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Abstract

We present a neural radiance field method for urban-
scale semantic and building-level instance segmentation
from aerial images by lifting noisy 2D labels to 3D. This is
a challenging problem due to two primary reasons. Firstly,
objects in urban aerial images exhibit substantial varia-
tions in size, including buildings, cars, and roads, which
pose a significant challenge for accurate 2D segmentation.
Secondly, the 2D labels generated by existing segmenta-
tion methods suffer from the multi-view inconsistency prob-
lem, especially in the case of aerial images, where each
image captures only a small portion of the entire scene.
To overcome these limitations, we first introduce a scale-
adaptive semantic label fusion strategy that enhances the
segmentation of objects of varying sizes by combining la-
bels predicted from different altitudes, harnessing the novel-
view synthesis capabilities of NeRF. We then introduce a
novel cross-view instance label grouping based on the 3D
scene representation to mitigate the multi-view inconsis-
tency problem in the 2D instance labels. Furthermore, we
exploit multi-view reconstructed depth priors to improve
the geometric quality of the reconstructed radiance field,
resulting in enhanced segmentation results. Experiments
on multiple real-world urban-scale datasets demonstrate
that our approach outperforms existing methods, high-
lighting its effectiveness. The source code is available at
https://github.com/zyqz97/Aerial lifting.

1. Introduction
3D urban-scale semantic understanding plays a crucial role
in various applications, from urban planning to autonomous
driving systems. Accurate semantic and instance-level seg-
mentation of objects in 3D scenes is essential for a wide
range of tasks.

Existing 3D urban semantic understanding methods pri-
marily rely on point cloud representation [34, 64]. They
typically train a point cloud segmentation method on la-
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Figure 1. Given multi-view aerial images, our method lifts 2D
labels to optimize the radiance, semantic, and instance fields for
urban-scale semantic and building-level instance understanding.

beled 3D datasets [32]. However, annotating 3D data is
labor-intensive, posing challenges in creating a comprehen-
sive training dataset with diverse scenes.

Recently, neural radiance fields (NeRF) [57] have
emerged as an effective 3D scene representation, enabling
photorealistic rendering of fine details. Several methods
are proposed to perform semantic segmentation or panop-
tic segmentation on NeRF by lifting 2D estimation to 3D
[71, 101]. However, these methods mainly validate on the
room-scale indoor scenes or street-view outdoor scenes. In
this work, we aim to perform urban-scale semantic and
building-level instance segmentation from multi-view aerial
images. Our method leverages neural radiance fields to lift
noisy 2D labels to a 3D representation without manual 3D
annotations, effectively bridging the gap between 2D im-
agery and the complex 3D urban environment (see Fig. 1).

This is inherently challenging due to several factors. On
one hand, urban aerial images capture scenes that encom-
pass a wide range of object sizes, including buildings, ve-
hicles, and roads [51]. Existing segmentation methods of-
ten struggle to handle these variations effectively as their
training data distribution is different from that of aerial im-
ages [13], or lack large-scale labeled aerial images for fine-
tuning [85]. On the other hand, 2D instance labels gener-
ated by existing segmentation methods often suffer from
the multi-view inconsistency problem (e.g., an object is
segmented as one instance in a view might be segmented
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into multiple independent instances in another view). This
problem becomes particularly pronounced in the context of
aerial images, where each image captures only a small por-
tion of the entire scene. Furthermore, the geometry recon-
struction quality of the large-scale scene will largely affect
the semantic segmentation.

To address these problems, we introduce three key strate-
gies to enhance the accuracy and robustness of our segmen-
tation approach. First, we propose a scale-adaptive seman-
tic label fusion strategy, enabling the segmentation of ob-
jects of varying sizes by fusing labels predicted from differ-
ent altitudes. This leverages the novel-view synthesis capa-
bilities of NeRF [57] to render photorealistic images at dif-
ferent altitudes. Second, we introduce a cross-view instance
label grouping strategy to group instance labels in a view
utilizing information from other views. It is achieved by
performing cross-view label projection based on the relative
camera poses and geometry of the 3D scene representation.
This strategy effectively mitigates the multi-view inconsis-
tency problem in the 2D instance labels, providing a more
coherent and accurate segmentation of urban objects. Fur-
thermore, we exploit depth priors obtained from multi-view
stereo to improve the geometric quality of the reconstructed
radiance field, ultimately leading to enhanced segmentation
results. Our approach has been extensively evaluated on
multiple real-world urban-scale scenes, demonstrating its
superior performance compared to existing methods.

In summary, the key contributions are as follows:

• We present a novel radiance field approach for urban-
scale semantic and building-level instance segmentation
from aerial images by lifting noisy 2D labels to 3D,
achieving state-of-the-art results.

• We introduce a scale-adaptive semantic label fusion strat-
egy that combines 2D labels predicted from different al-
titudes to enhance the segmentation of objects of varying
sizes, leveraging NeRF’s novel-view synthesis capabili-
ties.

• We present a cross-view instance label grouping approach
based on the 3D scene representation to mitigate the
multi-view inconsistency problem in 2D instance labels,
resulting in more reliable instance segmentation results.

2. Related Work

3D Urban Semantic Learning Traditional 3D semantic
learning methods involve training models on 3D datasets
with ground-truth annotations [16, 27, 30, 33, 35, 42, 52,
65, 84, 92, 97]. These methods often operate on ex-
plicit representations such as point clouds [34, 64]. For
3D urban scenes, some methods perform 3D building in-
stance segmentation from meshes [1, 6, 10] or point clouds
[11, 59, 93]. Recent research shows that implicit represen-
tations [60, 62, 95] can effectively represent continuous and

detailed surfaces and enable differentiable rendering, mak-
ing them a promising choice for semantic understanding. In
this work, we leverage the radiance field representation [57]
and lift the estimated 2D labels to 3D through per-scene op-
timization.
Neural Scene Representations Traditional multi-view 3D
reconstruction methods [2, 21, 44, 47, 72, 103] often apply
structure-from-motion (SFM) techniques to estimate cam-
era poses [68], followed by dense multi-view stereo [24, 25]
to generate 3D models.

Recently, neural scene representations have achieved
significant success in 3D scene modeling [70, 77–80, 90].
Specifically, neural radiance fields (NeRF) [57] achieve
photorealistic rendering for diverse scenes. Subsequently,
many methods have been proposed to enhance NeRF in var-
ious aspects, including surface geometry [61, 86, 94, 98]
and optimization speed [9, 20, 36, 58, 74]. To handle large-
scale scenes, several methods introduce sophisticated de-
signs to improve rendering quality and reconstruction ge-
ometry [28, 45, 50, 53, 56, 87, 89, 91, 99, 100]. For ex-
ample, Block-NeRF [76] and Mega-NeRF [81] decompose
the scene into several partitions, with each partition repre-
sented by a different local NeRF. StreetSurf [28] proposed a
variant of the hash-grid [58], which allocates the grid space
according to the ratios of the three axes, making full use of
the grid space. In this work, our goal is to extend NeRF to
achieve urban-scale semantic understanding.
Semantic Understanding with Neural Fields Recent re-
search has explored the use of NeRF for semantic under-
standing of 3D scenes. Semantic-NeRF [101] fuses 2D se-
mantic labels into 3D using an additional MLP branch to
predict semantic logits [54, 83]. A similar idea of fusing
2D to 3D with NeRF has also been applied to fuse multi-
view features [7, 31, 37, 40, 75] to enable open-vocabulary
understanding. Moreover, leveraging the powerful segment
anything (SAM) model [39], SA3D [8] proposes to segment
a single object in NeRF with a user click [12].

For 3D panoptic segmentation, one of the main chal-
lenges is obtaining appropriate instance supervision across
multiple views [5, 49]. Instance-NeRF [49] and Panop-
tic NeRF [23] use 3D instance information for training.
PNF [41] relies on object tracking to provide instance su-
pervision. Panoptic Lifting [71] adopts linear assignment
to match the current predicted 3D instance with the pro-
vided 2D labels. Contrastive Lifting [4] utilizes feature
contrastive learning, followed by clustering to obtain in-
stance information [15]. However, existing methods are
mainly designed for indoor [18, 67, 73] or outdoor street-
view [26, 46] scenes. In contrast, our focus is on urban
scene understanding from aerial images, which is particu-
larly challenging as aerial images encompass a wide range
of object sizes and each image captures only a small portion
of the entire scene.
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Figure 2. Overview. We present a neural radiance field (NeRF) method for urban-scale semantic and building-level instance segmentation
from aerial images by lifting noisy 2D labels to 3D. For semantic segmentation, we adopt a scale-adaptive semantic label fusion strategy to
fuse the semantic labels from different altitudes using images rendered by NeRF, mitigating the ambiguities of the 2D semantic labels. For
instance segmentation, we propose a cross-view instance label grouping strategy to guide the training of instance field. In addition, a depth
prior from Multi-view Stereo (MVS) is introduced to enhance the geometry reconstruction, leading to more accurate semantic learning.

3. Method

3.1. Overview

Given multi-view posed aerial images {I} of an urban
scene, we perform 3D semantic and building-level instance
understanding of the scene based on the neural radiance
field (NeRF) [57]. Our method applies off-the-shelf meth-
ods [13, 39] to obtain the semantic labels {M} and instance
labels {H} for input images, and then lifts the noisy 2D
labels to 3D via per-scene optimization (see Fig. 2).

Challenges There are two critical challenges that need
to be addressed. First, due to significant variations in ob-
ject size, state-of-the-art semantic segmentation methods,
such as Mask2Former [13, 14] trained on daily images
and UNetFormer [85] trained on a small scale of aerial
images, struggle to generate reliable semantic labels for
aerial images (see Fig. 3 (a)). Secondly, obtaining accu-
rate building instance segmentation is challenging due to
the diverse shapes and substantial size of buildings. Fig-
ure 3 (b) shows that the leading method [29, 43] for build-
ing instance segmentation in aerial images fails to generate
robust instance labels, especially for dense cluster of build-
ings. Recently, SAM [39] demonstrates superior general-
ization ability in semantic-agnostic instance segmentation
with precise mask boundaries. However, SAM produces
over-segmented masks and multi-view inconsistent instance
segmentation (e.g., a building segmented as one instance in
one view might become multiple different instances in other
views).

Lifting such inaccurate 2D labels to 3D with NeRF re-
sults in inaccurate 3D semantic and instance segmentation.
To address these issues, we introduce a scale-adaptive se-
mantic label fusion strategy for semantic segmentation and
a cross-view instance label grouping strategy for instance
segmentation to provide more accurate and consistent su-

Input UNetFormer Mask2Former

(a) Semantic segmentation from 2D methods
Input Detectron SAM

(b) Instance segmentation from 2D methods

Figure 3. Problem of existing 2D semantic and instance segmen-
tation methods. (a) We use the red color to highlight the build-
ings and white for roads. UNetFormer suffers from recogniz-
ing road and Mask2Former suffers from misclassification between
rooftops and roads. (b) Distinctive colors are assigned to differ-
ent instances. The instance labels obtained from Detectron appear
overly large, while those from SAM seem excessively small.

pervision for the 2D-to-3D lifting process.

3.2. 3D Scene Representation

Neural Radiance Field We represent the geometry and
appearance of a 3D scene with NeRF [57], which employs a
continuous function to map a 3D point xk in space and view
direction d to density σk and color ck. The pixel color can
be computed by integrating the color of the points sampled
along its visual ray r through volume rendering:

C̃(r) =

K∑
k=1

Tk(1− exp(−σkδk))ck, (1)

where Tk = exp
(
−
∑k−1

j=1 σjδj

)
, and δk = tk+1 − tk

is the distance between adjacent sampled points. During
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optimization, a NeRF is fitted to a scene by minimizing the
reconstruction error between the rendered color C̃ and the
captured color C in the sampled ray set R:

Lcolor =
∑
r∈R

∥C̃(r)− C(r)∥22. (2)

Semantic and Instance Fields We follow semantic-
NeRF [101] and panoptic lifting [71] to add a semantic
branch and an instance branch to represent the 3D semantic
and instance fields. The semantic and instance labels S̃(r)
of a ray can be rendered by volume rendering as Eq. (1):

S̃(r) =

K∑
k=1

Tk(1− exp(−σkδk))sk (3)

where sk is the semantic or instance output of a 3D point.
Given the 2D semantic labels for each image, the se-

mantic field can be optimized by minimizing the multi-class
cross-entropy loss Lsemantic between the rendered semantic
labels and the 2D labels [101]. The loss function for in-
stance field Linstance needs special design, as the instance
IDs of the same 3D instance predicted from different images
are not consistent (e.g., a building instance might have an ID
of 1 in one view and an ID of 2 in another view). Existing
methods propose to solve a linear assignment problem to
match the best 3D and 2D instance pairs [71] or utilize con-
trastive feature learning to cluster 3D instances [4]. Note
that these methods do not consider the problem of multi-
view instance label inconsistency, where an instance might
be segmented into multiple different instances in different
views, which is common in urban aerial images.

3.3. Urban Semantic Label Fusion

We employ the state-of-the-art Mask2Former [13] to esti-
mate 2D segmentation masks {M} for input views, focus-
ing on the four primary categories in the urban landscape:
Buildings, Trees, Cars, and Roads. Other methods can also
be used, but we found Mask2Former is more robust and
accurate [4, 71]. However, segmentation labels generated
through 2D methods suffer from ambiguities, e.g. building
rooftops may erroneously be labeled as road surfaces (see
Fig. 3 (a)). This misclassification stems from the scale vari-
ability inherent in aerial imagery, where each image cap-
tures only a limited portion of the large building.

To circumvent this issue, we propose a scale-adaptive se-
mantic label fusion strategy to improve the semantic label.
This idea stems from the observation that the semantic la-
beling of large object categories (e.g., building) is more reli-
able when viewed from a distance view point, as the object
will become smaller in the context (see Fig. 4).
Scale-adaptive Semantic Label Fusion NeRF has a great
ability for photorealistic novel-view synthesis compared to
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Far View
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M2F Semantic
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Semantic Replace Building
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Fusion Semantic
SAM 

Refine

Far View

(a) Illustration of Scale-adaptive Semantic Label Fusion

(b) Label Conflict in M2F (c) Label Conflict in Ours

Figure 4. (a) Illustration of the scale-adaptive semantic label fu-
sion process. (b)-(c) Visualization of the conflict level in 3D points
using entropy, where higher entropy indicates higher conflict level.

the explicit representations, e.g., point clouds. We perform
novel-view synthesis based on the radiance field to simulate
images captured from elevated altitudes. For each original
image, we increase its camera altitudes for novel-view ren-
dering, rendering a set of far view images {If}. We then
compute the segmentation mask {Mf} for the far view im-
ages. By leveraging the depth information derived from the
neural radiance field, the segmentation obtained from the
far view is then back-projected to the original view for re-
fining the mask of the building category. Specifically, con-
sidering a pixel with the coordinate of pf in a far view im-
age, the projected pixel coordinate po in the original image
is defined as:

po ∼ KTf→oD̃
f (pf )K−1pf , (4)

where K is the camera intrinsic, Tf→o is the relative trans-
formation from the far to the original camera, and D̃f rep-
resents the rendered depth map of the far view image.

Furthermore, we apply SAM on the original captured im-
ages to predict semantic agnostic masks, which will be uti-
lized to refine the masks of small-scale categories, e.g. trees
and cars. Specifically, for each semantic mask of the small-
scale categories, we match it with the SAM mask that has
an intersection of union (IoU) larger than 0.5. The matched
SAM masks will be the refined semantic mask.

To verify the effectiveness of our method, we mea-
sure the label consistency in 3D based on the UrbanBIS
dataset [93]. Given the 3D point cloud, we back-project the
predicted 2D semantic label for each view to the 3D space
leveraging the camera poses. Each 3D point will receive
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multiple 2D semantic labels from different views, and we
compute the entropy to measure the inconsistency across
views, reflecting the accuracy of labels. Figure 4 presents
the conflict with entropy and shows the visualization re-
sults. Compared to Mask2Former, our scale-adaptive in-
tegration for semantic labels significantly reduces ambigu-
ity between building rooftops and roadways at the original
scale, thereby improving per-view segmentation accuracy
and essentially reducing the difficulty of 2D-to-3D lifting.

3.4. Building Instance Label Grouping

Semantic-agnostic Instance Generation Existing in-
stance segmentation methods [29, 43] struggle with robust
instance segmentation for aerial images of diverse urban
scenes. Impressed by the superior generalization ability of
SAM [39], we utilize SAM to generate semantic-agnostic
masks for building instance segmentation. For each image,
a grid of 32× 32 points will be utilized as the input prompt
for SAM to predict a set of possible instances.

However, despite its generality, the mask generated by
SAM has two characteristics that harm the building instance
segmentation: 1) The SAM model generates masks at dif-
ferent levels of granularity, which might lead to small masks
nested inside larger ones, resulting in redundant masks that
belong to the same instance (e.g., window mask on top of
the building mask). 2) The generated 2D masks for the
same 3D instance are not consistent across multi-view, e.g.,
a building instance which is accurately segmented in one
view might be segmented into multiple different instances.
Geometry-guided Instance Filtering The geometry-
guided instance filtering is designed to identify and remove
smaller masks nested inside larger masks and exhibit lim-
ited height variation. Specifically, leveraging the camera
parameters and the depth map D̃ of each image computed
from the radiance field, we map pixels of each mask to 3D
space to determine their physical heights as the difference of
the highest and the lowest altitudes. Subsequently, we filter
the nested masks with heights smaller than a threshold.
Cross-view Instance Label Grouping As an instance
might be segmented into different blocks in different views
by SAM, directly lifting SAM masks to the 3D instance
field is suboptimal as 3D points will receive conflict super-
vision in different views. To resolve this problem, we intro-
duce a cross-view instance label grouping strategy. The key
idea is to synchronize the instance segmentation across dif-
ferent views, thereby consolidating smaller segmented in-
stances into a singular, coherent instance (see Fig. 5).

Consider a scenario with N images. For each image,
denoted as the i-th view, we have a set of predicted SAM
masks, represented as Hi. When examining the instance
segmentation from the perspective of the i-th view, it is
essential to incorporate the segmentation information from
other views. To achieve this, we project the SAM masks
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Figure 5. Illustration of cross-view instance label grouping. Given
the SAM mask of one view, we can get the cross-view guidance
map for the instance field training.

from all other views (j) onto the i-th view. This set of pro-
jected masks is denoted by {Hj→i|j = 1, . . . , N, j ̸= i},
using camera parameters and depth as specified in Eq. (4).

For each instance mask Hk
i in the i-th view, we seek

to identify corresponding masks in Hj→i. A match be-
tween a pair of masks, Hk

i and Hl
j→i, is established if the

intersection-over-minimum-area ratio exceeds a predefined

threshold τ as
|Hk

i ∩Hl
j→i|

min(|Hk
i |,|Hl

j→i|)
> τ , where | · | represents

the area of a mask, and τ is set to 0.5. Upon identifying a
match, the corresponding masks are merged by uniting their
areas, resulting in an expanded mask Hk

i∪j . This process
is repeated for all matches, leading to a collection of ex-
panded masks. These expanded masks are then combined
to form a comprehensive cross-view mask for each instance
as Uk

i =
⋃

j ̸=i H
k
i∪j .

This procedure is executed for every instance mask in the
i-th view, resulting into a set of cross-view masks. These
masks are then organized in ascending order based on their
areas, and the mask value is set to the ID of the instance
mask. Subsequently, they are sequentially layered onto a
map of dimensions H × W , creating the cross-view guid-
ance map, Ui. In this map, smaller masks are progressively
overwritten by larger ones, which effectively groups the in-
stances more accurately.

With the help of the cross-view guidance map, different
instances in the current view are considered the same group
if more than 50% of their pixels in the cross-view guidance
map have the same value. During training, we randomly se-
lect a single instance from each group. This approach sub-
stantially reduces the occurrence of conflicts in the dense
SAM mask annotations, such as when two pixels from the
same building instance might be incorrectly classified as be-
longing to separate instances.

3.5. Depth Priors from Multi-view Stereo

In the case of expansive urban environments and sparse
observations, optimizing the radiance field solely with the
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photometric loss can result in imprecise geometry and float-
ing artifacts. To mitigate this, our method integrates depth
cues derived from multi-view stereo techniques to enforce
geometric consistency [68, 69]. We reconstruct depth map
D for each view and incorporate a depth regularization term
in our loss function to refine the NeRF’s geometry:

Ldepth =
∑
r∈R

∥D̃(r)−D(r)∥22, (5)

where D̃(r) denotes the rendered depth obtained by volume
rendering the ray distance in a similar way as in Eq. (1).

Previous studies have leveraged monocular depth [98]
or sparse point information [19, 22] for similar purposes.
However, we found that the monocular depth estimation
methods [66] are not robust to aerial images, especially
for views orthogonal to the ground, while the supervision
from the sparse depth information is not sufficient for urban
scenes.

3.6. Optimization

The overall loss function can be written as:

L = Lcolor + λdLdepth + λsLsemantic + λiLinstance, (6)

where λd, λs, and λi are the loss weights and set to 1 in the
experiments.

During optimization, we first optimize the radiance field
to recover the scene geometry and appearance, and then
optimize the semantic and instance fields. The loss func-
tion for semantic is the multi-class cross-entropy loss [101].
For instance field optimization, we integrate our cross-view
grouping strategy with loss functions introduced by con-
trastive lifting [4] and panoptic lifting [71]. During op-
timization, we filter image rays that do not belong to the
building category. Experiments show that our method effec-
tively improves contrastive lifting and panoptic lifting for
building instance segmentation in urban scenes.

4. Experiments

Datasets We evaluate our method on the real-world ur-
ban scene dataset, named UrbanBIS [93] dataset. UrbanBIS
dataset provides 3D semantic segmentation annotations, in-
cluding buildings, roads, cars, and trees, as well as 3D
building-level instance annotations (see Table 1). We se-
lect four regions with a high density of building instances
and various architecture styles, namely Yingrenshi, Yuehai-
Campus, Longhua-1, and Longhua-2. We downsample im-
ages by four times for training and uniformly sample around
ten images as the testing set for each scene.
Evaluation Metrics We measure the quality of the novel-
view synthesis and semantic segmentation in terms of
PSNR and the mean intersection over union (mIoU), re-
spectively. To evaluate the instance building segmentation,

Table 1. Statistics of the UrbanBIS dataset [93].
Dataset Covered area Number of images Resolutions Building instances

Yingrenshi 440 × 220 m2 854 3648 × 5472 41
Yuehai-Campus 900 × 280 m2 955 3648 × 5472 30

Longhua-1 550 × 530 m2 999 5460 × 8192 26
Longhua-2 550 × 300 m2 677 5460 × 8192 38

Table 2. Comparison with 2D segmentation methods.

Method
Yingrenshi Yuehai-Campus Longhua-1 Longhua-2

building road building road building road building road

UNetFormer [85] 76.0 17.5 68.7 24.5 77.5 4.5 78.4 10.8
Mask2Former [13] 84.8 49.7 70.9 44.7 68.5 47.5 70.0 42.5
Scale-adaptive fusion 93.2 56.8 90.7 52.0 77.9 48.7 77.4 43.0

we use a scene-level Panoptic Quality (PQscene) metric [71],
which takes the consistency of the instance across different
views into account. As we focus on the segmentation of
building instances, we report the PQscene of the building.

4.1. Evaluation on Semantic Segmentation

Choice of 2D Segmentation Method We discuss two
types of 2D segmentation methods for providing the se-
mantic labels for each aerial image, namely the UNet-
Former [85], which is designed for the aerial images se-
mantic segmentation, and Mask2Former [13], which is a
universal panoptic segmentation method. As shown in Ta-
ble 2, UNetFormer does not generalize well on the Urban-
BIS dataset, which fails to segment the Road. Therefore,
we take Mask2Former as the foundation to get the initial
2D semantic segmentation.
2D Semantic Label Fusion We first demonstrate the effec-
tiveness of the proposed scale-adaptive semantic label fu-
sion by evaluating the accuracy of the 2D semantic labels.
We can see from Table 2 that the proposed scale-adaptive
fusion can significantly improve the accuracy, especially for
the building category.
3D Semantic Field To evaluate the performance of seman-
tic segmentation in 3D lifting, we conducted a comparative
analysis of our method against the official implementation
of Panoptic-Lift [71], and a modified Semantic-NeRF [101].
Panoptic-Lift employs the universal Mask2Former for pre-
dicting 2D semantic labels and lifts 2D labels to 3D for
room-scale scene. However, Panoptic-Lift performs worse
on the urban scene due to the worse geometry reconstruc-
tion as it employs the TensoRF [9] as the backbone, which
struggles to scale up to a high grid resolution. For a fair
comparison, we designed a variant of semantic-NeRF using
the same geometry backbone as ours (i.e., high-resolution
hash-grid). This modified semantic-NeRF is trained with
semantic labels from Mask2Former, while our method is
trained with fused labels.

Quantitative results in Table 3 demonstrate that our
method outperforms the others in terms of mIoU through
the use of scale-adaptive fusion, highlighting its effective-
ness. Moreover, Figure 6 shows that our method solves
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Table 3. Quanlitative comparison on the novel-view synthesis and the semantic segmentation on the UrbanBIS dataset [93]. Mask2Former
is a 2D segmentation method and cannot be evaluated for PSNR, and Semantic-NeRF (M2F) shares the same geometry with ours.

Method
Yingrenshi [93] Yuehai-Campus [93] Longhua-1 [93] Longhua-2 [93]

mIoU↑ Building↑ Car↑ PSNR↑ mIoU↑ Building↑ Car↑ PSNR↑ mIoU↑ Building↑ Car↑ PSNR↑ mIoU↑ Building↑ Car↑ PSNR↑

Mask2former [13] 58.4 84.8 28.4 – 57.9 70.9 42.3 – 49.2 68.5 20.7 – 46.2 70.0 23.5 –
Panoptic-Lift [71] 32.9 83.0 1.4 21.2 33.7 69.0 0.1 21.5 29.5 60.2 0.2 21.9 20.4 59.9 0.2 20.9
Semantic-NeRF (M2F) [101] 67.6 92.9 39.5 – 70.9 88.1 45.3 – 61.1 86.4 34.9 – 64.1 89.9 37.5 –
Ours 72.0 95.5 49.3 26.8 74.9 94.1 46.2 29.8 66.1 87.3 43.8 26.7 66.7 91.0 40.9 26.4

(a) Mask2former (b) Panoptic-Lift (c) Semantic-NeRF (M2F) (d) Ours (e) Ground truth

Figure 6. Qualitative comparison of semantic segmentation on Yingrenshi and Longhua-2 from the UrbanBIS dataset (Building: Red,
Road: White, Car: Violet, Tree: Green, unrecognized areas of Mask2Former: Black). Areas without masks in (e) have no GT annotation.

Table 4. Quantitative comparison of instance segmentation in
PQscene of building category. For brevity, LA and CL denote the
linear assignment and contrastive learning, respectively.

Method Yingrenshi Yuehai-Campus Longhua-1 Longhua-2

LA + Detectron-Label [43] 15.8 40.8 38.2 18.2
LA + SAM-Label [39] 14.4 4.0 4.5 4.0
LA + Ours 38.7 26.0 36.3 19.0

CL + Detectron-Label [39] 26.6 30.6 36.5 17.3
CL + SAM-Label [39] 54.8 18.8 29.7 22.9
CL + Ours 64.1 43.6 45.8 31.5

the issue of misclassification resulting from the ambiguity
between building roofs and road surfaces in aerial images,
leading to better results.

4.2. Evaluation on Instance Building Segmentation

To lift 2D instance labels to 3D, we utilize two different op-
timization methods: the linear assignment from Panoptic-
Lift [71] and the contrastive learning from Contrastive-
Lift [4] which is followed by HDBSCAN [55] as post-
processing cluster algorithm. Moreover, we did not make
a comparison with the Panoptic-Lift official implementation
because of its poor semantics results. To mitigate the impact
of geometry reconstruction and semantic segmentation, we
employ the same geometry and semantic results across ex-
periments in this section.

We establish two baselines, one trained with instance la-
bels obtained from the Detectron [43] and one with labels
from SAM [39]. For brevity, we refer to these baselines as
Detectron-Label and SAM-Label. Our method builds upon

SAM-Label by incorporating the cross-view label grouping.
Table 4 presents the PQscene metric on four urban scenes.

Results on Yingrenshi reveal that training with Detectron-
Label struggles with dense building instances due to inac-
curate instance segmentation. While the SAM-Label model
achieves reasonable results in Yingrenshi, it struggles to
handle large buildings with diverse shapes as shown in the
other three scenes. It is because SAM tends to produce over-
segmented labels for these buildings, leading to cluttered
3D segmentation, particularly trained with linear assign-
ment. With our proposed cross-view label grouping strat-
egy, we significantly improve the performance compared to
that trained with SAM-Label in both linear assignment and
contrastive learning. The best results are achieved by inte-
grating the cross-view grouping with the contrastive learn-
ing. Figure 7 illustrates the qualitative comparison, where
our approach exhibits more accurate segmentation results,
further affirming the effectiveness of our method.

4.3. Ablation Analysis

To further verify the design of our method, we conduct ab-
lation studies on the Yingrenshi dataset.
Effect of Instance Label Grouping We evaluate the ef-
fectiveness of the components employed in the proposed
instance segmentation method. As depicted in Table 5,
the utilization of geometry-guided instance filtering can im-
prove instance segmentation in some extent, compared to
the baseline trained with SAM-Label. More importantly,
utilizing the cross-view grouping strategy achieves signifi-
cant improvement in instance segmentation, demonstrating
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LA + SAM-Label LA + Ours CL + Detectron-Label CL + SAM-Label CL + Ours GT

Figure 7. Qualitative comparison on the building instance segmentation. From top to bottom, we show the results of different approaches
in three scenarios: Yingrenshi, Yuehai-Campus, and Longhua-2. Different instances are represented in different colors.

Table 5. Effect of cross-view label grouping (PQscene).

Method Linear assignment Contrastive learning

Baseline (SAM-Label) 14.4 54.8
Baseline + Filter 19.8 55.9
Baseline + Filter + Cross-view 38.7 64.1

Table 6. Effect of geometry reconstruction quality.

Method PSNR mIoU Building Road Car Tree

Panoptic-Lift [71] 21.24 32.9 83.0 32.6 1.4 14.5
Ours without depth-prior 25.01 70.4 94.9 66.6 46.7 73.3
Ours with depth-prior 26.79 72.0 95.5 68.9 49.3 74.5

the effectiveness of the cross-view grouping strategy.
Effect of Geometry Reconstruction To investigate the ef-
fect of the geometry reconstruction, we compare the novel-
view synthesis and semantic segmentation results in Ta-
ble 6. We can see from the table that Panoptic-Lift suffers
from low-quality reconstruction, resulting in poor segmen-
tation of small objects (e.g. car and tree categories). By in-
corporating the depth-prior from multi-view stereo, the ren-
dering quality and segmentation quality can be effectively
improved. Figure 8 shows an example of the novel-view
synthesis.

5. Conclusion
In this paper, we have introduced a neural radiance
field method for urban-scale semantic segmentation and
building-level instance segmentation from aerial images.
Our method lifts noisy 2D labels, predicted by off-the-shelf
methods, to 3D without manual annotations. We proposed
a scale-adaptive semantic label fusion strategy that signifi-
cantly improves the segmentation results across objects of
varying sizes. To achieve multi-view consistent instance su-
pervision for building instance segmentation, we introduced
a cross-view instance label grouping strategy based on the

GT Panoptic-Lift

Oursw/o depth

Figure 8. Visualization of novel-view synthesis.

3D scene representation. In addition, we enhanced the re-
constructed geometry by incorporating the depth prior from
multi-view stereo, leading to more accurate segmentation
results. Experiments on multiple real-world scenes demon-
strate the effectiveness of our method.
Future Work Currently, our method focuses on close-
vocabulary scene understanding. Recent methods have
shown promising results in open-vocabulary understanding
by distilling CLIP features into NeRF [37, 40]. Nonethe-
less, feature conflicts caused by varying object sizes and
multi-view inconsistency can impair the distillation. In the
future, we aim to apply the proposed method to enhance the
feature distillation process.
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