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Abstract

Heterogeneous Federated Learning (HtFL) enables col-
laborative learning on multiple clients with different model
architectures while preserving privacy. Despite recent re-
search progress, knowledge sharing in HtFL is still difficult
due to data and model heterogeneity. To tackle this issue, we
leverage the knowledge stored in public pre-trained genera-
tors and propose a new upload-efficient knowledge transfer
scheme called Federated Knowledge-Transfer Loop (Fed-
KTL). Our FedKTL can produce client-task-related proto-
typical image-vector pairs via the generator’s inference on
the server. With these pairs, each client can transfer pre-
existing knowledge from the generator to its local model
through an additional supervised local task. We conduct
extensive experiments on four datasets under two types of
data heterogeneity with 14 kinds of models including CNNs
and ViTs. Results show that our upload-efficient FedKTL
surpasses seven state-of-the-art methods by up to 7.31%
in accuracy. Moreover, our knowledge transfer scheme is
applicable in scenarios with only one edge client. Code:
https://github.com/TsingZ0/FedKTL

1. Introduction
Recently, there has been a growing trend for companies to
develop custom models tailored to their specific needs [3,
11, 15, 18, 50]. However, the problem of insufficient data
has persistently plagued model training in specific fields,
such as medicine [1, 4, 43]. Federated Learning (FL) is a
popular approach to tackle this problem by training models
collaboratively among multiple clients (e.g., companies or
edge devices) while preserving privacy on clients [19, 28].
Traditional FL (tFL) focuses on training a global model for
all clients and is unable to fulfill clients’ personalized needs
due to data heterogeneity among clients [20, 29]. Conse-
quently, personalized FL (pFL) has emerged as a solution
to train customized models for each client [30, 58, 67, 69].
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However, most pFL methods still assume homogeneous
client models [30, 67, 69], which may not adequately cater
to the specific needs of companies and individuals [61].
Besides, as the size of the model increases, both tFL and
pFL incur significant communication costs when transmit-
ting model parameters [76]. Furthermore, exposing clients’
model parameters also raises privacy and intellectual prop-
erty (IP) concerns [27, 55, 63, 70]. Recently, Heterogeneous
Federated Learning (HtFL) frameworks have been proposed
to consider both data and model heterogeneity [52, 61]. It
explores novel knowledge-sharing schemes that go beyond
sharing the entire client models.

Most existing HtFL methods adopt knowledge distilla-
tion (KD) techniques [13] and design various knowledge-
sharing frameworks based on a global dataset [36, 64], a
global auxiliary model [57, 71], or global class-wise pro-
totypes [52, 53, 70]. However, global datasets’ availabil-
ity and quality as well as their relevance to clients’ tasks
significantly impact the effectiveness of KD [65]. Directly
replacing the global dataset with a pre-trained generator
has a minimal impact since most generators are pre-trained
to generate unlabeled data within the domain of their pre-
training data [21, 22]. As for the global auxiliary model,
it introduces a substantial communication overhead due to
the need to transmit it in each communication iteration.
Although sharing class-wise prototypes is communication-
efficient, they can only carry limited global knowledge to
clients, which is insufficient for clients’ model training
needs. Furthermore, the prototypes extracted by heteroge-
neous models are biased, hindering the attainment of uni-
formly separated global prototypes on the server [70].

Thus, we propose an upload-efficient knowledge transfer
scheme called Federated Knowledge-Transfer Loop (Fed-
KTL), which takes advantage of the compactness of pro-
totypes and the pre-existing knowledge from a server-side
public pre-trained generator. FedKTL can (1) use the gen-
erator on the server to produce a handful of global proto-
typical image-vector pairs tailored to clients’ tasks, and (2)
transfer pre-existing common knowledge from the genera-
tor to each client model via an additional supervised local

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12109



(a) Valid vecs (b) Random vecs (c) Prototypes (d) Aligned vecs

Figure 1. The images (64× 64) generated by StyleGAN-XL [48]
with different kinds of inputs. “vecs” is short for vectors.

task using these image-vector pairs. We develop FedKTL
by addressing the following three questions. Q1: How to
upload unbiased prototypes while maintaining upload effi-
ciency? Q2 (the core challenge): How to adapt any given
pre-trained generator to clients’ tasks without fine-tuning
it? Q3: How to transfer the generator’s knowledge to client
models regardless of the semantics of the generated images?

For Q1, inspired by FedETF [33], we replace each
client’s classifier with an ETF (equiangular tight frame)
classifier [33, 59] to let clients generate unbiased proto-
types. Then, we upload these unbiased prototypes to the
server for efficiency. For Q2, we align the domain formed
by prototypes with the generator’s inherent valid latent do-
main to generate informative images, as these two domains
are not naturally aligned. As shown in Fig. 1, the generator
can generate clear images given valid vectors. However, it
tends to generate blurry and uninformative images given in-
valid latent vectors (such as random vectors or prototypes).
To generate prototype-induced clear images, we propose a
lightweight trainable feature transformer on the server to
convert prototypes to aligned vectors within the valid input
domain, while preserving the class-wise discrimination rel-
evant to clients’ classification tasks. For Q3, we first aggre-
gate aligned vectors for each class to obtain latent centroids
and generate corresponding images to form image-vector
pairs. Then we conduct an additional supervised local task
to only enhance the client model’s feature extraction ability
using these pairs, thereby reducing the semantic relevance
requirements between the generated images and local data.

We evaluate our FedKTL via extensive experiments on
four datasets with two types of data heterogeneity and 14
model architectures using a StyleGAN [21–23, 48] or a Sta-
ble Diffusion [45] on the server. Our FedKTL can outper-
form seven state-of-the-art methods by at most 7.31% in ac-
curacy. We also show that FedKTL is upload-efficient and
one prototypical image-vector pair per class is sufficient for
knowledge transfer, which only demands minimal inference
of the generator on the server in each iteration.

2. Related Work
2.1. Heterogeneous Federated Learning (HtFL)

HtFL offers the advantage of preserving both privacy and
model IP while catering to personalized model architecture

requirements [10, 52, 61]. In terms of the level of model
heterogeneity, we classify existing HtFL methods into three
categories: group heterogeneity, partial heterogeneity, and
full heterogeneity.

Group-heterogeneity-based HtFL methods distribute
multiple groups of homogeneous models to clients, consid-
ering their diverse communication and computing capabil-
ities [8, 36]. They typically form groups by sampling sub-
models from a server model [8, 14, 56]. In this paper, we
do not consider this kind of model heterogeneity due to IP
protection concerns and client customization limitations.

Partial-heterogeneity-based HtFL methods, e.g., LG-
FedAvg [35], FedGen [75], and FedGH [61], allow the main
parts of the clients’ models to be heterogeneous but assume
the remaining (small) parts to be homogeneous. However,
clients can only access limited global knowledge through
the small global part. Despite training a global represen-
tation generator, FedGen primarily utilizes it to introduce
global knowledge for the small classifier rather than the re-
maining main part (i.e., the feature extractor). Therefore,
the data insufficiency problem still exists for the main part.

Full-heterogeneity-based HtFL methods do not impose
restrictions on the architectures of client models. Classic
KD-based HtFL approaches [26, 62] share model outputs
on a global dataset. However, obtaining such a dataset can
be difficult in practice [65]. Instead of relying on a global
dataset, FML [49] and FedKD [57] utilize mutual distilla-
tion [73] between a small auxiliary global model and client
models. However, in the early iterations when both the aux-
iliary model and client models have poor performance, there
is a risk of transferring uninformative knowledge between
each other [34]. Another approach is to share class proto-
types, like FedDistill [17], FedProto [52], and FedPCL [53].
However, the phenomenon of classifier bias has been ex-
tensively observed in FL when dealing with heterogeneous
data [33, 38]. The bias becomes more pronounced when
both the models and the data exhibit heterogeneity, leading
to biased prototypes, thereby posing challenges in aggregat-
ing class-wise global knowledge [70].

2.2. ETF Classifier

When training a model on balanced data reaches its termi-
nal stage, the neural collapse [42] phenomenon occurs. In
this phenomenon, prototypes and the classifier vectors con-
verge to form a simplex ETF, where the vectors are normal-
ized, and the pairwise angles between them are maximized
and identical (balanced). Since a simplex ETF represents
an ideal classifier, some centralized methods [59, 60] pro-
pose generating a random simplex ETF matrix to replace
the original classifier and guiding the feature extractor train-
ing using the fixed ETF classifier in imbalanced scenarios.
To address the data heterogeneity issue in FL, FedETF [33]
also proposes to replace the original classifier for each client
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with a fixed ETF classifier. However, FedETF assumes
the presence of homogeneous models and follows FedAvg
to transfer global knowledge. Inspired by these methods,
we utilize the ETF classifier to enable heterogeneous client
models to generate unbiased prototypes and facilitate class-
wise global knowledge aggregation on the server.

3. Method
3.1. Preliminaries

Several concepts in various generators, such as Style-
GAN [21] and Stable Diffusion [45], share similarities
when generating contents, despite potential differences in
their nomenclature. Without loss of generality, we primar-
ily focus on introducing the generator components based on
StyleGAN’s architecture here for convenience. Most ex-
isting StyleGANs contain two components: a mapping net-
work Gm and a synthesis network Gs. The space formed by
the latent vectors between Gm and Gs is called “W space”.
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Figure 2. An illustration of the generating process (from right to
left) when utilizing StyleGAN-XL as an example. The solid bor-
der of Gs and Gm means “with frozen parameters”.

In Fig. 2, we show an example of the StyleGAN-XL [48]
employed in our FedKTL. Given a vector ϵ (typically a
normally distributed noise vector) as the input, it trans-
forms ϵ to a latent vector w ∈ RH through Gm, i.e.,
w = Gm(ϵ) ∈ W . Then, it generates an image I by further
transforming w with Gs, i.e., I = Gs(w). w is the only
factor that controls the content of I . While the valid vec-
tors in W can produce clear and informative images, not all
vectors in RH are valid and possess the same capability.

3.2. Problem Statement

In HtFL, one server and N clients collaborate to train client
models for a multi-classification task of C classes. Client i
owns private data Di and builds its model gi (parameterized
by Wi) with a customized architecture. Formally, the objec-
tive is min{Wi}N

i=1

∑N
i=1

ni

n Li(Wi,Di), where ni = |Di|,
n =

∑N
i=1 ni, and Li is the local loss function.

3.3. Our FedKTL

3.3.1 Overview

In Fig. 3a, we illustrate six key steps of the knowledge-
transfer loop in our proposed FedKTL framework. 1 After
local training, each client generates class-wise prototypes.
2 Each client uploads prototypes to the server. 3 The

server trains a feature transformer (denoted by F with pa-
rameter WF ) to transform and align client prototypes to la-
tent vectors. 4 With the trained F , the server first obtains
the class-wise latent centroid Q̄, which is the averaged la-
tent vectors within each class, and then generates images
DI by inputting Q̄ into Gs. 5 Each client downloads the
prototypical image-vector pairs {DI , Q̄} from the server.
6 Each client locally trains gi and h′

i using Di, DI , and
Q̄, where h′

i is an additional linear projection layer (param-
eterized by Wh′

i
) used to change the dimension of feature

representations. Notice that |Q̄| = |DI | = C ≪ |Di|.

3.3.2 ETF Classifier and Prototype Generation

The local loss Li consists of two components: LA
i , which is

the loss corresponding to Di, and LM
i , which is the loss for

knowledge transfer using DI and Q̄. For clarity, we only
describe LA

i here and leave the details of LM
i to Sec. 3.3.4.

To address the biased prototype issue, inspired by
FedETF [33], we replace the original classifiers of given
model architectures with identical ETF classifiers and add
a linear projection layer (one Fully Connected (FC) layer)
hi to the feature extractor fi. In this way, we encourage
each local model gi to generate unbiased prototypes that are
aligned with the globally identical ETF classifier vectors. fi
and hi have parameters Wfi and Whi

, respectively. Thus,
we have gi = hi ◦ fi and Wi = {Wfi ,Whi

}.
Specifically, we first synthesize a simplex ETF V =

[v1, . . . ,vC ], where V =
√

C
C−1U(IC − 1

C1C1
T
C) ∈

RK×C and the dimension of the ETF space K ≥ C − 1.
∀c ∈ [C],vc ∈ RK and the L2-norm ||vc||2 = 1. U allows
a rotation, U ∈ RK×C , UTU = IC , IC is an identity ma-
trix, and 1C is a vector with all ones. Besides, ∀c1, c2 ∈ [C]
and c1 ̸= c2, we have cos θ = − 1

C−1 , where θ is the angle
between vc1 and vc2 . Furthermore, θ is also the maximum
angle to equally separate C vectors [33, 42, 59]. Then, we
distribute V to all clients.

Next, for a given input x on client i, we compute logits
by measuring the cosine similarity [40] between gi(x) and
each vector in V . As the ArcFace loss [7] is popular for
enhancing supervised learning when using cosine similarity
for classification, we apply it during local training:

LA
i = E(x,y)∼Di

− log
es(cos (θy+m))

es(cos (θy+m)) +
∑C

c=1,c ̸=y e
s cos θc

,

(1)
where θy is the angle between gi(x) and vy , s and m are
the re-scale and additive hyperparameters [7], respectively.

After local training, we fix gi and collect prototypes
Pi = {P c

i }c∈Ci in the ETF space, where Ci is a set of class
labels on client i. Formally, P c

i = E(x,c)∼Dc
i
gi(x) ∈ RK ,

where Dc
i refers to the subset of Di containing data points
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(c) A domain alignment example.

Figure 3. An example of our FedKTL for a 3-class classification task. (a) Rounded and slender rectangles denote models and represen-
tations, respectively; dash-dotted and solid borders denote updating and frozen components, respectively; the segmented circle represents
the ETF classifier. (b) The feature transformer (F ) contains two FC layers and one Batch Normalization [16] (BN) layer. (c) An example
of the domain alignment step with K = 2 and H = 3; one cluster represents one class. Best viewed in color.

belonging to class c. Uploading Pi to the server only re-
quires |Ci| ×K elements to communicate, where |Ci| ≤ C.

3.3.3 Domain Alignment and Image Generation

For simplicity, we assume full client participation here, al-
though FedKTL supports partial participation. With clients’
prototypes P = {P c

i }i∈[N ],c∈Ci
on the server, we devise

a trainable feature transformer F (see Fig. 3b) to convert
P into valid latent vectors Q = {Qc

i}i∈[N ],c∈Ci
, where

Qc
i = F (P c

i ) ∈ RH , in W space. To maintain Q’s rela-
tionship with clients’ classification tasks, we first preserve
Q’s class-wise discrimination by training F with

LMSE =
1

C

C∑
c=1

1

|Mc|
∑
i∈Mc

ℓ(F (P c
i ),Q

c), (2)

where Mc is the client set owning class c, the global
class-wise centroid Qc = 1

|Mc|
∑

j∈Mc
F (P c

j ), and ℓ is
the Mean Squared Error (MSE) [54] between two vectors.
Then, we use the Maximum Mean Discrepancy (MMD)
loss [31] to align the domain formed by Q with the valid
input domain of Gs in W:

LMMD = ||EQ∼Q ϕ(Q)− Ew∼W ϕ(w)||2H. (3)

w is randomly sampled using Gm, ϕ is a feature map in-
duced by a kernel function κ, i.e., κ(a, b) = ⟨ϕ(a), ϕ(b)⟩,
and H is a reproducing kernel Hilbert space [31, 37]. We

combine these two losses to form the server loss L =
LMMD + λLMSE, where λ is a hyper-parameter. We show
a domain alignment example in Fig. 3c.

After training F on the server, we generate one image
per class by inputting global centroids Q̄ = {Qc}Cc=1 into
Gs, so only C times of inference for Gs is required in each
iteration. Formally, we generate DI = {Ic}Cc=1, where
Ic = Gs(Q

c), and distribute paired class-wise DI and Q̄
to clients for additional local supervised learning.

3.3.4 Transferring Pre-existing Global Knowledge

Then, client i conducts local training with the integrated lo-
cal loss Li = LA

i + µLM
i , where µ is a hyper-parameter.

LM
i is the additional supervised task to transfer pre-existing

knowledge from the generator and inject common and
shared information into the feature extractor. Formally,

LM
i =

1

C

C∑
c=1

ℓ(h′
i(fi(I

c)),Qc), (4)

where h′
i is a linear projection layer that outputs vectors

with dimension H . Since DI and Q̄ are the output-input
pairs of Gs and serve as the input-output pairs for h′

i◦fi, we
can transfer common knowledge from Gs to h′

i ◦ fi. Since
h′
i is mainly used for dimension transformation rather than

knowledge learning, we initialize Wh′
i

in an identical way
for all clients in each iteration, which does not introduce ad-
ditional communication costs. This approach minimizes the
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biased knowledge acquired by h′
i and facilitates the transfer

of common knowledge from Gs to fi.

3.3.5 Privacy-Preserving Discussion

Our FedKTL preserves privacy in three folds. (1) We in-
troduce an identical ETF classifier for all clients to generate
unbiased prototypes, which contain little private informa-
tion. (2) The generated images belong to the generator’s
inherent output domain, so they are much different from the
client’s local data (see Fig. 4). (3) We keep all the model
parameters locally on clients without sharing. See the Ap-
pendix for further analysis and experimental results.

4. Experiments

4.1. Setup

Datasets and baseline methods. In this paper, we evalu-
ate our FedKTL on four image datasets, i.e., Cifar10 [25],
Cifar100 [25], Tiny-ImageNet [5], and Flowers102 [41]
(8K images with 102 classes). Besides, we compare Fed-
KTL with seven state-of-the-art HtFL methods, including
LG-FedAvg [35], FedGen [75], FedGH [61], FML [49],
FedKD [57], FedDistill [17], and FedProto [52].
Model heterogeneity scenarios. LG-FedAvg, FedGen,
and FedGH assume the classifier to be homogeneous. Un-
less explicitly specified, we consider model heterogeneity
for the main model part, i.e., using Heterogeneous Fea-
ture Extractors (HtFE), for a fair comparison. Specifically,
we denote the model heterogeneity scenarios by “HtFEX”,
where the suffix number X represents the degree of model
heterogeneity, and we utilize a total of X model architec-
tures in HtFL. The larger the X is, the more heteroge-
neous the scenario is. Given N clients, we distribute the
(i mod X)th model architecture to client i, i ∈ [N ] and
reinitialize its parameters. For instance, we use HtFE8 by
default, which includes eight model architectures: 4-layer
CNN [39], GoogleNet [51], MobileNet v2 [47], ResNet18,
ResNet34, ResNet50, ResNet101, and ResNet152 [12].
The model architectures in HtFE8 cover both small and
large models. The feature dimensions K ′ before classi-
fiers are different in these model architectures, which cannot
meet the assumptions of FedGH, FedKD, and FedProto, so
we add an average pooling layer [51] before classifiers and
set K ′ = 512 by default for all model architectures.
Data heterogeneity. Following prior arts [39, 67, 75] in
the FL field, we consider two data heterogeneity scenarios,
including the pathological setting [52, 68, 70] and the prac-
tical setting [53, 66, 69]. In the pathological setting, follow-
ing FedALA [69], we assign unbalanced data of 2/10/10/20
classes to each client from a total of 10/100/102/200
classes from Cifar10/Cifar100/Flowers102/Tiny-ImageNet
datasets without overlap. As for the practical setting, fol-

lowing GPFL [67], we assign a proportion qc,i of data from
a subset that contains all the data belonging to class c in a
public dataset to client i, where qc,i ∼ Dir(β), Dir(β) is
Dirichlet distribution and β is typically set to 0.1 [36].
General Implementation Details. We combine the above
model and data heterogeneity to simulate HtFL scenarios.
Besides, we split the local data into a training set and a test
set with a ratio of 3:1 following [68, 69]. The performance
of clients’ models is assessed using their respective test sets,
and these results (e.g., test accuracy) are then averaged to
gauge the performance of an HtFL method. Following Fe-
dAvg, we set the client batch size to 10 and run one training
epoch with SGD [72], i.e., ⌊ni

10⌋ SGD steps, on the client
in each iteration. Besides, we set the client learning rate
ηc = 0.01 and the total communication iterations to 1000.
We run three trials and report the mean and standard devi-
ation of the numerical results. We simulate HtFL scenarios
on 20 clients with a client participation ratio ρ = 1, and we
experiment on 50, 100, and 200 clients with ρ = 0.5.
Implementation Details for Our FedKTL. We set µ =
50, λ = 1, K = C, ηS = 0.01, BS = 100, and ES = 100
by default on all tasks, where ηS , BS , and ES represent the
learning rate, batch size, and number of epochs for training
F on the server. Besides, we use Adam [24] for F training
following FedGen and set s = 64 and m = 0.5 following
ArcFace loss [7]. By default, we use a public pre-trained
StyleGAN-XL [48] as the server-side generator (not used
during clients’ inference), which is one of the latest Style-
GANs. It has approximately 0.13 billion model parameters
and is trained on a large-scale ImageNet dataset [6] to gen-
erate images with a resolution of 64×64. To ensure compat-
ibility with clients’ models, we rescale the generated images
on the server to match the resolution of clients’ data before
downloading them. See the Appendix for the experiments
using Stable Diffusion or only one edge client.

4.2. Performance Comparison

We show the test accuracy of all the methods on four
datasets in Tab. 1, where FedKTL achieves superior per-
formance than baselines in HtFL scenarios. Specifically,
our FedKTL outperforms counterparts by up to 5.40% in
test accuracy on Cifar100 in the practical setting. Be-
sides, our FedKTL demonstrates greater superiority in
the practical setting compared to the pathological set-
ting. The number of generated images in DI equals
the number of classes C, so |DI | is 10/100/102/200 for
Cifar10/Cifar100/Flowers102/Tiny-ImageNet. Even with
only 10 images in DI , our FedKTL can still perform ex-
cellently on Cifar10 in two data heterogeneous settings.

4.3. Impact of Model Heterogeneity

We further assess FedKTL on the other five scenarios with
incremental model heterogeneity. Specifically, we con-
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Settings Pathological Setting Practical Setting

Datasets Cifar10 Cifar100 Flowers102 Tiny-ImageNet Cifar10 Cifar100 Flowers102 Tiny-ImageNet

LG-FedAvg 86.82±0.26 57.01±0.66 58.88±0.28 32.04±0.17 84.55±0.51 40.65±0.07 45.93±0.48 24.06±0.10
FedGen 82.83±0.65 58.26±0.36 59.90±0.15 29.80±1.11 82.55±0.49 38.73±0.14 45.30±0.17 19.60±0.08
FedGH 86.59±0.23 57.19±0.20 59.27±0.33 32.55±0.37 84.43±0.31 40.99±0.51 46.13±0.17 24.01±0.11
FML 87.06±0.24 55.15±0.14 57.79±0.31 31.38±0.15 85.88±0.08 39.86±0.25 46.08±0.53 24.25±0.14
FedKD 87.32±0.31 56.56±0.27 54.82±0.35 32.64±0.36 86.45±0.10 40.56±0.31 48.52±0.28 25.51±0.35
FedDistill 87.24±0.06 56.99±0.27 58.51±0.34 31.49±0.38 86.01±0.31 41.54±0.08 49.13±0.85 24.87±0.31
FedProto 83.39±0.15 53.59±0.29 55.13±0.17 29.28±0.36 82.07±1.64 36.34±0.28 41.21±0.22 19.01±0.10

FedKTL 88.43±0.13 62.01±0.28 64.72±0.62 34.74±0.17 87.63±0.07 46.94±0.23 53.16±0.08 28.17±0.18

Table 1. The test accuracy (%) on four datasets in the pathological and practical settings using HtFE8.

Settings Different Degrees of Model Heterogeneity Large Client Amount (ρ = 0.5)

HtFE2 HtFE3 HtFE4 HtFE9 HtM10 50 Clients 100 Clients 200 Clients

LG-FedAvg 46.61±0.24 45.56±0.37 43.91±0.16 42.04±0.26 — 37.81±0.12 35.14±0.47 27.93±0.04
FedGen 43.92±0.11 43.65±0.43 40.47±1.09 40.28±0.54 — 37.95±0.25 34.52±0.31 28.01±0.24
FedGH 46.70±0.35 45.24±0.23 43.29±0.17 43.02±0.86 — 37.30±0.44 34.32±0.16 29.27±0.39
FML 45.94±0.16 43.05±0.06 43.00±0.08 42.41±0.28 39.87±0.09 38.47±0.14 36.09±0.28 30.55±0.52
FedKD 46.33±0.24 43.16±0.49 43.21±0.37 42.15±0.36 40.36±0.12 38.25±0.41 35.62±0.55 31.82±0.50
FedDistill 46.88±0.13 43.53±0.21 43.56±0.14 42.09±0.20 40.95±0.04 38.51±0.36 36.06±0.24 31.26±0.13
FedProto 43.97±0.18 38.14±0.64 34.67±0.55 32.74±0.82 36.06±0.10 33.03±0.42 28.95±0.51 24.28±0.46

FedKTL 48.06±0.19 49.83±0.44 47.06±0.21 50.33±0.35 45.84±0.15 43.16±0.82 39.73±0.87 34.24±0.45

Table 2. The test accuracy (%) on Cifar100 in the practical setting with different degrees of model heterogeneity or large client amounts.

sider HtFE2, HtFE3, HtFE4, HtFE9, and HtM10. HtFE2

includes 4-layer CNN and ResNet18. HtFE3 includes
ResNet10 [74], ResNet18, and ResNet34. HtFE4 includes
4-layer CNN, GoogleNet, MobileNet v2, and ResNet18.
HtFE9 includes ResNet4, ResNet6, and ResNet8 [74],
ResNet10, ResNet18, ResNet34, ResNet50, ResNet101,
and ResNet152. HtM10 contains all the model architectures
in HtFE8 plus another two architectures ViT-B/16 [9] and
ViT-B/32 [9]. “HtM” is short for heterogeneous models,
where classifiers are also heterogeneous. LG-FedAvg, Fed-
Gen, and FedGH are not applicable for HtM10 due to the
different classifier architectures of ResNets and ViTs. We
allocate model architectures in HtM10 to clients using the
method introduced for HtFEX . We show the test accuracy
in Tab. 2. For almost all the baselines, their performance de-
teriorates as model heterogeneity increases, resulting in an
accuracy drop of at least 3.53% from HtFE2 to HtFE9. In
contrast, FedKTL attains its best performance with HtFE9,
outperforming baselines by 7.31%.

4.4. Partial Participation with More Clients

To study the scalability of our FedKTL in HtFL settings
with more clients, we introduce three scenarios with 50,
100, and 200 clients on HtFE8, respectively, by splitting the
Cifar100 dataset differently. With 200 participating clients,
each class has an average of only eight samples for training.

We consider partial client participation and set ρ = 0.5 in
each iteration in these three scenarios. Notice that compar-
ing the accuracy between these scenarios is unreasonable
because both the number of clients and the amount of client
data change when splitting Cifar100 into different numbers
of clients’ datasets. As shown in Tab. 2, our FedKTL main-
tains its superiority even with a large number of clients and
partial client participation.

4.5. Impact of Number of Client Training Epochs

E = 5 E = 10 E = 20

LG-FedAvg 40.33±0.15 40.46±0.08 40.93±0.23
FedGen 40.00±0.41 39.66±0.31 40.07±0.12
FedGH 41.09±0.25 39.87±0.27 40.22±0.41
FML 39.08±0.27 37.97±0.19 36.02±0.22
FedKD 41.06±0.13 40.36±0.20 39.08±0.33
FedDistill 41.02±0.30 41.29±0.23 41.13±0.41
FedProto 38.04±0.52 38.13±0.42 38.74±0.51

FedKTL 46.18±0.34 45.70±0.27 45.57±0.23

Table 3. The test accuracy (%) on Cifar100 in the practical setting
using HtFE8 with large E.

Training more epochs on clients before uploading can save
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communication resources [39]. Here, we increase the num-
ber of client training epochs and study its effects. From
Tab. 3, we observe that most of the methods, except for
FML and FedKD, can maintain their performance even with
a large value of E. Notably, our FedKTL maintains its supe-
rior performance across different values of E. Since FML
and FedKD learn an auxiliary model following the scheme
of FedAvg, the auxiliary model tends to learn more biased
information during local training with a larger value of E,
which may deteriorate the auxiliary model aggregation [44].

4.6. Impact of Feature Dimensions

K ′ = 64 K ′ = 256 K ′ = 1024

LG-FedAvg 39.69±0.25 40.21±0.11 40.46±0.01
FedGen 39.78±0.36 40.38±0.36 40.83±0.25
FedGH 39.93±0.45 40.80±0.40 40.19±0.37
FML 39.89±0.34 40.95±0.09 40.26±0.16
FedKD 41.06±0.18 41.14±0.35 40.72±0.25
FedDistill 41.69±0.10 41.66±0.15 40.09±0.27
FedProto 30.71±0.65 37.16±0.42 31.21±0.27

FedKTL 46.46±0.41 47.81±0.43 45.91±0.54

Table 4. The test accuracy (%) on Cifar100 in the practical setting
using HtFE8 with different K′.

Here, we study the impact of K ′ on the test accuracy. Most
of the methods achieve their best performance when setting
K ′ = 256, except for the methods that share classifiers,
such as LG-FedAvg and FedGen. Using a larger value of
K ′, FedProto can generate prototypes with dimension K ′

and upload more client information to the server. In con-
trast, our FedKTL generates prototypes after the projection
layer (hi, i ∈ [N ]) with another dimension of K = C <
K ′. This dimension is fixed, i.e., K = 100, for the 100-
classification problem on Cifar100.

4.7. Communication Cost

Our FedKTL exhibits excellent performance while main-
taining an affordable communication cost, as shown in
Tab. 5. Specifically, FedKTL exhibits lower upload and
download costs compared to FedGen, FML, and FedKD.
Notably, the upload cost of our approach is the lowest
among all the baselines, since we set K = C for our Fed-
KTL. Besides, the upload overhead required by FedKTL is
much less than the download one, which is suitable for real-
world scenarios, where the uplink speed is typically lower
than the downlink speed [32]. The upload-efficient charac-
teristic of FedKTL highlights its practicality for knowledge
transfer in HtFL.

Upload Download Accuracy

LG-FedAvg 1.03M 1.03M 40.65±0.07
FedGen 1.03M 7.66M 38.73±0.14
FedGH 0.46M 1.03M 40.99±0.51
FML 18.50M 18.50M 39.86±0.25
FedKD 16.52M 16.52M 40.56±0.31
FedDistill 0.09M 0.20M 41.54±0.08
FedProto 0.46M 1.02M 36.34±0.28

FedKTL 0.09M 7.17M 46.94±0.23

Table 5. The upload and download overhead per iteration using
HtFE8 on Cifar100 with 20 clients in the practical setting. “M” is
short for million. The accuracy column is referred from Tab. 1.

λ = 0.05 λ = 0.1 λ = 0.5

AFHQv2 26.82±0.32 27.05±0.26 26.32±0.52
Bench 27.71±0.25 28.36±0.42 27.56±0.50
FFHQ-U 27.28±0.23 27.21±0.35 26.59±0.47
WikiArt 27.37±0.51 27.48±0.33 27.30±0.15

Table 6. The test accuracy (%) on Tiny-ImageNet in the practical
setting using HtFE8 with different pre-trained StyleGAN3s, which
are represented by the names of the pre-training datasets.

4.8. Adapting to Various Pre-Trained StyleGAN3s

Although we adopt the pre-trained StyleGAN-XL by de-
fault as the server generator, our FedKTL is also applicable
to other StyleGANs due to the adaptable ability of our fea-
ture transformer (F ). Here we consider utilizing the pop-
ular StyleGAN3 [23], which has nearly 1

3 of the parameter
count compared to StyleGAN-XL. Specifically, we use sev-
eral public StyleGAN3s pre-trained on four datasets with
different resolutions: AFHQv2 (512 × 512) [23], Benches
(512 × 512) [2], FFHQ-U (256 × 256) [23], and WikiArt
(1024× 1024) [46]. To adapt to different pre-trained gener-
ators, we re-tune the hyperparameter λ. According to Tab. 1
and Tab. 6, our FedKTL maintains excellent performance
even when using other generators with different pre-training
datasets. In FedKTL, we prioritize the class-wise discrimi-
nation of the generated images over their semantic content.
Thus, the knowledge-transfer loop remains valuable when
generated images are distinguishable by classes but do not
share semantic relevance with clients’ data (see Fig. 4).

4.9. Iterative Domain Alignment Process

The training process in HtFL is iterative, so the domain
alignment in our FedKTL is also an iterative process. Here
we demonstrate the generated images throughout HtFL’s
training process in Fig. 5 to show the iterative domain align-
ment process. In the early iterations, as shown in Fig. 5a and
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(a) Client #1 (b) AFHQv2 (c) Benches (d) FFHQ-U (e) WikiArt

Figure 4. (a): Four images (one image per class) on client #1. (b),
(c), (d), and (e): The images generated by different StyleGAN3s
corresponding to the aforementioned four classes.

(a) Iter. 0 (b) Iter. 1 (c) Iter. 10 (d) Iter. 20 (e) Iter. 30

(f) Iter. 50 (g) Iter. 100 (h) Iter. 110 (i) Iter. 120 (j) Iter. 130

Figure 5. The images generated by StyleGAN-XL corresponding
to four classes at different iterations.

Fig. 5b, the generated images (DI ) corresponding to class-
wise latent centroids (Q̄) appear similar, since clients can-
not generate discriminative prototypes. As HtFL’s training
process continues, the generated images become increas-
ingly class-discriminative and clear. The generated images
in iterations 110, 120, and 130 hardly change for each class,
showing the convergence of F and client models’ training.

4.10. Ablation Study

FedKTL -LM
i -LMSE -LMMD -ETF -Q̄ +CS

28.17 24.39 21.70 20.14 21.02 20.69 24.13

Table 7. The test accuracy (%) of our FedKTL’s variants on Tiny-
ImageNet in the practical setting using HtFE8.

(a) -LM
i (b) -LMSE (c) -LMMD (d) -ETF (e) -Q̄

Figure 6. The images generated by StyleGAN-XL corresponding
to four classes in our FedKTL’s variants when variants converge.

Here, we remove LM
i , LMMD, and LMSE from FedKTL

and denote these variants “-LM
i ”, “-LMMD”, and “-LMSE”,

respectively. Moreover, we create the following three vari-
ants. (1) “-ETF”: we remove hi and replace the ETF clas-
sifier with the original classifier of each model architec-

ture. (2) “-Q̄”: we remove LM
i and mix the generated

class-discriminative data DI with local data Di. (3) Be-
sides the common practice of using noise ϵ to generate im-
ages, StyleGAN-XL offers a conditional version that can
generate images belonging to any class from the ImageNet
dataset. Using the Conditional StyleGAN-XL (CS), we cre-
ate a variant “+CS” by disabling step 2 Upload and step 3
Domain Alignment, and directly generating C image-vector
pairs for C randomly selected ImageNet classes.

The poor results of these variants in Tab. 7 and Fig. 6
demonstrate the effectiveness of each key component in our
FedKTL. Below, we analyze them one by one. (1) -LM

i : re-
moving LM

i means training solely on the local dataset Di

without collaboration, leading to a 3.78% accuracy drop
and distorted generated images (unused). (2) -LMSE: re-
moving LMSE causes the generated images to become indis-
criminative, thus misleading the local extractor and causing
an accuracy drop of 6.47%. (3) -LMMD: without the MMD
loss for domain alignment, it is hard for Q̄ to be valid la-
tent input vectors for the generator, leading to blurry images
and a notable accuracy decrease. (4) -ETF: biased classi-
fiers make prototypes of different classes overlap, resulting
in a loss of class-wise discrimination of the generated im-
ages. In Fig. 6d, three out of the four images depict dogs
and grass. (5) -Q̄: without Q̄, only using DI on clients can-
not transfer knowledge from the generator and mixing DI

and Di perturb the semantics of local data, thus achieving
poor performance and generating images with strange con-
tents. (6) +CS: using a conditional generator to produce
class-wise image-vector pairs without adapting to clients’
tasks can harm local training, as evidenced by a 0.26% de-
crease in accuracy compared to -LM

i (no collaboration). (7)
Interestingly, the variants -LMSE, -LMMD, -ETF, and -Q̄
perform worse than -LM

i , which indicates that all key com-
ponents are crucial and assist each other in FedKTL.

5. Conclusion
We propose FedKTL to promote client training in HtFL by
(1) producing image-vector pairs that are related to clients’
tasks through a pre-trained generator’s inference on the
server, and (2) transferring pre-existing knowledge from the
generator to clients’ heterogeneous models. Extensive ex-
periments show the effectiveness, efficiency, and practical-
ity of our FedKTL in various scenarios.
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