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Figure 1. Given one individual image from specific users, our proposed method is capable of producing customized images for each
concept contained in the input image, e.g., given a single input image with a man and a woman, our method excels in achieving innovative
renditions of both combined (left) and independent (right) concepts, without compromising the fidelity and identity preservation, and more
importantly, manifesting satisfactory interactive generation conditioned by various text prompts. Note that we employ notation V ∗

i to
denote the modifier of the i-th concept. Our code and data will be publicly available at: https://github.com/Monalissaa/DisenDiff.

Abstract

Recent thrilling progress in large-scale text-to-image
(T2I) models has unlocked unprecedented synthesis qual-
ity of AI-generated content (AIGC) including image genera-
tion, 3D and video composition. Further, personalized tech-
niques enable appealing customized production of a novel
concept given only several images as reference. However,
an intriguing problem persists: Is it possible to capture
multiple, novel concepts from one single reference image?
In this paper, we identify that existing approaches fail to
preserve visual consistency with the reference image and
eliminate cross-influence from concepts. To alleviate this,
we propose an attention calibration mechanism to improve
the concept-level understanding of the T2I model. Specifi-
cally, we first introduce new learnable modifiers bound with
classes to capture attributes of multiple concepts. Then, the
classes are separated and strengthened following the acti-

*Corresponding author

vation of the cross-attention operation, ensuring compre-
hensive and self-contained concepts. Additionally, we sup-
press the attention activation of different classes to mitigate
mutual influence among concepts. Together, our proposed
method, dubbed DisenDiff, can learn disentangled multi-
ple concepts from one single image and produce novel cus-
tomized images with learned concepts. We demonstrate that
our method outperforms the current state of the art in both
qualitative and quantitative evaluations. More importantly,
our proposed techniques are compatible with LoRA and in-
painting pipelines, enabling more interactive experiences.

1. Introduction
Recently developed large-scale text-to-image models [1, 37,
39, 41] have shown unprecedented capabilities in synthe-
sizing high-quality and diverse images based on a target
text prompt. Built on these models, personalized techniques
[11, 40] are further introduced to customize the models for
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Ours Custom Diffusion

Figure 2. Failure case of Custom Diffusion [23]. In the third
column, we show the example encompassing two failure settings:
appearance inconsistency with the input image and ambiguous ob-
ject not included in the target text. In the second column, we show
the result from our method.

synthesizing personal concepts with sufficient fidelity.
Given as input just a few images of the personal concepts

(e.g., family, friends, pets, or individual objects), person-
alized text-to-image models aim to learn a new word em-
bedding to represent a specific concept [45, 50]. However,
existing methods still lack the flexibility to render all exist-
ing concepts in a given image, or only focus on a specific
concept [12, 25]. Given a unique photo from a user (which
could be people rarely seen together or uncommon furniture
pieces), with multiple concepts occurring in the complex
scene, the user naturally desires the ability to freely synthe-
size the concepts by composing multiple objects or focusing
on only one of them. For example, two specific individuals
at a beach, or alternatively, one of them in Times Square, as
shown in Fig. 1.

To achieve flexible renditions of the concepts, instead of
using a single new word to represent one concept [19, 23],
we employ multiple new words to represent multiple con-
cepts. For example, considering an image containing a dis-
tinct chair and lamp (as shown in Fig. 2), we utilize the
prompt “V ∗

1 chair and V ∗
2 lamp” to distinguish between

them, with “V ∗
1 ” serving as the modifier for “chair” and

“V ∗
2 ” as the modifier for “lamp”. This intuitive formula-

tion poses two key challenges. Firstly, the new word em-
beddings are likely to map confusing information, failing
to maintain visual-fidelity to the target concepts. Secondly,
with a relatively small training set (e.g., only one image),
the model is prone to synthesizing multiple subjects, even
when the target prompt pertains to a single concept. For ex-
ample, as depicted in Fig. 2, the ideal output should exclu-
sively feature the specified lamp when the target text is “A
V ∗
2 lamp”. Nonetheless, the image generated by the current

state-of-the-art model not only includes a lamp that doesn’t
match the color and texture of the input image but also in-
volves a chair that shouldn’t be present.

In this paper, we propose a novel personalized T2I
model, referred to as DisenDiff (i.e., Disentangled Diffu-
sion), to address the above-mentioned issues. To preserve
the good generalization ability in pre-trained large-scale
models, we follow [23, 45] to only update the light-weight

modules (WK and WV matrices) within the cross-attention
units along with new token embeddings to extend concepts.
Our key insight is that current methods lack the necessary
guidance for the optimization process, resulting in cluttered
attention maps (as shown in Fig. 4, the first row). Conse-
quently, existing methods struggle to synthesize each con-
cept effectively.

Based on the above observations, we strive to gener-
ate precise attention maps from the following two aspects.
Building on the discovery that the attention map of the
class token can roughly align with the location of the con-
cept, then we propose a modifier-class alignment term to
bind the attention map of each new modifier with its cor-
responding class token, correcting attention to focus on the
region of the related concept. However, the attention maps
of different class tokens often exhibit overlaps, leading to
the incorrect attribute binding [4] and mutual entanglement.
To achieve effective decoupling, we introduce the separate
and strengthen (s&s) strategy to allow flexibly synthesizing
each concept independently. By minimizing the overlap-
ping regions between the attention maps of different class
tokens, we can effectively mitigate the co-occurring issue
when targeting at a specific concept. To further enhance
the independence of concepts, we introduce a suppression
technique to sharpen the boundaries of class tokens’ atten-
tion maps. Our contributions are summarized below:
• We propose DisenDiff to comprehend multiple personal

concepts from only a single image. By using diverse tar-
get texts, it can render combined/independent concepts in
imaginary contexts while preserving high fidelity to the
input image.

• We employ two key constraints to attain precise attention
maps for crucial tokens. The binding constraint locates
new modifiers to different concepts, while the s&s con-
straint decouples these concepts.

• We conduct experiments on various datasets and demon-
strate that our method outperforms the current state of the
art in quantitative and qualitative aspects. Additionally,
we show the flexibility of our approach by applying it to
extended tasks.

2. Related Work

Text-to-image generative models. The objective of
text-to-image (T2I) tasks [29, 56] is to generate an im-
age corresponding to a given textual description. Thanks
to large-scale datasets [3, 42] and advancements in lan-
guage models [21, 34, 35], T2I models have witnessed re-
markable progress. While Generative adversarial networks
(GANs) [20, 27, 38, 53] and autoregressive (AR) transform-
ers [8, 10, 36, 52] have delivered impressive results, diffu-
sion models [7, 16] have taken the lead in T2I generation.
These models employ denoising processes in image space
[1, 17, 31, 41, 49] or latent space [13, 37, 39], resulting in
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unprecedented image generation quality. However, they en-
counter challenges when generating specific objects, such
as custom furniture, even with detailed prompts. We aim to
augment these models to accurately capture the appearances
of novel concepts from real-world images.
Text-guided image editing. With the surge of pow-
erful T2I models, numerous studies have delved into en-
hancing the controllability of diffusion models to cater to
diverse user demands. Approaches such as [4, 9, 47] re-
fine the cross-attention units to encompass all subject to-
kens, motivating the model to fully convey the semantics
in the input prompt. Techniques like [5, 26, 32] imple-
ment region control in T2I generation by using bounding
boxes and paired object labels as inputs. Additionally, [54]
and [48] harness pre-trained diffusion models for image-to-
image translation. A substantial body of work also focuses
on local or global modifications of single images using ex-
isting T2I models. Notable examples include SINE [55] and
UniTune [46], which achieve image editing by fine-tuning
the diffusion model. Other methods like prompt-to-prompt
[14], null-text inversion [30], and [33] impose constraints
on latent noise during inference time without model train-
ing. While our objectives share some common ground with
these methods, our primary focus is optimizing the model to
seamlessly extend personalized concepts into new prompts.
T2I personalization Personalization techniques adapt dif-
fusion models to learn new concepts from user-provided im-
ages, often relying on a small dataset of 3-5 images or even
a single image. Textual Inversion [11] uses pseudo-words
to represent new concepts through a visual reconstruction
objective. To leverage semantic priors from pre-trained
models, DreamBooth [40] utilizes a unique identifier and
class name within the input text to represent new concepts.
Custom-Diffusion [23] and Perfusion [45] compose multi-
ple new concepts by updating only the cross-attention Keys
and Values along with new token embeddings. When work-
ing with a dataset containing just a single image, current
methods [12, 19, 25, 50] typically begin with additional
domain-specific pre-training on a large dataset before adapt-
ing to the new concept. In contrast to these methods, we aim
to address the more challenging problem of acquiring mul-
tiple concepts from a single image without domain-specific
pre-training.

3. Method
Our objective is to understand multiple concepts within a
single image. To this end, we propose a novel attention cali-
bration mechanism to help generate accurate cross-attention
maps in our T2I model. Firstly, the cross-attention maps are
calculated as the activation responses between each word of
the input text and the intermediate visual features. Then,
we impose constraints on the cross-attention maps between
both the modifier-class token pairs and class-class token
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Figure 3. Method overview. Our method applies constraints to
the cross-attention maps of crucial tokens, ensuring the accurate
representation of multiple concepts. We introduce new modifiers,
denoted as V ∗

i , along with the i-th class name, to represent the
i-th personalized concept. Our attention calibration mechanism
mainly includes three parts: the suppression technique performs
self-sharpening and filters noisy small patches, the Lbind loss steers
new modifiers towards the corresponding classes, and the Ls&s loss
guarantees the independence and completeness of the learned con-
cepts.

pairs to bind the cross-attention maps of each modifier with
its corresponding class (modifier-class constraint), as well
as to ensure full comprehension of each class and separation
between different classes (class-class constraint). To further
mitigate the cross-interference issue in our T2I model, we
introduce a suppression technique to obtain a sharper atten-
tion map for each class token. A schematic workflow of our
method is presented in Fig. 3.

3.1. Preliminary

Stable Diffusion. In our experiments, we use Stable Dif-
fusion [43] as our backbone model, inheriting the structure
of the Latent Diffusion Model (LDM) [39]. It primarily
consists of three components: a pre-trained text encoder τθ
from CLIP [34], a VAE [22] model E , and a U-Net diffu-
sion model ϵθ trained on the latent space z of the pre-trained
VAE. Given the noisy latent code zt at t timestep, the diffu-
sion model predicts the random added noise ϵ. The training
objective of the diffusion model is formulated as follows:

EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, τθ(y))∥22

]
, (1)

where x denotes the input image, y is the input text. Fol-
lowing [39], prior knowledge in CLIP is integrated via the
cross-attention mechanism.
Integrating textual features via cross-attention. For-
mally, the intermediate spatial representation ϕ(zt) of the
denoiser U-Net is mapped to a query matrix Q = WQ ·
ϕ(zt), while text embeddings τθ(y) are mapped to a key ma-
trix K = WK ·τθ(y) and a value matrix V = WV ·τθ(y), us-
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Figure 4. Comparison of generated attention maps and images. The first row displays the results of Custom Diffusion [23], while the
second row shows our results. During the training stage, when we obtain accurate attention maps for important tokens (left), it leads to the
ideal output during the inference stage (right), maintaining high-concept similarity with the input image.

ing learnable projection matrices WQ, WK , and WV . Then,
the cross-attention maps are obtained as:

At = Softmax

(
QKT

√
d

)
, (2)

where d is the projection dimension of keys K and queries
Q. Here, At ∈ Rr×r×N , r is the spatial dimension of the
ϕ(zt), and N is the number of input tokens. The updated
spatial representations integrating text priors are then ob-
tained as ϕ(zt) = AtV , as illustrated in Fig. 3.
Text encoding. Generally, during training of a T2I sys-
tem, a suitable text prompt is required in addition to the
selected single image. In this paper, we adopt a manner
similar to [40], incorporating new modifiers and the classes
to be modified into the input text. For example, if the tar-
get image contains a cat and a dog, the text prompt would
be “V ∗

1 cat and V ∗
2 dog”. The modifier tokens “V ∗

i ” are
initialized with rare vocabulary. Given only a single train-
ing image, the T2I model will likely lack the diversity of
generation, known as the language drift [24, 28] problem.
Using our text prompt, we can easily select regularized im-
ages with the same caption to mitigate the issue of language
drift, enabling our model to generate a variety of cats and
dogs (not limited to the ones present in the target images, as
shown in Fig. 5, left of the second row).

Current methods are prone to overfitting when the train-
ing data only consists of a single image, resulting in am-
biguous attention maps for each token (as shown in the first
row of Fig. 4). As demonstrated in P2P [14], the spatial
layout and geometry of the generated images depend on the
cross-attention maps. Therefore, our primary focus is to op-
timize the model to produce accurate cross-attention maps,
elaborated in the following part.

3.2. Coherent binding of modifiers with classes

Based on the cross-attention maps (At) obtained by a previ-
ous method (shown in Fig. 4, the first row), we can observe

that while At of new modifiers are chaotic (Am1
t and Am2

t ),
cross-attention of class tokens can roughly capture the se-
mantic boundaries (Ac1

t and Ac2
t ). We attribute it to the

fact that the majority of parameters in the T2I models are
frozen, preserving the category information of class tokens.
To aid the new modifiers in understanding their responsi-
bilities, we define the constraint to bind the cross-attention
maps of modifiers with their corresponding class tokens as

Lbind (A
mi
t , Aci

t ) = 1− Ami
t ∩Aci

t

Ami
t ∪Aci

t

, (3)

where Ami
t and Aci

t represent the attention map of the i-th
modifier and the i-th class at t timestep, respectively. The
Lbind loss is formulated to reduce the intersection over union
(IoU) [51] between these two attention maps, encouraging
a close alignment between the activations of the modifiers
and the class tokens. To prevent substantial influence on
Aci

t , we detach its gradient during the loss computation.
Nonetheless, there are two potential issues when we di-

rectly apply this constraint. Given that At is the result of
the Softmax operation (i.e.,

∑N
i=1 A

i
t(h,w) = 1, where

Ai
t(h,w) denotes the activation of the i-th token at pixel

(h,w)), input tokens would contend for attention at the
same position. Consequently, a precise pixel-to-pixel cor-
respondence between Ami

t and Aci
t can not be established.

Furthermore, our intention is for the activations of Ami
t to

fully encompass the corresponding object, thereby captur-
ing all its attributes comprehensively. However, as depicted
in Fig. 4, it is evident that within the object region, certain
activations of Ac2

t exhibit high values, while others appear
considerably lower. This poses a challenge for the attention
Ami

t to sustain a comprehensive focus on the object. To ad-
dress these challenges, we employ a Gaussian filter on At,
which leads to the generation of smooth attention maps re-
ferred to as G(At). This smoothing process helps to allevi-
ate the pixel-wise competition among tokens and facilitates
more comprehensive attention to the object. Consequently,

4767



by using the loss function Lbind (G(Ami
t ), G(Aci

t )), we en-
courage Ami

t to have coherent attention areas with Aci
t ,

while achieving a broader coverage of the object, without
the need for precise point-to-point binding. For simplicity,
in the subsequent sections of this paper, unless explicitly
specified otherwise, we apply a Gaussian filter to At.

3.3. Separating and strengthening attention maps
for multiple classes

Given a single image as the training set, it’s inevitable for
one class token to attend to multiple concepts simultane-
ously. For instance, in the first row of Fig. 4, specifically in
Ac1

t , the attention dedicated to the “cat” token is not solely
limited to the “cat” concept. It also exhibits some degree
of attention towards the “dog” concept. Thus, Am1

t incor-
porates attributes associated with the “dog” concept due to
its binding with Ac1

t . To ensure independent editing of con-
cepts without interference, it is necessary to separate the
attention regions of different objects (i.e., Aci

t and A
cj
t ).

A straightforward approach is to minimize the overlap be-
tween attention maps of different object tokens as

Lseparate
(
Aci

t , A
cj
t

)
= Aci

t ∩A
cj
t . (4)

The utilization of Lseparate effectively prevents the activa-
tions of class tokens from overlapping. However, it may
come with a side effect of reducing the area of Aci

t , po-
tentially leading to a loss of identity for the corresponding
class, which can be found in the supplement. To simultane-
ously minimize the overlap among attention maps and pre-
serve the class identity, we design the following constraint,

Ls&s
(
Aci

t , A
cj
t

)
=

Aci
t ∩A

cj
t

Aci
t ∪A

cj
t

, (5)

where “s&s” stands for “separate and strengthen.” The Ls&s
loss strikes a balance between avoiding overlap with other
objects and ensuring comprehensive coverage of the target
object, thus improving the accuracy and fidelity of the at-
tention mechanism.
Suppression. The utilization of the Ls&s loss can po-
tentially lead to another issue where the attention map Ac1

t

captures a significant portion of the activations, while Ac2
t

exhibits very few activations. This imbalance in activation
distribution between different class tokens can result in an
uneven emphasis on certain classes. To address it, we intro-
duce a suppression mechanism. Specifically, before com-
puting the Ls&s, we apply an element-wise multiplication
operation to Aci

t (i.e., fm(Aci
t ) = Aci

t ⊙ Aci
t ). Given that

activations fall within the range of [0, 1], fm(Aci
t ) filters

out activations that are less important for the class. As a
result, the loss Ls&s(fm(Aci

t ), fm(A
cj
t )) is designed to sep-

arate and strengthen their attentions, preventing encroach-
ment upon other classes from within its own boundaries.
Additionally, Ami

t can be bound with a more distinct Aci
t .

In summary, the total training loss is formulated as:

L = Lbase +

S∑
i=1

Lbind (G(Ami
t ), fm(G(Aci

t )))

+

S∑
i=1

S∑
j=i+1

Ls&s
(
fm(G(Aci

t )), fm(G(A
cj
t ))

)
,

(6)

where S is the number of classes in the input image, and
Lbase is the base loss of the T2I model in Eq. (1). Ls&s is
responsible for refining the attention maps related to class
tokens, while Lbind is responsible for constraining new mod-
ifier tokens to acquire correct attributes. The auxiliary func-
tions G(·) and fm(·) facilitate the optimization process.
The synergy among these constraints results in the gener-
ation of precise and interpretable attention maps for input
tokens, shown in the second row of Fig. 4.

4. Experiments
4.1. Experimental Settings

Datasets. We conducted experiments on ten datasets span-
ning a large range of categories including people, animals,
furniture, and people with pets/toys. Please note, instead of
concentrating only on one concept, our datasets contain two
distinct concepts within each image. During the inference
phase, we test 30 different prompts for each image: 10 for
combined concepts, 10 specifically targeting the first con-
cept, and 10 focusing on the second concept.
Compared methods. We compare with three personalized
T2I methods, which all utilize new word embeddings to rep-
resent novel concepts. (1) Textual Inversion (TI): In TI, only
the new token embedding representing the novel concept
is updated, while the other parameters remain frozen. (2)
DreamBooth (DB): DB updates all layers of the T2I model
to maintain visual fidelity and employs a prior preservation
loss to mitigate language drift. (3) Custom-Diffusion (CD):
CD updates the most relevant weights related to the input
textual features, including WK and WV within the cross-
attention units, as well as the new token embedding. The
implementation details are provided in the supplement.
Evaluation metrics. The synthetic images should faith-
fully capture the visual characteristics of the input image
while accurately conveying all elements of the target text.
We employ two key metrics: (1) The image-alignment met-
ric evaluates the reconstruction of concepts, which mea-
sures the pairwise CLIP-space cosine similarity [11] be-
tween the generated images and the corresponding real im-
ages. (2) The text-alignment metric assesses the editing ef-
fectiveness of the fine-tuned model by calculating the text-
image similarity between the generated images and the pro-
vided prompts using CLIP [15]. Notably, these two indi-
cators often conflict with each other [45]. For each con-
cept, we synthesize 16 samples per prompt, using 50 DDIM
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Figure 5. Qualitative results of independent (left) and combined (right) concepts. The target prompt in each row represents a distinct
context including learned concepts. Our method shows the highest visual similarity to the input image compared to Custom Diffusion and
DreamBooth (especially in the first row, the results containing the specific toy) while preserving robust editability. Additionally, we show
the ability to address the language drift issue and the disentanglement capability on the left of the second and last row, respectively.

steps and a guidance scale of 6. For comparison, we pro-
vide scores for combined concepts, the first concept, the
second concept, and their average (referred to as Combined,
Concept1, Concept2, and Mean in Fig. 6). For instance, if
the training image caption is “V ∗

1 cat and V ∗
2 dog”, the test

prompts of the Combined, Concept1 and Concept2 settings
are “V ∗

1 cat and V ∗
2 dog in a garden”, “V ∗

1 cat wearing a
hat”, “A pink V ∗

2 dog”, respectively. When testing on inde-
pendent concepts, we calculate the image-alignment metric
between the synthesized images and the segmented image
containing only the corresponding subject.

Implementation details. We fine-tune the Stable Diffu-
sion [43] model for 250 steps, with a batch size of 8 and a
learning rate of 8× 10−5. Similar to [23], we employ clip-

retrieval [2] to select 200 samples from LAION-5B [42]
dataset as regularization images. Captions of these selected
images exhibit a similarity of over 0.85 in the CLIP textual
embedding space with the input text. Meanwhile, we use
the data augmentation in [23]. In our experiments, we ap-
ply the proposed cross-attention calibration to the 16 × 16
attention units, which have been shown to contain the most
semantic information [14].

4.2. Comparison Results

Quantitative comparisons. Fig. 6a illustrates the re-
sults averaged across ten datasets. As shown, we outper-
form all the compared methods, especially on the image-
alignment scores. Specifically, despite Textual Inversion
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(a) (b)

Figure 6. Quantitative evaluation results. (a) Compared to state-of-the-art methods, our approach (green) achieves the highest image-
alignment score, particularly noticeable in Concept2, while maintaining a text-alignment score similar to that of other methods. (b) Ablation
study results. Our full method (green) strikes the best balance between reconstruction and editability.

(TI) achieving the highest text-alignment score, it has the
lowest image-alignment score, indicating its struggle to
maintain the appearance of concepts. DreamBooth (DB)
outperforms TI in image-alignment score but falls signifi-
cantly short compared to our approach in both metrics. Cus-
tom Diffusion (CD) maintains a better balance between the
two metrics and competes with ours in combined concepts
scores and Concept1 scores. However, there is a notice-
able performance gap in the scores for Concept2. In sum-
mary, we achieve the highest image fidelity while maintain-
ing strong text editing effectiveness. Detailed results for
each dataset can be found in the supplement.

Qualitative comparisons. We visually demonstrate the
favorable outcomes in Fig. 5. Concretely, we design diverse
target prompts to assess the learned independent concepts
and combined concepts in different editing scenarios, in-
cluding scene changes, object addition, style transfer, prop-
erty change, accessory addition, interactions between mul-
tiple concepts, concept decoupling, and the ability to ad-
dress the language drift (e.g., generating a specific cat con-
sistent with the input and a dog with a breed distinct from
the one present in the input). As shown in Fig. 5, images
synthesized by DB either lack key attributes of the concepts
or suffer from severe overfitting to the input image. With
most of its parameters frozen, CD improves editability and
reconstruction compared to DB. However, it still struggles
to preserve concepts’ appearances or decouple from the in-
put image, especially as shown in the first and last rows

of Fig. 5. By incorporating cross-attention calibration, our
method achieves high visual fidelity and maintains effec-
tive cross-concept disentanglement during T2I generation.
For the sake of space efficiency, additional results including
Textual Inversion are provided in the supplement.

4.3. Ablation Studies

We conduct ablation studies to show the effectiveness of
each component and analyze the influence of different de-
sign choices, adopting the same setup described in Sec. 4.1.

To assess the necessity of each component, we set up
the following experiment settings: (1) Removing the Ls&s
loss, (2) removing the Lbind loss, (3) removing the suppres-
sion strategy, (4) removing the Gaussian filter, (5) applying
twice suppression (in contrast to one-time). Detailed results
are presented in Fig. 6b. As shown, our full model achieves
a balanced performance between visual fidelity and edit-
ing effectiveness for both combined and independent con-
cepts. Removing either the Lbind or Ls&s loss results in a
significant decrease in image-alignment for both Concept1
and Concept2. Similarly, the removal of the Gaussian filter
leads to a notable reduction in image-alignment for com-
bined concepts. No suppression significantly harms image-
alignment for Concept2, confirming the benefits of sharper
boundaries in Asi

t for understanding multiple concepts (as
explained in Sec. 3.3). Meanwhile, this also leads to lower
text-alignment for both Concept1 and Concept2. Further-
more, applying twice suppression has detrimental effects on
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Figure 7. Applications in image inpainting. Given an input im-
age and its corresponding mask, our method can seamlessly in-
paint the learned concepts into the masked region.

𝑉1
∗ dog and 𝑉2

∗ pig Target text: 𝑉1
∗ dog is playing with a butterfly, add details

Input Ours w/o LoRA Ours w/ LoRA

Figure 8. Integrating with LoRA [18]. Our method can incor-
porate the LoRA parameters to fully convey the semantics (e.g.,
enhancing texture details).

image-alignment as it filters out important information.
On the other hand, there are two design choices worth

considering. As indicated in [44], averaging all scales of
attention layers, instead of just using the 16 × 16 scale,
could potentially yield improved attribution maps for each
input word. Therefore, we explore (1) impose constraints
on the average of all scales attention layers. Additionally,
we investigate releasing more parameters, specifically (2)
updating the WQ, WK , and WV matrices within the cross-
attention units (in contrast to our approach, which only up-
dates the WK and WV ). As depicted in Fig. 6b, operating
on all scales of attention layers resulted in the model’s in-
ability to reconstruct Concept2. Updating WQ, WK , and
WV does help the model remember the appearances of con-
cepts but leads to a significant decrease in text-alignment.
This suggests that updating more parameters does not pre-
serve the good features of the pre-trained model.

4.4. Applications

Personalized concept inpainting. With any image and its
corresponding mask, our method can seamlessly integrate
learned concepts into the masked region while preserving
the rest of the image, as shown in Fig. 7. Users can ef-
fortlessly perform inpainting by simply modifying the text
prompt, thanks to our method’s conversion of concepts into
new word embeddings.
Compatible with LoRA [18]. LoRA techniques, ac-

Input Ours

𝑉1
∗ mother, 𝑉2

∗ father, and 
𝑉3

∗ child
Photo of 𝑉1

∗ mother with 
the sky in the background 

Pencil sketch of 𝑉2
∗ father Photo of 𝑉3

∗ child wearing 
a top hat

Figure 9. Applications in extending three concepts. Enabling
edits on three concepts within a single image.

tively discussed in the community, such as CivitAI [6],
have gained popularity for enhancing specific capabilities
of T2I models, such as improving the ability to refine im-
ages. LoRA adds small, trainable parameters to the frozen
T2I models for fine-tuning, and our method is orthogonal
with it. Therefore, we combine the LoRA with our trained
model to unlock a wider range of applications, as shown
in Fig. 8. This combination is akin to domain-specific pre-
training on a large dataset before personalization [12, 25],
with the added benefit of having access to a wealth of read-
ily available LoRA parameters in the community.
Extending to three concepts. We explore the applica-
tion of our method to the more challenging task of capturing
three concepts from a single image, as shown in Fig. 9. In
this scenario, we employ the Ls&s loss for each pair of the
three class tokens to disentangle these concepts.

5. Conclusions and Limitations
We propose the DisenDiff to mimic multiple concepts from
a single image. We introduce constraints on the cross-
attention units to attain precise attention maps for crucial
tokens, mitigating the overfitting to the single image and ac-
curately capturing concept appearances. Consequently, our
method enables diverse edits involving combined or inde-
pendent concepts while enhancing the visual similarity be-
tween the synthesized images and the input image. Further-
more, we show the flexibility of our method by evaluating
several applications.
Limitations. Disentangling fine-grained categories be-
comes notably challenging when two subjects from the
same category co-exist in a single image, such as Golden
Retriever and Border Collie dogs. Additionally, while our
method can handle images with three concepts, its perfor-
mance degrades considerably. This can be attributed to the
limitations of existing T2I models in such scenarios, as well
as the need for algorithm adjustments to address these spe-
cific challenges. We believe that there is considerable room
to enhance the performance in these complex tasks.
Acknowledgment. This work is supported by Shanghai
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