FW [71] NonLRMA [12] FGSLR [13] LLRSSTV [21] LLxRGTV [64] TLRLSSTV [65]

LLRPnP [66] E3DTV [39] LRTDCTV [63] LRTDTV [51] DIP [45] DDRM [27] HLRTF [35] DDS2M [36] Diff-Unmix

Figure 9. Visual comparison of HSI denoising methods on CAVE dataset.
Table 1. Quantitative PSNR, SSIM, FSIM, SAM and Time on KAIST dataset, gray: deep prior, PnP and tensor network based models,
yellow: denoising diffusion based methods, the rest is model based algorithm. Left: Case: N (0, 0.2), right: Case: N (0, 0.3).

Method Reference PSNR ↑ SSIM ↑ FSIM ↑ SAM ↓ Time (s)
Noisy None 16.175 0.115 0.401 0.801 None
NonLRMA [12] TGRS 2017 21.259 0.414 0.803 0.882 11
LRTDTV [51] JSTAR 2017 31.061 0.772 0.882 0.297 38
LLRSSTV [21] JSTAR 2018 28.145 0.682 0.814 0.432 36
TLR LSSTV [65] TGRS 2021 24.875 0.532 0.767 0.395 76
LLxRGTV [64] SP 2021 31.152 0.802 0.917 0.205 38
3DTNN [70] IS 2020 25.477 0.668 0.887 0.227 16
3DTNN FW [71] TGRS 2019 28.035 0.780 0.881 0.197 20
LRTDCTV [63] JSTAR 2023 25.952 0.658 0.816 0.406 43
E3DTV [39] TIP 2020 30.335 0.868 0.926 0.221 10
FGSLR [13] TGRS 2021 30.126 0.737 0.878 0.262 249
DIP [45] ICCVW 2019 24.181 0.608 0.825 0.475 72
LLRPnP [66] IA 2020 28.664 0.748 0.861 0.379 240
HLRTF [35] CVPR 2022 33.011 0.808 0.925 0.275 23
DDRM [27] NeurIPS 2022 29.412 0.865 0.922 0.293 20
DDS2M [36] ICCV 2023 32.804 0.786 0.895 0.334 354
Diff-Unmix Ours 33.059 0.964 0.940 0.116 37

Method Reference PSNR ↑ SSIM ↑ FSIM ↑ SAM ↓ Time (s)
Nosiy None 12.980 0.064 0.320 0.862 None
NonLRMA [12] TGRS 2017 20.300 0.355 0.772 0.918 11
LRTDTV [51] JSTAR 2017 28.606 0.670 0.829 0.331 38
LLRSSTV [21] JSTAR 2018 25.340 0.562 0.743 0.487 37
TLR LSSTV [65] TGRS 2021 22.824 0.407 0.689 0.459 76
LLxRGTV [64] SP 2021 27.640 0.679 0.868 0.218 38
3DTNN [70] IS 2020 22.278 0.558 0.853 0.271 16
3DTNN FW [71] TGRS 2019 26.035 0.724 0.848 0.212 20
LRTDCTV [63] JSTAR 2023 24.593 0.533 0.739 0.431 42
E3DTV [39] TIP 2020 28.358 0.819 0.900 0.248 9
FGSLR [13] TGRS 2021 25.561 0.480 0.718 0.470 499
DIP [45] ICCVW 2019 20.063 0.405 0.798 0.538 74
LLRPnP[66] IA 2020 25.102 0.592 0.768 0.425 289
HLRTF [35] CVPR 2022 30.340 0.689 0.874 0.329 25
DDRM [27] NeurIPS 2022 27.810 0.786 0.893 0.387 23
DDS2M [36] ICCV 2023 30.078 0.666 0.834 0.355 318
Diff-Unmix Ours 31.408 0.902 0.958 0.282 42

dataset in a self-supervised manner. For the optimization
based methods, the hyperparameters are set according to
the original papers, and we fine-tune the rank slightly to
get better PSNR. For DDRM, we adapt its denoising mod-
els with σ = 0.2, 0.3. In Tab. 1 and Tab. 2, Fig. 8, 7, 9, we
present the denoising performance of the different methods.
One can see that Diff-Unmix achieves the best indexes and
visual effects in most cases.

4.3. Real-World Noise
The urban HSI is affected by a range of noise sources in-
cluding stripes, deadlines, atmospheric interference, water
absorption, and other unidentified sources [23]. In Fig. 10, a
comparison on the real Urban dataset is shown. It is evident
that HLRTF and Diff-Unmix demonstrate superior denois-
ing capabilities when compared to DDRM and DDS2M.
Although DDRM and DDS2M perform well under simu-
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Table 2. Quantitative results on CAVE and CAVE-Toy dataset, gray: deep prior, PnP and tensor network based models, yellow: denoising
diffusion based methods, the rest is optimization based algorithm. PSNR, SSIM, FSIM, SAM and running time are reported.

(a) Comparisons on Toy dataset.

Method Framework PSNR ↑ SSIM ↑ FSIM ↑ SAM ↓ Time (s)
Noisy None None 12.334 0.122 0.374 0.605 None
NonLRMA [12] Model Self-Sup 21.600 0.566 0.766 0.268 12
LRTDTV [51] Model Self-Sup 26.578 0.729 0.836 0.181 39
TLR LSSTV [65] Model Self-Sup 21.681 0.556 0.736 0.199 80
LLxRGTV [64] Model Self-Sup 26.450 0.752 0.874 0.118 39
3DTNN [70] Model Self-Sup 23.397 0.712 0.857 0.124 19
3DTNN FW [71] Model Self-Sup 25.496 0.771 0.843 0.111 23
LRTDCTV [63] Model Self-Sup 25.214 0.665 0.783 0.228 45
E3DTV [39] Model Self-Sup 24.157 0.810 0.878 0.156 11
FGSLR [13] Model Self-Sup 21.525 0.573 0.798 0.241 1149
TwoStage [41] CNN Semi-Sup 29.032 0.869 0.911 0.181 2h+
DIP [45] CNN Self-Sup 22.092 0.594 0.895 0.191 67
LLRPnP [66] PnP Self-Sup 23.088 0.541 0.717 0.207 240
HLRTF [35] Tensor-CNN Self-Sup 27.308 0.730 0.941 0.161 41
DDRM [27] Diffusion Self-Sup 27.886 0.858 0.910 0.159 16
DDS2M [36] Diffusion Self-Sup 29.344 0.844 0.977 0.111 320
Diff-Unmix Diffusion Self-Sup 28.046 0.945 0.993 0.156 43

(b) Comparisons on CAVE dataset.

Method Reference PSNR ↑ SSIM ↑ FSIM ↑ SAM ↓ Time (s)
Nosiy None 12.980 0.064 0.320 0.862 None
NonLRMA [12] TGRS 2017 22.002 0.374 0.764 0.612 14
LRTDTV [51] JSTAR 2017 30.545 0.678 0.766 0.241 42
LLRSSTV [21] JSTAR 2018 25.319 0.435 0.641 0.299 39
TLR LSSTV [65] TGRS 2021 24.375 0.352 0.589 0.314 82
LLxRGTV [64] SP 2021 28.743 0.712 0.829 0.121 40
3DTNN [70] IS 2020 25.161 0.826 0.922 0.094 17
3DTNN FW [71] TGRS 2019 31.069 0.930 0.918 0.116 23
LRTDCTV [63] JSTAR 2023 24.394 0.444 0.631 0.315 47
E3DTV[39] TIP 2020 32.344 0.951 0.955 0.108 11
FGSLR [13] TGRS 2021 24.474 0.346 0.554 0.511 1758
DIP [45] ICCVW 2019 20.480 0.554 0.864 0.313 66
LLRPnP[66] IA 2020 24.809 0.445 0.668 0.284 246
HLRTF [35] CVPR 2022 30.308 0.770 0.861 0.185 133
DDRM [27] NeurIPS 2022 30.521 0.754 0.873 0.196 16
DDS2M [36] ICCV 2023 30.837 0.724 0.863 0.251 319
Diff-Unmix Ours 32.714 0.940 0.957 0.129 43

Real Urban Noisy Patch DDRM [27] SST [30] HLRTF [35] SERT [31] DDS2M [36] Diff-Unmix
Figure 10. Results on Urban with real-world noise including stripes, deadlines, atmospheric interference, water absorption, and other
unidentified sources. One can see that our Diff-Unmix adeptly mitigates mixed noise, ensuring the retention of fine-grained details.

KAIST

GT Patch GT with N (0, 0.3)

DDS2M [36] Diff-Unmix
Figure 11. Visual comparison on over-enhanced case.

lated Gaussian noise, they tend to overly smooth out cru-
cial details when confronted with real mixed noise. On
the other hand, Diff-Unmix efficiently retains most of the
details while effectively removing mixed noise by utilizing
information from diverse spectral bands.

4.4. Ablation Study
Transformer Unmixing Network. To assess the efficacy
of the STU network, we conduct a visual analysis of the
decomposition process. It is crucial to note that spectral
unmixing poses an inherently ill-posed problem, lacking an
exact optimal solution. A pivotal consideration is the neces-
sity for consistent endmember information across varying
levels of noise. For comparative purposes, we also employ
Singular Value Decomposition technique for unmixing, the
results are shown in supplementary material.
Markov Chain State Matching. The impact of State
Matching is illustrated in Fig. 6, demonstrating that aligning
the noisy input with an intermediate state in the diffusion

Markov chain accelerates the inference process, leading to
a faster generation of the desired HSI (41s vs. 311s).
Conditioning Function Φ. A visual comparison of Diff-
Unmix w/ and w/o conditioning on Φ is depicted in Fig. 5.
It is evident that the inclusion of Φ effectively guides the
Diff-Unmix process to generate high-quality details.
4.5. Limitations
Similar to many applications of DDPM, Diff-Unmix has the
potential to generate spurious details (over-enhancement)
due to its generative nature, as illustrated in Fig. 11. In
contrast, DDS2M yields a distorted result in this scenario.

5. Conclusion
In this paper, we rethink the HSI denoising task and propose
a generative Diff-Unmix denoising model. Diff-Unmix for-
mulates the HSI denoising task as a paradigm of spectral un-
mixing and image generation. It can adaptively decompose
images into abundance map and spectral endmembers and
solve degradation by generative denoising diffusion models.
The experimental results show that Diff-Unmix has excel-
lent performance and makes subtle-detail completion and
inference details restoration of noise reduction into reality.
Besides, the proposed method demonstrates superior gen-
eralization capacity for unseen real and mixed noise com-
pared to state-of-the-art methods.
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