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Use the knife to cut the apple;
then use the clamp to grip the sugar cubes into the bowl;
afterwards, use the microwave oven to heat the bowl.
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Figure 1. An overview of the data and content of our proposed OAKINK2 dataset. OAKINK2 dataset focuses on bimanual object
manipulation tasks for complex daily activities. 1) The top row shows the data collection process, including the task setup (top-left panel),
human demonstration (top-center), and annotation (top-right). 2) The second row shows the three levels of abstraction constructed by
OAKINK2 for complex tasks, including the Affordance, Primitive Task, and Complex Task. OAKINK2 dataset provides allocentric and
egocentric videos of human manipulation process, as well as the corresponding 3D-pose annotation and task specification.

Abstract

We present OAKINK2, a dataset of bimanual object ma-
nipulation tasks for complex daily activities. In pursuit
of constructing the complex tasks into a structured repre-
sentation, OAKINK2 introduces three level of abstraction
to organize the manipulation tasks: Affordance, Primi-
tive Task, and Complex Task. OAKINK2 features on an
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object-centric perspective for decoding the complex tasks,
treating them as a sequence of object affordance fulfill-
ment. The first level, Affordance, outlines the functionali-
ties that objects in the scene can afford, the second level,
Primitive Task, describes the minimal interaction units that
humans interact with the object to achieve its affordance,
and the third level, Complex Task, illustrates how Prim-
itive Tasks are composed and interdependent. OAKINK2
dataset provides multi-view image streams and precise pose
annotations for the human body, hands and various inter-
acting objects. This extensive collection supports applica-
tions such as interaction reconstruction and motion synthe-
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sis. Based on the 3-level abstraction of OAKINK2, we ex-
plore a task-oriented framework for Complex Task Comple-
tion (CTC). CTC aims to generate a sequence of bimanual
manipulation to achieve task objectives. Within the CTC
framework, we employ Large Language Models (LLMs) to
decompose the complex task objectives into sequences of
Primitive Tasks and have developed a Motion Fulfillment
Model that generates bimanual hand motion for each Prim-
itive Task. OAKINK2 datasets and models are available at
https://oakink.net/v2.

1. Introduction
Learning how humans achieve specific task objectives
through diverse object manipulation behaviors has been a
long-standing challenge. Recent data-driven approaches
have made significant progress on this topic, including
hand-object pose estimation [1, 7, 13, 20, 22–24, 36, 59],
interaction synthesis [12, 15, 29, 51, 56, 63], and action im-
itation [47, 48]. However, the gap still exists for current
methods to achieve a human-level understanding on object
manipulation for complex task completion. In particular,
humans possess a remarkable capacity to interact with spe-
cific objects in an appropriate sequence to achieve desired
outcomes [30]. This inspires us to focus on the decompo-
sition of hands-object interaction in complex manipulation
tasks into sequential units.

Tracing prior research, the advancement in hand-object
interaction understanding is inseparable from the emer-
gence of a series of hand-object interaction datasets [3,
8, 12, 14, 19, 22, 28, 31, 37, 42, 48, 50, 60, 64] to sup-
port data-driven methods. A noteworthy example among
these datasets is OakInk [60]. OakInk analyzed object
affordances (i.e. functional properties of objects/object-
parts [16]) and collected human-centric grasping interaction
driven by intents to utilize these affordances. The term: Oak
is for object affordance knowledge, and Ink for interaction
knowledge. Nevertheless, the previous OakInk has two ma-
jor limitations: 1) it lacks human demonstrations that cover
the process of fulfilling those affordances, and 2) it lacks
complex manipulation tasks that involve multiple object af-
fordances.

In this paper, we present OAKINK2, extending the data
and methodology of the previous OakInk. In order to man-
age the inherent complexity in complex manipulation tasks,
OAKINK2 adopts an object-centric perspective and con-
structs three levels of abstraction upon manipulation tasks:
1) Affordance: object/object-part level functionalities that

enable manipulation. For example, a bottle cap affords
securing and unsecuring of the content in the bottle.

2) Primitive Task (Primitive): a “minimal” sequence of
hand-object interaction that fulfills a given object’s af-
fordance. For instance, to fulfill the affordance: secur-
ing, one needs to either screw or press the cap onto

the bottle’s opening to form a seal that prevents leaking.
3) Complex Task: sequential combination of Primitives to

address the long-horizon and multi-goals manipulation
tasks. Tasks are characterized as “complex” for their
goal requires more than one object affordance. Complex
Tasks also detail the dependencies among the Primitives
and dictate the order in which they are executed. To il-
lustrate, to pour the fluid from a sealed bottle, one must
first unscrew the cap and then pour out the liquid.

In this way, OAKINK2 delineates Complex Tasks as directed
acyclic graphs, hereafter referred to as Primitive Depen-
dency Graphs (PDG). Within these graphs, each node rep-
resents a Primitive, serving to fulfill a specific affordance.
The directed edges illustrate the sequence in which Primi-
tives must be executed to achieve task completion.

Build upon the above methodology, OAKINK2 intro-
duces a large-scale dataset for bimanual object manipu-
lation. It encompasses human demonstrations for com-
plex task completion, with multi-view image streams and
paired pose annotations for human body, hands and objects.
OAKINK2 contains 627 sequences of real-world bimanual
manipulation sequences, where 264 of these sequences are
for Complex Tasks. These sequences contain 4.01M frames
from four different views (one egocentric and three allocen-
tric views). The dataset includes four manipulation scenar-
ios, 75 objects and 9 invited subjects in total.

The versatile and task-driven nature of OAKINK2 en-
ables a wide range of applications. In this paper, we focus
on the task and motion planning for Complex Task Comple-
tion (CTC). CTC involves two notable components: 1) tex-
t-based Complex Task decomposition using Primitives and
2) task-aware motion generation to fulfill each Primitive.
For the first component, we design a task interpreter with
Large Language Model (LLM) that can generate the PDG
and program the execution order of these Primitives, based
on textual descriptions of the Complex Tasks. For the lat-
ter component, we propose a generalist Task-aware Motion
Fulfillment model (TaMF) to generate the hand motion at
Primitive level, based on the task-related object trajectory.

In summary, our contributions are as follows:

• We build an object-centric, three-level abstraction to
structure and understand complex manipulation tasks, i.e.
Affordance, Primitive to fulfill affordance, and Complex
Task with Primitive dependencies.

• We introduce OAKINK2, a large-scale real-world dataset
for bimanual object manipulation with human demonstra-
tions for both Primitives and Complex Tasks.

• We propose a task-oriented framework, CTC, for com-
plex task and motion planning. CTC consists of a LLM-
based task interpreter for Complex Task decomposition
and a diffusion-based motion generator for Primitive ful-
fillment.
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2. Related Works

Hand-Object Interaction Datasets. The recent research
community has witnessed the emergence of numerous
datasets on hand-object interactions. Earlier datasets [3, 12,
22] focused on static hand-object interactions with limited
diversity. More recent datasets [8, 14, 19, 31, 38, 50, 64]
captured dynamic hand-object interactions, covering bi-
manual interactions [14, 31] and interactions with articu-
lated bodies [14, 64]. We pay particular attention to in-
teraction datasets related to object affordances. [12] ex-
pressed affordances in grasp type labels. [3, 14, 50] col-
lected intention labels for interactions. [28, 60] studied ob-
ject affordance-based hand-object interaction and collected
object segmentations and affordance labels. [38] studied
hand-object interactions in tool-action-object pairs. Our
proposed OAKINK2 captures both human demonstrations
for minimal interaction fulfilling object affordance as Prim-
itive, and demonstrations for Complex Task where these af-
fordances are fulfilled in specific order constrained by their
dependencies.

Decomposition of Manipulation Tasks. Decomposing
complex manipulation tasks into multiple building blocks
across different hierarchies represents a widely adopted
paradigm in the research community. [10] utilize the sym-
bolic interface of task planners to construct an abstract state
space, facilitating the reuse of hierarchical skills. [25, 57]
decompose task specifications into hierarchical neural pro-
grams, which feature bottom-level programs as callable
subroutines interacting with the environment. [9] chain
multiple dexterous policies for achieving long-horizon task
goals. [2] adopt a language-based methodology for de-
composing action hierarchies. In our work, we introduce
an object(affordance)-centric, three-level abstraction frame-
work within OAKINK2 for the decomposition of complex
manipulation tasks into Primitives.

Motion Synthesis. Motion synthesis involves obtaining
credible and realistic human action sequences. There are
plenty of works to generate human motions [45, 46, 53],
even interactions [15, 33, 34, 51, 52, 56] based on differ-
ent probabilistic model backbones like cVAE or denoising
diffusion. In particular, [33, 34, 52] synthesize human mo-
tion based on the object motion, delegating the latter part
to preceding models serving as inputs. Inspired by these
works, we propose a new task within OAKINK2: Task-
aware Motion Fulfillment This task requires the model to
synthesize hand motion trajectories based on given textual
task descriptions and object motions.

Foundation Models in Manipulation Tasks. Recent days
we have seen a significant increase in the application of
foundation models in completing manipulation tasks. There
are significant efforts for end-to-end foundation models

[4, 5, 11] that outputs control signals from visual and tex-
tual inputs. Existing works [6, 26, 49] also leverage the
in-context learning and zero-shot generalization abilities of
Large Language Models (LLMs) for action selection from
an array of choices to realize an autoregressive achieve-
ment of planning. Demonstration of LLM-based program
generation for task completion in [27, 34, 49] inspires us
to explore the ability of LLMs to reason code for discern-
ing interdependencies between object affordances in com-
plex tasks, along with the sequence in which they are im-
plemented. Our OAKINK2 introduce the decomposition of
Complex Tasks into interdependent affordance-based Prim-
itives, accompanied by their diverse image-textual descrip-
tions. Based on this, we show an application of OAKINK2
in Complex Task Completion utilizing existing power of
foundation models.

3. Construction of OAKINK2
We first introduce how the three-level of abstractions are
acquired in Sec. 3.1, then provide the details for data col-
lection and annotation in Sec. 3.2.

3.1. Complex Task Acquisition

Task Initialization. Given a collected repository of ob-
jects, we first construct four manipulation scenarios. Each
scenario has its unique characteristic and corresponds to a
set of complex manipulation tasks. These scenarios are:
1) kitchen table; 2) study room table; 3) demo chem lab;
4) bathroom table. Then, we invite four annotators ( ) to
propose Complex Tasks in these scenarios and select object
cluster that required for these tasks (Fig. 2’s 1st column).

3.1.1 Object Affordance Analysis

After the task targets are determined, we proceed to analyze
the objects’ affordances in given scenarios. The expres-
sion of affordance adheres to the definitions in the previous
OakInk [60]: each affordance contains a specific object part
segmentation (e.g. a bottle cap) and a descriptive phrase tu-
ple (e.g. <secure, sth>), which elucidates the function
of that part. We provide examples of these affordances in
Fig. 2’s 2nd column.

3.1.2 Primitive Task Design

In the second stage, We design Primitives as the minimal
interactions that fulfill those object affordance. Here “min-
imal” indicates the task are required to fully complete the
functionality of a certain affordance without any redundant
interaction process. Each Primitive contains a starting con-
dition, a terminal condition, and the in-between hand-object
interaction process. For example, considering an affordance
associated with a knife blade meant to <cut, sth>, a
corresponding Primitive, cut, requires the subject to move
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Figure 2. Illustration of the complex task acquisition process. This figure use a Complex Task: ‘Prepare a bowl of hot sweet fruit tea.’ to
demonstrate the process. Initially, the annotators ( ) analyze the affordances of four essential objects (a gripper, a knife, a tea bottle, and
a microwave oven) and design corresponding Primitive. For instance, to prepare fruit slices, the Primitive: cut associated with the knife
blade is required. Following this, an expert ( ) arranges the scene for the Complex Task, and then the subject ( ), utilizing the designed
Primitive, plans the execution path of the Complex Task. Later, these execution paths are structured into a Primitive Dependency Graphs.

the blade to completely pass through the object to be cut so
that the separated parts could be detached. In this stage, we
collect all available object affordances and their associated
Primitives, leading to a Primitive tasks pool (Fig. 2’s 3rd
column).

3.1.3 Complex Task Decomposition

In the third stage, we proceed to decompose the previous
proposed Complex Task – characterized by its long-horizon
and multi-goal manipulation targets – into a series of short-
term and single-goal Primitives. In emphasizing the order-
ing of Primitive completion is important for the Complex
Task completion, our approach also delineates the depen-
dencies between Primitives. Therefore, each Complex Task
contains a series of Primitives, along with a Primitive De-
pendency Graph (PDG), which maps out the hierarchical
execution order of these Primitives. Primitives at level 0
(L0) are independent, requiring no prior Primitives to be
completed, while the final level include those Primitives
that bring the Complex Task to completion.

We deploy a dedicated protocol to acquire the decom-
position and dependencies. As shown in Fig. 2’s 4th col-
umn, initially, an expert ( ) instantiates the scene and tar-
get with specific description. Subsequently, a subject ( )
is instructed to describe the order of the completion using
the available Primitive in the pool. Then, the expert records
and organizes this sequence into the PDG, concluding the
Complex Task acquisition process.

3.2. Data Collection and Annotation

After the acquisition of the three-level of abstractions, the
subjects are required to complete the Primitive and Complex
Task respectively in a data capture platform (Fig. 3).

Figure 3. Capture platform. 12 MoCap cameras are circled in
blue and 4 RGB cameras in red.

3.2.1 Capture Setup

The data capture platform contains two major components:
the multi-camera system for recording the manipulation
process and the optical MoCap system for pose tracking.
The MoCap system uses 12 Optitrack Prime 13W infrared
cameras to track the surface markers affixed to the subject’s
upper body, left and right hand, and interacting objects. The
multi-camera system consists of 4 commodity RGB cam-
eras, 3 of which are from allocentric views and 1 is from the
egocentric view. We synchronize all sensors at 30 fps and
calibrate the transformation between these two systems.

3.2.2 Data Annotation

Object Pose. Poses of rigid bodies are directly solved via
the MoCap system. For the poses of articulated bodies, the
base parts of articulated bodies are handled similarly to rigid
bodies, while the articulated parts are divided into two cat-
egories. If the part is large enough to attach enough mark-
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State: The pear required for the
task is not cut. Use knife to cut it.

State: the pear has been cut. 
The teacup lacks sugar and 
water. Add sugar to the teacup.

State: The lid of the sugar can 
has been removed. Transfer the 
sugar to the teacup 

State: The sugar has been 
placed. Teacup lacks water.
Add water in it  

… …

Action: cut the pear with knife 
and place in the teacup.

Action: scoop sugar from sugar 
can to the yellow teacup.

Action: uncap the lid of the 
sugar can.

Action: unscrew the lid of the 
bottle containing water.

… …

Task: prepare a sweet pear soup in the yellow teacup.
Primitives: cut, uncap, scoop, pour, unscrew, place ... 

Figure 4. Commentary of the task execution. The left column
shows the current state of the scene. The center column shows the
narrative dialog retrieved from experts. The right column shows
the upcoming Primitive task to be executed.

ers without blocking the interaction then it will be handled
like rigid bodies. Otherwise, only one marker is attached
to that part. The marker’s position is calibrated in the ob-
ject’s canonical coordinate frame. Later, given the articula-
tion type (e.g. revolution or prismatic), the parameter of the
articulation joint is determined by minimizing the squared
difference between the observed marker position and the re-
covered marker position in the object’s canonical frame.

Human Pose and Surface. The annotation of human pose
and surface relies on SMPL-X [44] body mesh. To actu-
ally acquire human pose and surface, we employ a two-
stage fitting approach in align with the MoSH++ [40]. In
the first stage, we use the captured markers when the sub-
ject in T-pose to fit the subject’s SMPL-X shape parame-
ter β̄ and each marker’s location P

(c)
M in SMPL-X canon-

ical space. From stage one’s optimization result, we can
determine the correspondence C(·) from the subject’s sur-
face markers to the vertices of the SMPL-X model. In the
second stage, we fit the per-frame subject poses parame-
ter θ throughout the task completion process. This fitting
is grounded in the previously acquired shape β̄ and marker
correspondence C(·). With pose and shape parameters ob-
tained, the subject’s body mesh is reconstructed using the
SMPL-X model. Other body representations like MANO
are derived from this result. Refer to Sup. Mat for details.

Commentary of Task Execution. After the manipulation
process is completed, we send the video recording to ex-
perts for analysis, requesting them to furnish detailed com-

mentary on the task execution process. At each Primitive
step, experts are asked to provide comments on the current
task state and the forthcoming action. Specifically, given the
execution of the previous Primitive, experts are asked to 1)
summarize the tasks yet to be completed to achieve the ma-
nipulation goals, considering both the current scene and the
upcoming Primitive slated for execution; and 2) offer de-
scriptions of the next action using the available Primitives
in the pool. This process is illustrated in Fig. 4. The narra-
tive text provided by experts are subsequently refined using
GPT-4 [43] to serve as commentary. OAKINK2 features on
these commentaries as they encapsulate the expert’s chain-
of-thought when observing the manipulation process. These
commentaries serve not only to interpret user behaviors but
also to inform the generation of user actions.

4. The OAKINK2 Dataset
4.1. Data and Annotation List

OAKINK2 provide RGB videos that record the manipu-
lation processes. These videos are collected from multi-
view (1 egocentric and 3 allocentric) setup, synchronized
at 30 fps, with resolution 848 × 480. The annotations con-
tains two parts: 1) 3D motion, including pose and shape
for the human upper-body, hands, and objects (with artic-
ulation parameters) during the interaction process; and the
2) task specification, including object affordances, Prim-
itives that correspond to these affordances, Complex Tasks
with task goals, initial conditions, PDGs, expert commen-
tary, and subject’s completion sequence. Evaluations of the
3D annotation qualities are provided in Sup. Mat. Annota-
tion on 3D hand keypoints undergo cross-dataset validation
with a reconstruction model, while the 3D poses associated
with grasping actions are examined for the physical prop-
erty integrity.

4.2. Dataset Statistics
OAKINK2 sets up four scenarios of hand-object interac-
tion with a total number of 38 long-horizon complex ma-
nipulation goals, which instantiates to 150 Complex Tasks.
OAKINK2 contains in total 75 objects and 39 affordance.
These affordances map to 60 types of Primitives. OAKINK2
contains 627 sequences of bimanual dexterous hand-object
interaction in total. 363 of these are for Primitives and
264 are for Complex Tasks. In total, OAKINK2 contains
4.01M image frames. We compare OAKINK2 to multiple
existing hand-object interaction datasets in Tab. 1. Here we
highlight several notable features of OAKINK2: 1) it pro-
vides interaction grounded in object affordance (vs. HO3D,
DexYCB); 2) it features long-horizon manipulation goals
(vs. ARCTIC, HOI4D, GRAB); 3) it includes 3D pose and
shape annotation for both hands and objects (vs. EGO4D,
AssemblyHands); and 4) it offers task decomposition using
Primitives, which is not available in any datasets in Tab. 1.
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Dataset image
mod. resolution #frame #views #subj #obj 3D

gnd.
real /
syn.

label
method

hand
pose

obj
pose

afford.
inter.

dynamic
inter.

long-
horizon

task
decomp.

EGO4D [17] ✓ ∼ ∼ 1 931 – ✗ – – ✗ ✗ ✗ ✗ ✓ ✓
HO3D [19] ✓ 640× 480 78K 1-5 10 10 ✓ real auto ✓ ✓ ✗ ✓ ✗ ✗
GRAB [50] ✗ – 1.62M – 10 51 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
H2O [31] ✓ 1280× 720 571K 5 4 8 ✓ real auto ✓ ✓ ✓ ✓ ✗ ✗
HOI4D [37] ✓ 1280× 800 3M 1 9 1000 ✓ real crowd ✓ ✓ ✓ ✓ ✗ ✗
ARCTIC [14] ✓ 2800× 2000 2.1M 9 10 11 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
AssemblyHands [42] ✓ 1920× 1080 3.03M 12 34 – ✓ real semi-auto ✓ ✗ ✓ ✓ ✓ ✓
Ego-Exo4D [18] ✓ ∼ ∼ 5-6 839 – ✓ real semi-auto ✓ ✗ ✗ ✓ ✓ ✓
OakInk-Image [60] ✓ 848× 480 230K 4 12 100 ✓ real crowd ✓ ✓ ✓ ✓ ✗ ✗

OAKINK2 ✓ 848× 480 4.01M 4 9 75 ✓ real mocap ✓ ✓ ✓ ✓ ✓ ✓

Table 1. A cross-comparison among various public datasets. (Refer to Sup. Mat for the full table.)

5. Selected Applications

5.1. Hand Mesh Reconstruction

The Hand Mesh Reconstruction (HMR) task is to estimate
the 3D hand pose during the interaction process from the
captured images. We benchmark HMR task under both
single-view settings and multi-view settings. In single-view
settings, the image input only contains one view, egocentric
or allocentric. In multi-view settings, the image input will
contain multiple views, together with the camera calibration
parameters. For both settings we partition the corresponded
task-specified subsets at the sequence level, maintaining the
proportion of samples in train/val/test sets at approximately
70%, 5%, and 25%.

We evaluate mean per joint position error (MPJPE),
mean per vertex position error (MPVPE) in world space,
wrist(root)-relative (RR) systems and systems after Pro-
crustes analysis (PA). We also evaluate area under curve
(AUC) of correct keypoints percentage within range 0 −
20mm in root-relative systems. We show HMR benchmark
results under both settings in Tab. 2.

Setting Methods PA- PA- RR-MPJPE RR MPJPE MPVPEMPJPE MPVPE (AUC) -MPVPE

Mono
METRO [35] 6.90 6.47 17.56 (0.410) 16.44 – –
RLE [32] 5.46 6.86 13.08 (0.441) 14.03 – –+ HandTailer [39]

Multi KP-based Fit [61] 9.20 8.83 15.63 (0.349) 15.38 19.30 19.11
POEM [61] 6.18 6.61 12.12 (0.581) 12.15 9.17 9.52

Table 2. Single- and multi-view HMR evaluation results in mm.

5.2. Task-aware Motion Fulfillment (TaMF)

To achieve task objectives in interaction scenarios, we intro-
duce a novel task: Task-aware Motion Fulfillment (TaMF).
It targets at the generation of hand motion sequences that
can fulfill given object trajectories conditioned on textual
task descriptions.

Task Formulation. Given a textual description of the
Primitive task: textPT, we assume the involved objects

geometries Vo = {Vo,m} and their motion trajectories
To = {T(i)

o,m} during the interaction process are known. We
use subscript h to represent human hands, o to represent the
object, m to index different object instances (and different
parts of the same instance) and superscript (i) to index dif-
ferent timestamps. The task is to generate a corresponding
hands motion trajectory Ph = {P(0:L)

h } conditioned on the
textual description textPT, object geometries Vo, and mo-
tion trajectories To.

Evaluation Metrics. We evaluate contact ratio (CR) and
solid intersection volume (SIV) to measure the physical
plausibility of the generated motion. On sequence-level,
we evaluate motion smoothness with Power Spectrum KL
divergence of joints (PSKL-J) as in human motion gener-
ation, and evaluate FID to measure distances between the
ground-truth motions and the generated motions. We also
conduct a perceptual study to evaluate the level of realism
for the generated motion. Detailed definition of these met-
rics can be found in Sup. Mat.
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Figure 5. Architecture of MF-MDM. First sample random noises
xT ; then at each step iterating from T to 1, MF-MDM G predicts
the cleaned sample x̂0 and then diffuse it back to xt−1. After the
generated sample x0 is acquired, it is refined by MF-MDM R for
better interaction details.
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Figure 6. Qualitative Visualization of the generated hand motion
in TaMF model.

Physical lausibility Motion Smoothness
CR↑ SIV (cm3)↓ PSKL-J (g.t., p.) ↓ (p., g.t.) ↓
0.90 4.17 0.0446 0.0460

FID Perceptual Score
Dataset Generated

1.369 4.66± 0.48 3.64± 0.85

Table 3. Evaluations of generated hand motion in TaMF model.
PSKL-J is evaluated between the training data (g.t.) and the gen-
erated hand motion trajectory (p.); both directions are included as
PSKL-J is an asymmetric metric.

Model and Results. We enhance a diffusion-based motion
generation model: MDM [53], tailoring it to the nuanced
requirements of task-aware hand motion synthesis. The
model architecture is visualized in Fig. 5. Our proposed
model, named as MF-MDM, consists of two components:
1) MF-MDM G, which generates human motion trajectory
conditioned on textual descriptions of tasks and object mo-
tion trajectories; and 2) MF-MDM R, which refines gen-
erated hand motion based on spatial hand-object relation-
ships. The sampling process is modeled as a reversed dif-
fusion process of gradually cleaning noised samples. The
key difference for MF-MDM is to incorporate multi-object
related probabilistic conditions into existing transformer en-
coder. To achieve this, we employ an extra layer, Sequential
Merging, to aggregate spatial relationships in the interaction
scene at each frame. The object motion trajectories and the
previously diffused hand motion trajectory are projected to
the same dimension and aggregated. For the refine model
MF-MDM R, we append hand-object distances as an ex-
tra spatial information for Sequential Merging layer. The
aggregated embedding sequence is combined with other to-
kens before being fed into the main transformer encoder:
the noising step token, the text embedding of the task de-
scription from the CLIP text encoder, and the aggregated

object geometry embeddings from the PointBert encoder.
We also provide the quantitative evaluations in Tab. 3 and
qualitative visualization in Fig. 6.

5.3. Complex Task Completion (CTC)

OAKINK2 brings in a new application – breaking Complex
Task goals into paths of Primitive motions. The Complex
Task Completion (CTC) is to generate hands motion trajec-
tories based on a textual description of the scene and the
task objectives. Considering the challenge of direct trans-
lation from complex task and scene text to end-to-end mo-
tion generation, which involves a transition across multi-
ple modalities, there is currently no adequate framework to
address this problem. Therefore, we decompose CTC into
three stages, tackling each one sequentially.

The process initially begins with text-based 1) Primitive
planning. The recent breakthroughs in foundation mod-
els [43, 62], such as Large Language Models (LLMs), al-
low us to utilize them as the task planner, as these models
already have the capability to plan the Primitive execution
path, while only requiring proper guidance and context. The
output of this stage is a task planning script that includes
the execution order for each Primitive. Subsequently, the
problem is reformulated into generating the hand and ob-
ject motion trajectories for each Primitive, based on the tar-
get task and scene state, thus modeling P (Ph,To|textPT).
We again break this down into two subtasks: 2) object tra-
jectory retrieval, i.e. P (To|textPT) and 3) hand motion
generation i.e. P (Ph|To, textPT). The former is solved
by re-targeting1 object motion from expert’s demonstration
to meet the newly generated random scene. The latter is our
pre-defined Task-aware Motion Fulfillment model (TaMF,
Sec. 5.2).

1⃝ Primitive Planning by LLMs. In this stage, we lever-
age the off-the-shelf GPT-4 [43] to generate program that
decompose the Complex Task as a sequence of Primitive.
We first embed the scene description textscene, the com-
plex task description textgoal and each object’s descrip-
tion {textobj} into the prompt based on manually designed
templates. GPT-4 will respond to the prompt using the pro-
gram. As shown in Fig. 8’s code block, this program in-
stantiates the Primitive Dependency Graph (PDG) using a
sequence of code snippets, where each node of the PDG
(Primitive) is implemented as a execute([primitive],
...)function, and the edge of the PDG is implemented
as function’s calling order. Then we use a dependency
checker built upon the PDG information in OAKINK2 to
test whether the generated program completes the Complex
Task without violation of constraints. If a successful pro-
gram is obtained, we move to the next stage.

1re-target refers to the process of adjusting pre-existing motion trajec-
tories to align with new initial and target poses of objects, ensuring com-
patibility with the current scene
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Figure 7. Visualization of Motion Generation Outcome in Complex Task Completion.
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Figure 8. The diagram of Complex Task Completion. The task
input populates a predefined template to generate the prompt for
planning. The 1⃝ LLM (GPT-4) responds with code of the pro-
gram’s execution path, delineating the DAG for Primitive depen-
dency. Within the code response block, the orange snippets
marks the 2⃝ Oracle to re-target object trajectories; the blue snip-
pets indicate 3⃝ motion generators for Primitives.

At this moment, the execute() function in Fig. 8’s
code snippets remain incomplete, lacking two pivotal com-
ponents: the object trajectory and the hand motion
generator. We will address these components in the fol-
lowing two stages.

2⃝ Object Trajectories Retrieval from Oracle. Accom-
plishing a Primitive task necessitates the object’s motion
trajectories within that context. In this stage, we leverage
an Oracle to retrieve object motion trajectories based on a
certain scene and Primitive. The term “Oracle” denotes a
dual-function capability: 1) pursuant to a given Primitive, it
fetches the object motion trajectories within the OAKINK2
dataset, and 2) it re-targets these expert-derived trajectories
based on the initial, functional and post poses of the objects,
thereby conforming to new scene requirements and gener-
ating the desired object trajectory.

3⃝ Hand Motion Generation with TaMF. Once the ob-
ject trajectories are obtained, the final stage is to generate
hand motion trajectories for each Primitive. To this end, we

utilize our previously designed Task-aware Motion Fulfill-
ment model (TaMF, Sec. 5.2) as a generalist generator
(indicating that a singular TaMF model accommodates all
Primitives). After populating all execute() functions with
the determined object trajectories and generator, the pro-
gram is executed in sequel and all the Primitive trajectories
are connected by interpolation. This interpolation ensures
smooth transitions by linking the final state of a preceding
trajectory with the initial state of the subsequent one.

We show an example of the generated motions for Com-
plex Task in Fig. 7. Details of test scene generation, prompts
and templates, evaluations of primitive planning, success/-
failure cases are referred to Sup. Mat.

6. Future Works
OAKINK2 is a dataset packing a variety of hand-object in-
teractions for human completion of long-horizon and multi-
goal complex manipulation tasks. OAKINK2 incorporates
Primitive demonstrations, characterized as minimal inter-
actions that fulfill object affordance, and Complex Tasks
demonstrations, which also include their decomposition
into interdependent Primitives.

First, we expect OAKINK2 to support large-scale
language-manipulation pre-training, improving the perfor-
mance of multi-modal (e.g. vision-language-action [62])
models for Complex Task Completion. In the longer
term, we expect OAKINK2 can potentially support learn-
ing frameworks capable of end-to-end text-to-manipulation
generation.

Second, OAKINK2 can empower various embodied ma-
nipulation tasks by re-targeting the collected demonstra-
tions of Primitives to different embodiments, such as het-
erogeneous hands and platforms as [21, 47, 48, 55, 58] im-
plied. The interaction scenarios constructed in OAKINK2
can also be transferred and integrated into existing simula-
tion environments [41, 54] to support embodied learning on
object manipulation.
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