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Figure 1. (a) Our BOTH57M dataset contains rich gestures and body movements. (b) BOTH2Hands is the only model that can handle text
prompts and body dynamics as input, generating realistic hand motions at present.

Abstract

The recently emerging text-to-motion advances have in-
spired numerous attempts for convenient and interactive hu-
man motion generation. Yet, existing methods are largely
limited to generating body motions only without consider-
ing the rich two-hand motions, let alone handling various
conditions like body dynamics or texts. To break the data
bottleneck, we propose BOTH57M, a novel multi-modal
dataset for two-hand motion generation. Our dataset in-
cludes accurate motion tracking for the human body and
hands and provides pair-wised finger-level hand annota-
tions and body descriptions. We further provide a strong
baseline method, BOTH2Hands, for the novel task: gen-
erating vivid two-hand motions from both implicit body
dynamics and explicit text prompts. We first warm up
two parallel body-to-hand and text-to-hand diffusion mod-
els and then utilize the cross-attention transformer for mo-
tion blending. Extensive experiments and cross-validations
demonstrate the effectiveness of our approach and dataset
for generating convincing two-hand motions from the hy-
brid body-and-textual conditions. Our dataset and code
will be released to the community for future research, which
can be found at github.

1. Introduction

The recent years have witnessed the tremendous progress
of human motion generation, especially for the recently
emerging text-to-motion setting [6, 61, 62, 74]. It enables
novices to conveniently generate desired motions in a natu-
ral interactive manner. Yet, realistic human motions require
the generation of companion motions of hands. Actually,
we humans tend to incorporate a wide variety of hand mo-
tions with body movements in our daily communications.

The recent text-to-motion advances [8, 29, 62, 74]
mostly focus on generating body motions only. In con-
trast, the convenient generation of two-hand motions from
text prompts has significantly fallen behind, mainly due
to severe data scarcity. The wider adopted text-motion
datasets [14, 38] embrace limited two-hand motions and
corresponding textual annotations. Only recently, the con-
current work Motion-X [30] provides a large-scale dataset
with expressive human motions and paired text prompts.
Yet, it still lacks detailed annotations for the hand motions,
making the fine-grained generation challenging, let alone
enabling explicit finger-level controls. On the other hand,
various methods [43, 50, 51] synthesize two-hand motions
with body motion as extra conditions. Such a body-to-hand
setting implicitly reasons the inherent correlations of human
motions between the body and hands, and hence effectively
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handles specific scenarios like speeches or daily conversa-
tions [71, 79]. However, only body-level reasoning falls
short of providing explicit and direct controls of hand mo-
tions, especially in a human-interpretable manner like text
prompts.

To tackle the above challenges, in this paper, we present
BOTH2Hands – a novel scheme to generate two-hand mo-
tions under a novel and hybrid setting: from both text
prompts and body dynamics, as illustrated in Fig. 1. By
organically combining the explicit and implicit conditions,
our approach enables vivid and fine-grained hand motion
generation. Nevertheless, generating hand motions in such
a novel setting is challenging. First, it requires fusing and
balancing the conditions from two very different modali-
ties [23], which may point to diverse generation results.
Second, the fundamental data scarcity for two-hand motion
generation remains, while such a novel multi-modal further
constitutes barriers to data annotations.

Specifically, we first introduced a large-scale multi-
modal dataset, named BOTH57M, for two-hand motion
modeling. Our dataset includes accurate hands and body
motions with paired finger-level hand annotations and body
descriptions, under diverse activities, covering 57.4 million
frames of 8.31 hours with 23,477 textual annotations. To
handle the occlusion, we adopt a camera dome with 32 RGB
input views and utilize the off-the-shelf motion capture ap-
proach [17] to faithfully recover the skeletal motions of both
the hands and body. We then provide two types of tex-
tual annotations for the captured motions: one describes the
full body motions in general, while another focuses on fine-
grained hand motions with finger-level and highly precise
annotations. Note that our BOTH57M dataset is the first
of its kind to open up future research for two-hand motion
generation under hybrid conditions of both body dynamics
and text prompts. Our accurate motions and expressive an-
notations also bring substantial potential for future direction
in multi-modal control or human behavior analysis.

Based on our novel dataset, we further propose
BOTH2Hands, a strong baseline approach to generate vivid
two-hand motions from diverse conditions like body mo-
tions and text prompts. We tailor the recent diffusion mod-
els [20] into a two-stage mechanism for this novel task.
Our core idea is to optimize the potential of the diffusion
model using each modality separately and subsequently uti-
lize a cross-attention transformer to blend them into a two-
hand motion generation with multi-conditioning. Specifi-
cally, we warm up two parallel body-to-hand and text-to-
hand diffusion models in the first stage. Then, we leverage a
cross-attention transformer for motion blending, where two
conditioned results are alternately inserted into the attention
layers to generate convincing and vivid two-hand motions.
Finally, we present a thorough evaluation of our approach
against various state-of-the-art motion generation methods

using our dataset. We also perform cross-validation on
both our dataset and the concurrent Motion-X [30] dataset,
demonstrating the enhancement of our dataset for the two-
hand generation task. To summarize, our main contribu-
tions include:
• We propose a novel scheme to generate fine-grained two-

hand motions under a novel setting: from both implicit
body dynamics and explicit text prompts.

• We contribute a large-scale multi-modal dataset for two-
hand generation, with accurate body and hand motions as
well as rich finger-level textural annotations.

• We combine parallel diffusion structures with a subse-
quent cross-attention transformer, to effectively generate
hand motions from various conditions.

• To tackle the data scarcity, we will release our dataset,
codes, and pre-trained models for future exploration.

2. Related Works

Motion Generation. Currently, numerous works focus on
motion generation under various conditions such as text and
label [1, 3, 9, 14, 44, 46, 47, 62, 74–76], speech and music
[15, 34, 68–70, 78, 79] and objects [4, 7, 16, 59]. Other in-
teresting works use brand-new algorithms [18] or focus on
new scenes [31]. Among these, text-to-motion generation
is a challenging task due to the difficulty of aligning natu-
ral language with time and space [24, 45]. MotionClip [61]
aligns text with other modalities, enhancing model mapping
text to motion. As diffusion model [10, 20, 56, 57] was
introduced in various tasks [8, 52, 52, 54, 55], it also per-
forms well in motion generation. For instance, Human Mo-
tion Diffusion Model [62] introduced text conditions and
showed good results. Other works like T2M-GPT [74] ap-
plied the transformer architecture in this task and proved
its effectiveness. MLD (motion-latent-diffusion) [6] has
attempted to generate motions in the latent space. Some
other works like InterGen [29] focus on human interaction
scenes achieving good results. Full-body motion generation
holds considerable significance in some specific domains
like human object interaction (HOI) [13, 27, 59, 60, 64] and
speech [2, 35, 67, 70], due to its extensive applicability.

Hands are equally important as bodies in motion [42],
presenting unique challenges due to their high density in
small spatial occupancy. Previous hand generation works
concentrate on physics-based issues [32, 48, 77] such as sur-
face contact [72] and reconstructing hands [28, 53]. Other
data-driven [22, 39, 41, 58] works often focus on specific
scenarios [73], modeling the individual as a whole rather
than considering parts separately [12, 65]. Some works like
Body2Hands [43] take body as condition and achieve im-
pressive results [50, 51, 71, 79]. Previous studies often fo-
cus on full-body or body motions only, rather than generat-
ing hands aligned with both body motions and text controls.
Motion Dataset. These days various motion datasets have
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A person points with one hand to two places, indicating two 
objects.

A person bends their hands together in a threatening 
manner.

The left hand gestures towards the left and right, then the 
right hand positions opposite to it with fingers touched.

The left hand points from left to right, then the hands 
touched fingers to fingers.

The person points with their left index finger, then positions 
the left fingers opposite the right fingers without closing.

L

R

A person forms a large circle with both hands to express 
coercion.

t
Figure 2. BOTH57M dataset focuses on body-hand motions within the daily scene, incorporating a vast and versatile collection of daily
gestures. Each segment of hands within the dataset has been manually annotated three different times. For more details, please refer to the
supplementary materials.

Dataset #Frame #Cam-view Vocab RGB Annotations Hand Joints std ↑ #Detailed annotation
Body Hand

GRAB 1.6M 54 × × × 0.675 − −
EgoBody 220K 6 × ✓ × 0.316 − −
BEAT 32M 16 − ✓ − 0.076 − −
MotionX 13.7M − 2898 ✓ ✓ 0.186 1 1
BOTH57M(Ours) 57.4M 32 4140 ✓ ✓ 0.422 3 3

Table 1. Dataset comparisons. We conduct a comparison of datasets that encompass body and hand motions. Vocab. denotes the distinct
vocabulary numbers used for annotation. Annotation refers to text annotations. Hand Joint Standard Deviation reflects the standard
deviation of hand joint positions, indicating the diversity of hand motions. Detailed annotation refers to the number of text annotations
for specific skeleton parts in each motion clip.

been presented. Action-labeled datasets like BABEL [49]
offer verb-object phrases as conditions, which is unnatu-
ral for human communication. Datasets such as KIT [46]
or HumanML3D [14] provide detailed natural annotations,
while they ignore hands. Other datasets focus on hand sce-
narios like Hand-Object Manipulation [11], 3D Interacting
Hand [26, 40]. Yet, such scenes mostly focus on hands, they
hardly contain both hand and body data. Full-body datasets
like GRAB [59] contain rich hand gestures but are narrowed
down to HOI scenes. BEAT [33] uses speech text as con-
ditions, lacking standard motion description. Currently, the
largest full-motion dataset Motion-X [30] contains descrip-
tions aligned with motions but lacks annotations focusing
on hands, and the diversity of hand movement is less rich
than their body motions. More data including rich daily
hand gestures with detailed annotation is needed for body
hand motion synthesis.

3. BOTH57M Dataset

Overview. We introduce the BOTH57M, a unique body-
hand motion dataset comprising 1,384 motion clips and
57.4M frames, with 23,477 manually annotated motions
and a rich vocabulary of 4,140 words. The dataset focuses
on hands and body motion in daily various activities, refer-
encing the book “Dictionary of Gestures ” [5] and supple-
menting with custom-designed movements. To the best of
our knowledge, this is the only dataset that provides hybrid
and detailed annotations of both body and hands at present,
providing huge potential for future research. Tab. 1 shows
a detailed comparison of various body hand datasets with

ours. The rich vocabulary and hand diversity underscores
our advantage in tackling the text/body-to-hand task.
Data Collecting. We utilize 32 RGB cameras to build a
dense-view system for body-hand motion capturing. Dur-
ing data collection, participants are instructed to perform
movements listed in the “Dictionary of Gestures” exclud-
ing unfriendly gestures. Subsequently, manual annotations
are implemented. Three annotators are required to anno-
tate full-body motions. For hand motions, three other anno-
tators individually annotate finger-level actions for the left
and right hand, focusing on the changing process of finger
movements and gaining detailed records for prominent fin-
ger gestures. Fig. 2 offers a comprehensive exemplification
of our dataset. For a comprehensive understanding of data
collection and processing, as well as an in-depth explana-
tion of our collected motions and text annotations, please
refer to the supplementary material.

4. BOTH2Hands Algorithm
Based on our novel dataset, our objective is to generate
hand motions that align with both textual prompts and
body movements. To accomplish this, we propose a novel
pipeline called BOTH2Hands to deal with rich conditions to
generate lively two-hand motions, as shown in Fig. 3. Our
framework consists of a two-stage mechanism: a pair of
diffusion-based hand motion denoisers and a cross-attention
structured transformer. In the first stage, we feed the body
and text controls into two parallel diffusion models. In the
second stage, we blend the hand motions generated by two-
modality controls. Specifically, we follow EgoEgo [25] and
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Figure 3. Overview of BOTH2Hands pipeline. Our pipeline initially feeds text prompts and body movements into two separate diffusion
models. Subsequently, the text-conditioned outcomes are projected into the body-conditioned hand coordinate system using forward
kinematics. Finally, we utilize the two sequences of hand motions as inputs into a cross-attention transformer for motion blending.

adopt forward kinematics (FK) to get joint positions and
rotations 6D in body motion space. For body-conditioned
hand diffusion, our goal is to generate hand motions that are
coordinated with the body motions (Sec. 4.1). As for text-
conditioned hand diffusion, we first use inverse kinematics
(IK) to get local hands to make the denoise process more fo-
cused on gesture. However, these generated hands are not in
the same coordinate system as the body-conditioned hands.
To address this issue, we then employ FK to project the local
hands back into the body motion space, thereby eliminat-
ing gesture rotation errors while blending (Sec. 4.2). After
that, we perform cross-attention motion blending between
the text-conditioned hands and the body-conditioned hands
(Sec. 4.3). This process ensures the generated hand motions
effectively combine the dynamics of body motion with the
explicit textual conditions.

4.1. Body-hand motion diffusion

Motion Diffusion Model. In our approach, we adopt the
formulation suggested in the denoising diffusion probabilis-
tic model (DDPM) [20], which effectively handles the hand
synthesis task. The diffusion model processes the input data
(x0) for t iterations and obtains the noised data at level t. In
each iteration, sampled Gaussian noise is added to the data
from the previous level. This iterative process is commonly
referred to as the forward process and can be represented as
a Markov chain with t steps. The transition probability is

shown in Eq. 1:

q(xt|xt−1) = N (
√
αtxt−1, (1− αt)I), (1)

where βt is a variance schedule parameter and αt =∏t
i=1 (1− βi). The reverse diffusion process can be mod-

eled as pθ(xt−1|xt, c0:N ), where θ represents the learned
parameters and c0:N represents a set of given conditions (0
indicates no condition). Notable, we can always train a dif-
fusion denoiser with any condition to learn a Gaussian pos-
terior distribution q(xt−1|xt, x0). The denoising sampling
process can be formulated as:

pθ(xt−1|xt, c0:N ) = N (xt−1;µθ(xt, t, c0:N ), σ2
nI). (2)

The term µθ(xt, t, c0:N ) is the mean to learn, which can be
impacted by the conditions c0:N . As mentioned in previous
works [10, 23], to be more exact, the updating rule of the
mean is:

µc0:N
t = µc0

t +

N∑
i=1

si(∇ log p(ci|xt)), (3)

where µc0
t is the mean without condition and the gradients

of joint condition are noted as
∑N

i=1(∇ log p(ci|xt)). The
weights si controls the strength of conditioning. However,
since different conditions pertain to distinct modalities, it
is hard to manually configure the strength parameter si.
Therefore, the preference leans towards the utilization of
separate diffusion models to avoid imbalanced control by
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different conditions. This approach prevents being affected
by other conditions when learning µt since the gradient of a
single condition is far easier to learn than joint conditions:

µc
t = µt +∇ log p(c|xt), (4)

where c indicates one single condition.
Body to Hand Diffusion. As the same body motion may
lead to different hand gestures, we need the diffusion prob-
abilistic model to sample the most possible gesture instead
of directly matching one gesture on the body. We utilize the
widely adopted model SMPLH (SMPL+MANO) [36, 53]
as our skeleton, with a total of 52 joints, where the ini-
tial 22 joints are body joints and the remaining 30 joints
are hand joints. We parameterize the representation of mo-
tions as positions and rotations 6D of joint. To fetch pa-
rameters, we use FK to calculate the absolute rotations and
joint positions (we define absolute parameters as real po-
sitions and rotations of joints without the intervention of
parent joints), denoted as global motions, where the for-
mer 22 joint positions and rotations 6D correspond to global
body (CB ∈ RT×22×9) and the latter 30 joints correspond
to global hands (XB ∈ RT×30×9). We perform the forward
process by adding noise to the hand motions step-by-step,
fetching the sequences of hand motions Xt

1,Xt
2, ...,Xt

T at
noise level t. Followed by the forward process, we con-
duct a reverse diffusion procedure on the transformer self-
attention denoiser to estimate X0

B . Then we adopt meth-
ods in [25] to directly concatenate the noised hand Xt

B

and cleaned body C0
B together as denoiser input during the

body-hand diffusion process, with the loss shown in Eq. 5:

Lbody = EX0,t||X̂θ(Xt
B , t,C0

B)− X0
B ||1. (5)

We directly predict the cleaned motion X0
B and use recon-

struction loss as diffusion training loss.

4.2. Text-hand motion diffusion

For text-conditioned hand synthesis, we use IK to extract
the local positions and rotations 6D from FK motion results.
Then we discard body rotations, keeping hand rotations 6D
as ground truth, the calculation process is defined below:

xrotT = Cat(IK(Mrot
lhand), IK(Mrot

rhand)), (6)

where M is the full body motion aligned with text condi-
tion, IK(·) is inverse kinematics process and Cat(·, ·) is
concatenate operation. For joint positions, we first use FK
to calculate the 52 absolute joint positions. Then we can
obtain hand joints in the origin of the coordinate system by
subtracting the positions of their respective wrist for each
hand joint:

xposT = Cat(Mpos
lhand − Mpos

lwrist,Mpos
rhand − Mpos

rwrist). (7)

We define these rotation and position groups as local hands
parameters (xT ∈ RT×30×9).
Hand Projection. Relative positions (we define relative
parameters as joint positions and rotations relative to par-
ent joints) representation may result in motion drifting due
to the need for integrating velocity to obtain absolute po-
sitions [63]. Nevertheless, relative rotation representations
are advantageous for focusing on gestures and are easy to
migrate [36]. Remember that we use motion representa-
tion, consisting of positions and rotations 6D. For body-
conditioned hand synthesis, absolute positions and rotations
of hand joints with body joints are directly applicable. How-
ever, predicting the absolute pose of hands without wrist po-
sitions is hard and meaningless for text-conditioned synthe-
sis, so for the positions, we prefer absolute representation
in the origin of the coordinate system to avoid integration
prediction and parent skeleton influence. To focus on the
gesture itself, we prefer to use relative rotations. Nonethe-
less, absolute positions and relative rotations cannot be used
for hand blending directly, since the two conditioned hands
are on different coordinate systems. In order to mitigate the
influence of the spatial reference system, we projected xT in
local space to XT in global space to eliminate their potential
space error:

XT = FK(Cat(IK(CB), xT )). (8)

FK(·) is forward kinematics process, xT are text-
conditioned hand motions in local space, while XT are text-
conditioned hand motions in global space.
Text to Hand diffusion. On the text-conditioned diffusion
process, we follow the methods proposed in MDM [62] to
add the text condition token c to embed noise t step token.
The denoising structure is similar to the body-conditioned
motion denoiser, with a slight difference in input dimen-
sion. We only feed the noised hands as input since text-
conditioned synthesis can not contain body motion. We
adopt the reconstruction loss similar to Eq. 5 to predict x0T :

Ltext = Ex0,t||x̂θ(xtT , t, c)− x0
T ||1. (9)

4.3. Cross-attention hand blending

Inspired by the success of the sharing-weights transformer
in InterGen [29], we adopted a cross-attention transformer
for gesture blending. The networks are fed with two con-
ditioned hand motions, XT and XB . We sequentially ap-
ply hand motions as attention inputs to the transformer, and
compute the weighted reconstruction loss between the final
output and two types of gestures. Specifically, the XT and
XB are firstly embedded into a common latent space and
positionally encoded into the latent states htext and hbody .
Then, it is processed by N attention-based blocks to ob-
tain the blending hidden states hN

out. Each block consists
of multi-head cross-attention layers (Attn) followed by one

2397



feed-forward network (FF ). For the first time the hands
passing through the cross-attention block, the input hidden
layer hbody is embedded into the query matrix (Q); the at-
tention hidden layer htext is embedded into a key matrix
(K) and value matrix (V); finally we embed results into a
vector h(1)

out. The hand-blending process is detailed below:

h(1)
out = Attn(Q(0),K(0),V(0)) = softmax(

QKT

√
D

)V,

Q(0) = hbodyW
Q,K(0) = htextW

K ,V(0) = htextW
V ,
(10)

where D is the number of channels in the attention layer;
W are trainable weights, and Q(i), K(i), V(i) are trans-
former matrices under i-th layer. Passing through the atten-
tion layer once, we get the output h(1)

out. Then we switch the
K, V input to hbody , which means we use body-conditioned
hands as attention input to emphasize the body movements.
The changed attention process is:

Q(1) = h(1)
outW

Q,K(1) = hbodyW
K ,V(1) = hbodyW

V .
(11)

After this, we swap K, V input again and repeat this process
until getting the final output in latent space:

h(N)
out = FF (Attn(Q(N−1),K(N−1),V(N−1))). (12)

We use blending loss to supervise the learning of weights
W .

Lblend = EXGT ,XB ,XT
||XGT − (wBXB + wTXT )||1,

(13)
where wB and wT are hyperparameters controlling weights
of different hand motion parts. We set wB and wT to posi-
tive numbers and wB +wT = 1. XGT is GT hand motion.

5. Experiment
We design various experiments to evaluate the validity of
our method and dataset. For method evaluation, we com-
pare our approach and baseline with existing human mo-
tion synthesis methods (Sec. 5.1). To assess the richness
and effectiveness of the BOTH57M, we train our method on
training sets of BOTH57M and Motion-X separately. And
subsequently evaluated trained models through the test sets
(Sec. 5.2). Additionally, an ablation study is performed to
verify the importance of hand projection and blending loss
(Sec. 5.3).

5.1. Methods Evaluation

We compare our approach with several other methods in
the task of generating hands based on textual and body
conditions. We introduce latent text-to-motion methods
T2M-GPT [74] and MLD [6], diffusion-based method
MDM [62], and body-conditioned motion synthesis method

EgoEgo [25] for comparison. We align the input and out-
put dimensions for unbiased comparison, keeping text and
body conditions the same for all methods. In MLD, we
employ two encoder-decoder structures for the body and
hands. In the latent diffusion process, we merge the cleaned
latent body token with the noisy hand token. The combined
token is then denoised to predict latent hands, which are
subsequently fed into the hand decoder. For T2M-GPT,
we train an encoder-decoder structure to derive body fea-
tures and then add up body and text tokens. For non-latent
space methods, we directly concatenate the body conditions
onto the noised hands as input and follow [62] to add text
conditions into it. All methods use the same implementa-
tion details as they presented. For the structures added to
other methods, we keep dimensions the same as the orig-
inal framework. For our method, all transformers consist
of N=4 blocks, a latent dimension of 512, and 4 attention
heads. We use a frozen CLIP-ViTL-14 model as the text
encoder. As for other parameters, the diffusion timesteps
are set to 1000 during training and inference; the AdamW
optimizer is used with a fixed learning rate of 1e−4; and hy-
perparameter wB is set to 0.8, wT is set to 0.2; the motion
blending process (method in Sec.4.3) is performed 3 times.
All the methods are trained with the BOTH57M training set
on a single NVIDIA GeForce RTX 2080 Ti GPU for about
2 days. For more inference results, please refer to supple-
mentary materials.

Following [14], our evaluation metrics include Motion-
retrieval precision (R Precision), Fréchet Inception Distance
(FID) [19], Multi-modal Distance (MM-Dist), Diversity
and MultiModality (MModality). And we randomly split
BOTH57M into the train (80%), val (5%), and test (15%)
set, adopting SMPLH as motion representation. Tab. 2
presents detailed quantitative results from the same test set,
showing our methods reconstructed motions closest to the
real motion. Fig. 4 shows BOTH2Hands achieves good
alignment between hand motions and conditions. Non-
latent methods perform well on body conditions, but poorly
on text conditions. Latent methods struggle with body con-
ditions. Fig. 6 demonstrates our blending block beats our
diffusion baseline. Text-conditioned hands lack body align-
ment, while body-conditioned hands fail to meet prompt re-
quirements. Nevertheless, we also see marginal improve-
ments in our evaluation results. This phenomenon implies
that multi-conditioned generation performance may not be
adequately reflected by widely used metrics such as R-
precision, which are effective for single-conditioned gen-
eration evaluation. Two key reasons are listed below. First,
in a full-body setting, hand motion constitutes a small por-
tion, limiting the metric-based improvements. Second, the
correlation between hand motions and text is non-linear, the
metrics increase brought by enhancing hand motion is lim-
ited due to complicated hand-text alignment. We plan to ex-
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Table 2. Quantitative evaluation of our design with baselines and others. The red one and blue one indicate the best result and the second
best result. We use a 95% confidence interval, approximated by the mean value plus or minus twice the standard deviation.

Methods R Precision↑ FID↓ MM-Dist↓ Diversity→ MModality↑
Top1 Top2 Top3

Real 0.034±.020 0.067±.026 0.109±.030 0.181±.012 1.391±.006 3.980±.090 -

T2M-GPT 0.042±.014 0.073±.014 0.104±.020 0.461±.016 1.398±.010 3.689±.094 1.178±.100

MDM 0.039±.020 0.077±.016 0.114±.024 0.257±.024 1.397±.008 3.887±.074 1.273±.086

MLD 0.036±.012 0.071±.014 0.106±.020 0.296±.026 1.400±.0014 3.826±.078 1.191±.178

Ego-Ego 0.034±.022 0.070±.030 0.109±.032 0.287±.026 1.398±.012 3.810±.090 1.240±.090

BOTH2Hands (Ours) 0.037±.014 0.075±.020 0.115±.028 0.201±.020 1.392±.008 3.969±.082 1.312±.034

BOTH2Hands-Text 0.035±.020 0.067±.026 0.109±.030 0.198±.012 1.391±.006 3.980±.090 1.274±.138

BOTH2Hands-Body 0.039+.012 0.076±.024 0.112±.026 0.203±.016 1.392±.010 3.955±.098 1.266±.120

Text Condition: Circle left thumb Twice, other left fingers remain natural. Make a Fist with right hand.
Ours MDM

t

RL

Ego-Ego

Body Condition

MLD T2M-GPT

Figure 4. Qualitative comparisons. BOTH2Hands algorithm with other methods [6, 25, 62, 74] are given two conditions: text and motion.
Text conditions are listed at the top, and body conditions are listed at the left side with no hands, and the temporal order is from top to
bottom. The motions that follow the conditions are circled red.

Training Set Test Set R precision↑ FID↓ Diversity→ MModality ↑

Real(GT)
Motion-X 0.044±.006 0.353±.068 3.224±.190 −
BOTH57M 0.034±.020 0.181±.012 3.980±.090 −

Motion-X
Motion-X 0.048±.018 0.364±.040 3.203±.116 1.087±.072

BOTH57M 0.026±.008 2.399±.076 1.828±.200 0.581±.090

BOTH57M
Motion-X 0.030±.002 0.858±.024 4.002±.054 1.259±.224

BOTH57M 0.037±.014 0.201±.020 3.969±.082 1.312±.034

Table 3. Cross-dataset comparisons of BOTH57M and Motion-
X. We train our pipeline on the training set of them, then evaluate
the models on their test sets. Real(GT) means the GT data in the
training set is used for evaluation. We use a 95% confidence in-
terval, approximated by the mean value plus or minus twice the
standard deviation.

plore more suitable metrics for future studies and hope our
released code and dataset can serve as a solid foundation for
such exploration.

5.2. Dataset Evaluation

To highlight the richness of the hand motions and the ac-
curacy of text prompts, we compare our BOTH57M with
Motion-X [30], the largest full-body motion dataset with
text currently. We train BOTH2Hands method on training
sets of Motion-X and BOTH57M separately. Then validate
methods on respective test sets. The comparison results are
presented in Tab. 3. We add the GT data in the training

set to the evaluation as the standard. The model trained on
Motion-X training set performs well on the test set. How-
ever, the model trained on BOTH57M provides better align-
ment from text to hands, and its hand diversity is also better
than the model trained on Motion-X. Fig. 5 shows our qual-
itative results. Given body and text conditions on test sets,
our method trained on BOTH57M always performs better
on text and body conditions. It also performs well on gen-
eral motion prompts due to general motion annotations that
contain hand descriptions in BOTH57M.

Method R Precision↑ FID↓ MM-Dist↓
GT 0.034±.020 0.181±.012 1.391±.006

Ours 0.037±.014 0.201±.020 1.392±.008

w/o hand proj 0.036±.014 0.204±.026 1.393±.008

w/o blending loss 0.034±.020 0.210±.022 1.392±.010

Table 4. Ablation study of BOTH2Hands algorithm. Hand pro-
jection will fully improve the method results. We use a 95% con-
fidence interval, approximated by the mean value plus or minus
twice the standard deviation.

5.3. Ablation Study

To validate the importance of hand projection and blend-
ing loss, we perform an ablation study by evaluating the
effects of excluding these elements from the BOTH2Hands
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Text Condition: Bend right hand into C Shape, then Make a Fist. Text Condition: Ways to Pick Up a dollar Secretive.
Train on BOTH57M

L R

Train on Motion-XTrain on BOTH57M Train on Motion-X

L R

Body Condition tBody Condition

Testset: BOTH57M Testset: Motion-X

Figure 5. Dataset Evaluation. We train the BOTH2Hands algorithm on the training set of BOTH57M and Motion-X. Then sample on the
test set of BOTH57M dataset (left) and Motion-X dataset (right). The poses that follow the conditions are circled red.

Text Condition: Right hand makes Four then One, left hand makes Two. 

body cond Ours text cond

t

Body Condition

t

RL

Figure 6. Qualitative results of baseline comparison. The mo-
tions following texts are circled red, the motions following body
are circled blue.

algorithm. Hand projection can be removed directly. But
for blending loss, we choose linear distance loss as an al-
ternative. Numerical results in Tab. 4 indicate our method
performs better with hand projection. This process allows
the transformer to focus solely on the motion. Blending
loss also highly improves hand motion quality, proving that
learning the hand from previous output is effective. As
mentioned in Sec. 5.2, marginal improvements found in the
ablation study also suffer from the insensitivity of the ex-
isting metrics used. But obvious improvements shown in
Fig. 7 still prove the effectiveness of our hand projection
and blending loss.

6. Conclusion
We introduce BOTH57M, the first comprehensive body-
hand dataset that incorporates precise gestures and body
movements, paired with meticulous finger-level hand an-
notations and body descriptions, which spans a variety of

Text Condition: The right hand’s fingers Bends Towards the Palm. 

Ours w/o hand proj w/o blending loss

t

RL

Body Condition

t

Figure 7. Qualitative results of ablation study. The errors of
motions are circled red.

activities, consisting of 57.4 million frames in 8.31 hours,
supplemented with 23,477 text annotations. Based on this
dataset, we introduce BOTH2Hands, a robust algorithm de-
signed to generate hand movements under two conditions:
body movements and text prompts. Subsequently, we em-
ploy a cross-attention transformer for motion blending. We
also conduct a series of detailed evaluations to demonstrate
the robustness of our methods and the enhancement of our
dataset for the two-hand generation task. We believe the
BOTH57M could boost future exploration in multi-modal
control and the analysis of human behavior.
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