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Figure 1. Left & Right: vivid underwater scenes generated in Atlantis, retaining the scene layout of terrestrial depth with diverse variations.
Middle: depth models trained on Atlantis can well handle unseen real underwater scenes and predict reliable depth maps.

Abstract

Monocular depth estimation has experienced significant
progress on terrestrial images in recent years thanks to
deep learning advancements. But it remains inadequate for
underwater scenes primarily due to data scarcity. Given
the inherent challenges of light attenuation and backscat-
ter in water, acquiring clear underwater images or precise
depth is notably difficult and costly. To mitigate this issue,
learning-based approaches often rely on synthetic data or
turn to self- or unsupervised manners. Nonetheless, their
performance is often hindered by domain gap and looser
constraints. In this paper, we propose a novel pipeline for
generating photorealistic underwater images using accu-
rate terrestrial depth. This approach facilitates the super-
vised training of models for underwater depth estimation,
effectively reducing the performance disparity between ter-
restrial and underwater environments. Contrary to previous
synthetic datasets that merely apply style transfer to terres-
trial images without scene content change, our approach
uniquely creates vivid non-existent underwater scenes by
leveraging terrestrial depth data through the innovative Sta-

†Corresponding author: fuying@bit.edu.cn

ble Diffusion model. Specifically, we introduce a special-
ized Depth2Underwater ControlNet, trained on prepared
{Underwater, Depth, Text} data triplets, for this generation
task. Our newly developed dataset, Atlantis, enables terres-
trial depth estimation models to achieve considerable im-
provements on unseen underwater scenes, surpassing their
terrestrial pretrained counterparts both quantitatively and
qualitatively. Moreover, we further show its practical util-
ity by applying the improved depth in underwater image
enhancement, and its smaller domain gap from the LLVM
perspective. Code and dataset are publicly available at
https://github.com/zkawfanx/Atlantis.

1. Introduction
Precise underwater depth acquisition is essential for human
exploration of the sea. This holds particularly true for fields
such as autonomous underwater vehicles (AUV) [8, 39],
underwater robotics [56], marine biology, ecology [20]
and archaeology [4, 11]. Unlike costly and operationally
complex active ranging equipment, such as underwater Li-
DARs [17, 63], monocular depth estimation [25, 34] offers a
more cost-effective and convenient deployment solution. In
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spite of remarkable progress in terrestrial depth estimation
[16, 18, 21, 22, 42], underwater depth estimation remains
challenging due to factors like light attenuation, backscat-
ter, and water turbidity [2, 5, 29], which lead to poor image
quality and imprecise depth data. The scarcity of data ham-
pers the training of powerful learning-based models, which
is a prevalent challenge among various tasks in deep learn-
ing era, e.g., image restoration [9, 52, 57, 61, 62] and ad-
verse weather removal [26, 32, 33, 58, 59].

While some datasets like Sea-thru [2] and SQUID [5]
offer real underwater data, they are costly to acquire thus
limited in scene diversity and scale. Their depth data, de-
rived from stereo pairs or video sequences, is often sparse
and not always reliable. GAN-based methods [24, 30] have
emerged as an alternative to the data scarcity issue, by trans-
ferring terrestrial scenes to underwater styles using image
formation models [2, 15, 38]. Despite the advantanges of
easier acquisition and relatively larger scale and diversity,
their domain gap and lack of realism limit their efficacy.

To address these challenges, our paper introduces a novel
pipeline to generate underwater depth dataset, comprising
diverse and realistic underwater images and accurate depth.
Compared to real datasets, it is inexpensive and easy to
obtain, featuring large diversity and theoretically unlimited
scale. Meanwhile, it is more realistic and possesses smaller
domain gap than GAN-based datasets. Using Stable Diffu-
sion (SD) [44] and ControlNet [60], this approach can gen-
erate underwater imagery following the scene structure and
layout of terrestrial depth. Despite the widespread applica-
tions in AI-generated content, they have rarely been used for
generating training data. We present Atlantis, a dataset that
combines the accuracy of terrestrial depth with the lifelike
depiction of underwater scenes, offering a robust resource
for training depth models for underwater scenes.

Specifically, we first construct a dataset comprising un-
derwater images, estimated depths, and captions describ-
ing the image content. Then we train a Depth2Underwater
ControlNet targeting realistic underwater image generation
using depth map. With the pretrained SD and our trained
ControlNet, we construct the Atlantis dataset with realistic
underwater images and accurate depth, enabling the training
of terrestrial depth models for underwater depth estimation.
Their performance are largely improved both quantitatively
and qualitatively over the terrestrial counterparts of KITTI
[19] and NYU Depthv2 [46]. Moreover, we show the util-
ity of Atlantis by applying the trained depth model in un-
derwater image enhancement and reveal its smaller domain
gap than GAN-based datasets using large language vision
model. It is worth noting that our goal is not necessarily
to surpass the results of robust depth models trained with
million-scale data and various training tricks, e.g., MiDaS
[42], on underwater scenes, but to enable existing depth
models on underwater scenes with our data and simple
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Figure 2. Comparisions of real dataset [5], GAN-based synthetic
dataset [24] and ours proposed underwater depth dataset Atlantis.

training. To summarize, our contributions are three-fold:
• We are the first, to the best of our knowledge, proposing to

construct paired dataset for underwater depth estimation
training, utilizing newly emerged SD and ControlNet.

• The proposed dataset, Atlantis, which comprises realistic
underwater images and reliable depth, is easy to collect
and extend, and features large diversity, theoretically un-
limited scale and smaller domain gap.

• We propose to improve the performance of existing depth
models on unseen underwater scenes using Atlantis for
supervised training. The improved depth can further be
applied for underwater image enhancment, which high-
lights the effectiveness and utility of our dataset.

2. Related Work
In this section, we briefly review the key developments in
terrestrial monocular depth estimation, current underwater
depth estimation techniques, and methods integrating un-
derwater depth estimation with image enhancement.

2.1. Terrestrial Depth Estimation

Eigen et al. [16] pioneered the coarse-to-fine network ap-
proach for end-to-end monocular depth estimation, a sig-
nificant breakthrough. Their Scale-Invariant log loss was
widely adopted in subsequent methods. Monodepth [21]
and Monodepth2 [22] achieved impressive self-supervised
performance and robustness. DORN [18] and Adabins [6]
represented methods that treat depth estimation as ordinal
regression and classification by discretizing depth. Re-
cently, MiDaS [42] set a new benchmark for robust zero-
shot depth estimation by training on million-scale multi-
source data with various optimization techniques. DPT
[43] and ZoeDepth [7] further enhanced the performance
in relative and absolute depth metrics. NeWCRFs [55] and
iDisc [40] introduced fully-connected CRFs and an Internal
Discretization module into depth estimation, respectively.
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Figure 3. Overview of our method for generating the underwater depth dataset. The process begins by creating an intermediate dataset
containing underwater images, depth maps, and text descriptions. This dataset is used to train the Depth2Underwater ControlNet for gen-
erating underwater images from depth maps. The resulting dataset, namely Atlantis, facilitates the training and performance improvement
of terrestrial depth models for unseen underwater scenes.

IEBins [45] introduced iterative elastic bins along the line
of classification-regression-based MDE and VA-DepthNet
[35] imposed first-order variational constraints in the scene
space. However, these models’ performance in underwater
scenes is limited due to domain gap and data scarcity.

2.2. Underwater Depth Estimation

Underwater, light attenuation and backscatter depend on the
distance light travels through water. Image formation mod-
els [2, 15, 28, 38] that elucidate these relationships aid in
estimating parameters such as attenuation coefficients and
transmission. Intriguingly, depth information often emerges
as a secondary product of this process. Traditional tech-
niques of DCP family [14, 27], therefore, can estimate
depth. Gupta and Mitra [23] proposed UW-Net that utilizes
GAN for unsupervised training. Li et al. [30] and Ham-
barde et al. [24] proposed to synthesize different types of
underwater images using the image formation model [10]
and NYU Depthv2 [46], focusing on image enhancement
and depth estimation, respectively. Recent work has also
explored lightweight models [54] and self-supervised learn-
ing [3, 53]. Despite their effectiveness, these methods still
lag behind terrestrial models in performance, underscoring
the need for novel datasets that enable the training of pow-
erful terrestrial depth estimation models.

2.3. Underwater Image Enhancement

Unlike underwater depth estimation, underwater image en-
hancement has been an actively investigated field since
the era of traditional techniques, focusing on color cor-

rection, contrast enhancement, and backscatter removal.
Early methods predominantly relied on physical models
and handcrafted priors [2, 14, 27], often integrating depth-
related aspects. Recent learning-based methods [13, 47, 48]
have shown a preference for jointly estimating underwa-
ter depth and image recovery. A notable advancement is
Akkaynak and Treibitz’s revised image formation model [1]
and their Sea-thru algorithm [2], which achieves effective
dewatering results using range maps. To highlight the effec-
tiveness and utility of Atlantis, We further apply the trained
depth models in underwater image enhancement.

3. Method

In this section, we first detail the motivation, then introduce
our pipeline for data generation as depicted in Figure 3.

3.1. Motivation

In the pursuit of accurate underwater depth estimation, one
of the primary challenges is the labor-intensive and complex
task of collecting real underwater data, including both im-
agery and precise depth information. Existing datasets like
Sea-thru [2] and SQUID [5], although valuable, are limited
in the diversity of scenes and scale due to the acquisition dif-
ficulty. The depth data obtained from stereo pairs in these
datasets is often sparse and compromised in reliability due
to the inherently low quality of underwater images.

As an alternative, GAN-based methods [24, 30] have
been utilized to synthesize underwater images by transfer-
ring the style of terrestrial images, combining terrestrial
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depth and image formation models, aiming to alleviate the
scarcity of real underwater data. However, this approach,
while being less costly and in larger diversity and scale,
typically results in unrealistic synthetic images with signifi-
cant domain gap, as the transformation is more akin to style
transfer than to the creation of authentic underwater scenes.

This is where Atlantis comes into play. We offer a solu-
tion that generates vivid, non-existent underwater scenes us-
ing only depth maps and textual descriptions. This approach
not only provides an infinite range of sampling possibilities
but also ensures the ease of depth map acquisition. The re-
sulting images exhibit a smaller domain gap compared to
traditional methods (Section 4.4). Our dataset, therefore,
stands out for its advantages in terms of easy acquisition,
diversity and scale, realism, and practicality, marking a sig-
nificant improvement over existing datasets and underwater
imagery synthesis methods.

3.2. Underwater Depth Dataset: Atlantis

In the creation of our underwater depth dataset, as illus-
trated in Figure 3, we initiate by constructing an interme-
diate dataset that is instrumental in training a specialized
ControlNet [60]. This tailored ControlNet is then utilized
to guide the pretrained Stable Diffusion v1.5 [44] in gener-
ating underwater images informed by outdoor depth maps.

Data Preparation. Our process begins with the utiliza-
tion of the robust MiDaS [42] model to estimate inverse rel-
ative depth for images from the UIEB dataset [29], follow-
ing ControlNet [60] procedure. For each underwater image
U , a corresponding depth map D is obtained as follows:

D = FMiDaS(U), (1)

where FMiDaS denotes the pretrained MiDaS model. Addi-
tionally, each image U undergoes captioning using the pre-
trained BLIP2 model [31] to generate descriptive text T :

T = FBLIP2(U). (2)

This leads to the formation of our intermediate dataset,
comprising {Underwater, Depth, Text} triplets. Here, the
depth map D serves as the conditioning input, with U as the
target image and T providing the textual narrative for SD’s
content generation. During the training stage, only Control-
Net is set as trainable and other parts of SD are freezed in
the whole process.
Data Generation. Post training our Depth2Underwater
ControlNet, we can now generate underwater images based
on provided depth maps. For instance, with a text prompt
“an underwater view of Atlantis” and a corresponding out-
door depth map D, a vivid non-existent underwater scene is
created. The process is as follows:

c = FCtrlNet(zt, D, T ), (3)

where FCtrlNet represents our trained ControlNet and c is
conditioning feature extracted from the depth map. t de-
notes the t-th step of the backward diffusion process. This
feature c is then utilized in the SD generation process:

Ū = FSD(zt, T |c), (4)

yielding the generated underwater image Ū . FSD(·|·) de-
notes the generation process of pretrained SD conditioned
by a ControlNet. This methodology allows for the creation
of a diverse array of underwater images, all adhering to the
predetermined scene structure but with varied appearances.

Underwater Depth Dataset. The final dataset is pro-
duced by conditioning the generation process of the pre-
trained SD model with our Depth2Underwater ControlNet.
Utilizing 400 terrestrial images from the DIODE-outdoor
dataset [49] for depth estimation, we employ text prompts
such as “an underwater view of Atlantis” and “a corner of
lost Atlantis” to guide the generation of unique underwa-
ter scenes. Sampling four times for each prompt and depth
map results in a dataset comprising 3,200 data pairs. This
dataset is pivotal in training and enhancing the performance
of state-of-the-art terrestrial depth estimation models, par-
ticularly for unseen underwater scenes. The final output is
an estimated depth map D′ for any given unseen underwater
image U ′:

D′ = FDepth(U
′), (5)

where FDepth denotes the depth estimation model trained
on our dataset.

3.3. Implementation Details

This subsection outlines the key implementation aspects of
our data generation pipeline, ensuring a comprehensive un-
derstanding of the process and techniques involved.
Data Preparation. We leverage the training set of UIEB
dataset [29], which consists of 700 underwater images, for
initial depth estimation and captioning. The robust Mi-
DaS model [42] is employed for depth estimation, while
the BLIP2 model [31] facilitates image captioning. These
steps result in 700 data triplets comprising underwater im-
ages, depth maps, and textual descriptions, which forms the
foundation of our training data for ControlNet.
ControlNet Training and Deployment. We utilize the
diffusers library [50] for the modification and efficient
deployment of both SD and ControlNet. We train the Con-
trolNet using standard training settings. For inference, we
set the guidance scale to 5 to avoid unrealistic lighting
styles, and sample for 20 steps for each image generation.
Depth Estimation Model Training. For the training of
depth estimation models, we employ recent iDisc [40],
NeWCRFs [55], IEBins [45] and VA-DepthNet [35]. These
models are trained on our generated underwater depth

11855



Table 1. Quantitative comparisons on real underwater images from D3 and D5 subsets of Sea-thru dataset [2].

Models Training Data RMSE↓ RMSElog↓ A.Rel↓ S.Rel↓ log10↓ SIlog↓ δ1↑ δ2↑ δ3↑

iDisc [40]
KITTI 5.891 1.192 4.702 44.288 0.489 35.846 0.093 0.241 0.359
NYU Depthv2 3.144 0.845 0.819 2.471 0.338 37.296 0.215 0.403 0.504
Atlantis 1.371 0.354 1.630 14.279 0.109 34.654 0.553 0.850 0.955

NeWCRFs [55]
KITTI 3.251 0.934 2.874 15.768 0.365 42.341 0.213 0.375 0.465
NYU Depthv2 3.390 0.955 0.770 2.350 0.372 47.667 0.179 0.365 0.479
Atlantis 1.435 0.378 1.683 14.764 0.120 37.101 0.476 0.837 0.952

IEBins [45]
KITTI 4.217 1.072 3.648 25.007 0.427 44.031 0.159 0.311 0.417
NYU Depthv2 3.287 0.901 0.814 2.373 0.357 44.753 0.151 0.350 0.489
Atlantis 1.597 0.425 1.687 13.766 0.139 41.090 0.425 0.762 0.919

VA-DepthNet [35]
KITTI 7.842 1.326 5.999 76.830 0.555 31.574 0.025 0.129 0.257
NYU Depthv2 2.969 0.777 0.969 2.626 0.315 38.286 0.143 0.279 0.494
Atlantis 1.204 0.292 1.781 19.937 0.086 28.739 0.648 0.939 0.985

Table 2. Quantitative comparisons on real underwater images from SQUID dataset [5].

Models Training Data RMSE↓ RMSElog↓ A.Rel↓ S.Rel↓ log10↓ SIlog↓ δ1↑ δ2↑ δ3↑

iDisc [40]
KITTI 7.265 0.736 1.039 8.040 0.289 35.827 0.156 0.349 0.555
NYU Depthv2 8.752 1.638 0.737 6.454 0.683 41.097 0.016 0.046 0.093
Atlantis 2.663 0.277 0.249 0.920 0.094 27.221 0.637 0.900 0.960

NeWCRFs [55]
KITTI 6.692 0.779 0.579 3.930 0.294 52.091 0.197 0.381 0.541
NYU Depthv2 8.957 1.764 0.766 6.740 0.734 46.791 0.013 0.029 0.064
Atlantis 2.563 0.256 0.229 0.830 0.088 25.189 0.675 0.902 0.964

IEBins [45]
KITTI 7.353 0.780 1.059 9.476 0.289 52.793 0.207 0.412 0.581
NYU Depthv2 8.839 1.674 0.740 6.532 0.692 47.271 0.013 0.041 0.094
Atlantis 2.896 0.296 0.263 0.992 0.100 29.209 0.615 0.870 0.951

VA-DepthNet [35]
KITTI 8.753 0.827 1.299 12.381 0.328 38.362 0.148 0.308 0.461
NYU Depthv2 8.274 1.349 0.657 5.747 0.558 35.518 0.042 0.112 0.205
Atlantis 2.666 0.239 0.204 0.703 0.082 23.337 0.705 0.915 0.970

dataset. Given that MiDaS outputs inverse relative depth,
we cap the depth values at a maximum of 20 meters. This
aligns with the understanding that scene radiance in under-
water environments is predominantly affected by backscat-
ter beyond this range [2].
Hardware and Accessibility. All experiments and model
trainings are conducted on an NVIDIA RTX 3090 GPU.
Both the intermediate triplet data and Atlantis, as well as
the Depth2Underwater ControlNet will be released, con-
tributing to the broader research community in this field.

4. Experiments
In this section, we demonstrate the effectiveness of Atlantis
in training supervised depth estimation models. We com-
pare models trained from scratch on our dataset with their
officially pretrained counterparts on terrestrial datasets,
which is evaluated on unseen underwater datasets. Addi-
tionally, we apply the Sea-thru [2] algorithm1 for underwa-
ter image enhancement with estimated depth, to showcase
the practical application of depth models trained on Atlantis.
Finally, we investigate into the issue of domain gap from
the perspective of Large Language Vision Model (LLVM),
which evidently shows the smaller domain gap of Atlantis
compared to previous synthetic datasets.

1https://github.com/hainh/sea-thru

Due to the space limitation, we provide more samples
of Atlantis, qualitative comparisons as well as underwater
image enhancement results in the supplementary material.

Experimental Setup. We focus on four models: iDisc
[40], NeWCRFs [55], IEBins [45] and VA-DepthNet [35].
All models are trained from scratch on Atlantis and evalu-
ated against their official pretrained counterparts on KITTI
[19] and NYU Depthv2 [46]. They all utilize the Swin-L
model [37] pretrained on ImageNet-22k [12] for encoder
initialization. Quantitatively, we conducted evaluations us-
ing the D3 and D5 subsets of Sea-thru [2] and the SQUID
dataset [5], which consist of underwater images and depth
obtained via Structure-from-Motion (SfM) algorithm. For
qualitative comparison, we addtionally include the test set
of UIEB dataset [29] to complement the diversity of tested
scenes. The metrics used for quantitative evaluation encom-
pass root mean square error (RMSE) and its log variant
(RMSElog), absolute error in log-scale (Log10), absolute
(A.Rel) and squared (S.Rel) mean relative error, the per-
centage of inlier pixels (δi) with threshold 1.25i, and scale-
invariant error in log-scale (SIlog): 100

√
V ar(ϵlog).

4.1. Quantitative Results

The results, as detailed in Tables 1 and 2, demonstrate
a significant domain gap for models pretrained on terres-
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Input iDisc (K) iDisc (N) iDisc (A) NeWCRFs (K) NeWCRFs (N) NeWCRFs (A)

IEBins (K) IEBins (N) IEBins (A) VA-DepthNet (K) VA-DepthNet (N) VA-DepthNet (A)

Input iDisc (K) iDisc (N) iDisc (A) NeWCRFs (K) NeWCRFs (N) NeWCRFs (A)

IEBins (K) IEBins (N) IEBins (A) VA-DepthNet (K) VA-DepthNet (N) VA-DepthNet (A)
Figure 4. Qualitative results on the test set of UIEB dataset [29]. K and N denote models pretrained on KITTI [19] and NYU Depthv2 [46]
while A represents models trained on Atlantis. Depth results are evidently improved after training on our dataset.

trial datasets of KITTI [19] and NYU Depthv2 [46] when
they are applied to underwater images. This domain gap,
which adversely affects the performance across most met-
rics, is evident for all four models, underscoring the inher-
ent challenges in directly applying supervised monocular
depth models to underwater scenes. Conversely, when these
models are trained from scratch on Atlantis, they all ex-
hibit substantial improvements across the majority of quan-
titative metrics. The improvements are consistent across
evaluations on both Sea-thru [2] and SQUID [5] datasets,
affirming the efficacy of Atlantis in supervisely training
depth models and enhancing the performance of monocular
depth estimation for unseen underwater scenes. This out-
come suggests that training on Atlantis effectively reduces
the domain gap. It is noteworthy that Atlantis, despite be-
ing smaller in size compared to the terrestrial datasets, has
shown significant potential in this context. This suggests
that further expanding its scale and diversity or employ-
ing hybrid training approaches might yield even more pro-
nounced improvements.

4.2. Qualitative Results

Figures 4 and 5 showcase visual comparisons that highlight
the stark contrast in depth estimation performance. All pre-
trained models on terrestrial datasets, including iDisc [40],
NeWCRFs [55], IEBins [45] and VA-DepthNet [35], pro-
duce significantly erroneous results on underwater images.
These inaccuracies manifest as heavy haze artifacts in wa-
ter body areas and incorrect relative scene layout distances.
In sharp contrast, after training on Atlantis, all four mod-
els exhibit a remarkable improvement in interpreting under-
water scenes. Notably, they accurately identify and appro-
priately assign distance to water body areas, demonstrat-
ing enhanced discriminative capabilities. The transitions in
scene content are marked by clear borders, and the models
adeptly handle transparent water with varying color casts.
Overall, the layout of underwater scenes is more accurately
rendered, and depth ambiguities, particularly in water bod-
ies, are substantially reduced. This improvement under-
scores the effectiveness of Atlantis in enabling depth esti-
mation models to better differentiate water bodies and adapt
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Input iDisc (K) iDisc (N) iDisc (A) NeWCRFs (K) NeWCRFs (N) NeWCRFs (A)

GT IEBins (K) IEBins (N) IEBins (A) VA-DepthNet (K) VA-DepthNet (N) VA-DepthNet (A)
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Figure 5. Qualitative results on Sea-thru dataset [2]. K and N denote models pretrained on KITTI [19] and NYU Depthv2 [46] datasets
while A represents the models trained on Atlantis. Depth results are evidently improved after training on our dataset.

Input MiDas IEBins Input MiDas IEBins

Figure 6. Some MiDaS results for reference.

Dark Blue Light Blue Dark Green Light Green Artificial lights

Figure 7. Results on various water types and artificial lights.

Input KITTI AtlantisKITTI Atlantis

Figure 8. Effects of different depth on UIE. iDisc is used here.

to diverse underwater conditions, including color casts and
lighting variations. It’s worth noting that the underwater im-
ages used in these comparisons were unseen during training
since Atlantis consists of all non-existent scenes generated
from scene layout of terrestrial depth. This further empha-
sizes the generalizability of Atlantis in training depth mod-
els that effectively adapt to real underwater scenes.

We provide results of MiDaS for additional reference in
Figure 6. Here IEBins [45] is selected for illustration. In-

terestingly, we can find that IEBins is better at recognizing
water bodies, producing cleaner and sharper depth without
hazy artifacts on different water types. This also highlights
the improvement brought by Atlantis on underwater scenes.
Moreover, we visualize the results on various water types as
well as the existence of artificial lights in Figure 7 to show
the robustness of model trained on Atlantis. Model (e.g.,
iDisc) trained on Atlantis shows good generalizability on
different water bodies with different haze heaviness and in
the presence of artificial lights. It validates that our gener-
ation pipeline can implicitly learn the depth-dependent ef-
fects in a data-driven manner.

4.3. Improved Depth for UIE

Sea-thru [2], known for its ability to remove water effects
with precise range maps derived from stereo pairs or video
sequences, can be extended to single underwater images us-
ing depth by models trained on Atlantis. It fails the enhance-
ment with reddish color and artifacts when using inaccu-
rate depth (Figure 8), while oppositely, it produces impres-
sive enhancements (Figure 9) when equipped with depth by
models trained on Atlantis. It evidently shows the improve-
ment of depth accuracy brought by Atlantis and further sug-
gests its practical utility in real-world applications.

4.4. Domain Gap from LLVM Perspective

The advent of Large Language Vision Models (LLVM)
[36, 41] has revolutionized the alignment between textual
and visual features, opening new avenues for synthetic data
analysis. We utilize recent LLaVA v1.5 model [36] to re-
veal the misalignment problem of previous style transfer
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Input Output Input Output Input Output

Figure 9. Qualitative results of the improved depth result applied to downstream underwater image enhancement. Left & Middle: UIEB
dataset [29]. Right: Sea-thru dataset [2] (the above three) and SQUID dataset [5] (the bottom one). Enhancement outputs well show the
effectiveness of the proposed dataset on training depth models for reliable underwater depth estimation.
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synthesis (Figure 10). Specifically, we evaluate 14490 im-
ages from UW-GAN [30, 51] and our method on how much
an LLVM will agree with the generation to be underwater.
Surprisingly, 100% of our images pass the test while only
18% of images in UW-GAN own the agreement of under-
water scene, which evidently confirms the smaller domain
gap of Atlantis. It also suggests the great advantage of SD

[44] and ControlNet [60] over previous synthesis methods
in serving as the novel engine for training data synthesis.

5. Conclustion

In this paper, we introduce a novel pipeline utilizing Stable
Diffusion and a specialized ControlNet for generating real-
istic underwater images with accurate depth. We propose a
dataset, Atlantis, to enable the training of terrestrial depth
models for underwater depth estimation, which signifi-
cantly enhances their performance on underwater scenes.
The proposed dataset comprises realistic underwater im-
ages and accurate depth, featuring easy acquisition, large
diversity, theoretically unlimited scale and smaller domain
gap. Our experiments, encompassing both quantitative and
qualitative analyses, demonstrate the superiority of models
trained on our dataset compared to those pretrained on ter-
restrial datasets. Notably, the application of trained models
in underwater image enhancement showcase their practical
utility and highlight the value of our dataset. Our study re-
veals the potential of SD to be a new source of high-quality
training data. As future work, expanding the dataset and uti-
lizing hybrid training could unlock greater improvements in
model performance and generalization.
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