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Abstract

Current approaches in Group Activity Recognition
(GAR) predominantly emphasize Human Relations (HRs)
while often neglecting the impact of Human-Object Inter-
actions (HOIs). This study prioritizes the consideration of
both HRs and HOIs, emphasizing their interdependence.
Notably, employing Granger Causality Tests reveals the
presence of bidirectional causality between HRs and HOIs.
Leveraging this insight, we propose a Bidirectional-Causal
GAR network. This network establishes a causality commu-
nication channel while modeling relations and interactions,
enabling reciprocal enhancement between human-object in-
teractions and human relations, ensuring their mutual con-
sistency. Additionally, an Interaction Module is devised to
effectively capture the dynamic nature of human-object in-
teractions. Comprehensive experiments conducted on two
publicly available datasets showcase the superiority of our
proposed method over state-of-the-art approaches. 0ur
project page: https://angzong.github.io/bi-causal.github.io/

1. Introduction

Group Activity Recognition (GAR) refers to determining
the activities in scenes containing multiple people [9, 20,
32, 36, 40, 53]. The applications of this field include intelli-
gent monitoring, security, and the analysis of team collabo-
rations. This study specifically centers on scenes depicting
team collaboration integrated with interactive objects.

Recently, many methods [5, 12, 17, 42] employed at-
tention mechanisms or graph neural networks to model hu-
man relations (HRs), which are considered as key informa-
tion in group activity. However, while these methods have
shown progress, the exploration of Human-Object Interac-
tions (HOIs) in group-object scenarios remains largely un-
explored. In contrast, studies in other domains of human
behavior understanding and computer vision [27, 54, 55] in-
dicate that HOIs can reveal the intentions of individuals and
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Figure 1. The illustration for the relationship between HOIs
and HRs. (a) Attention Maps: HOI-based GAR vs. HR-based
GAR. (b) An example of the bidirectional causality. At t1, a front
actor’s ball set implies the right team will adjust to a 3-front-3
formation at t2. The prior 2-front-4 setup also supports a fake
spike at t2. The fake spike indicates a swift transition to a 5-front-
1 formation. The 3-front-3 setup aids a successful spike at t3.

enrich the semantic understanding of human action. Fur-
thermore, Figure 1 (a) shows HRs and HOIs have different
salient regions. Understanding the physical movement of
objects helps in analyzing key individuals in GAR. These
studies and observations motivate us to combine HOIs and
HRs in GAR, and it naturally raises a question:

What is the relationship between HRs and HOIs in un-
derstanding team behavior?

Based on our observations, we posit bidirectional causal-
ity between HRs and HOIs, categorized under predictive
causality [10]. Bidirectional causality suggests that HRs
and HOIs mutually forecast each other in both directions,
implying that a change in one may anticipate the other. Fig-
ure 1 (b) illustrates instances of bidirectional causality. Hu-
man Relations during preparation indicate the potential and
manner in which the ball can subsequently be interacted
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with by humans. Simultaneously, Human-Object Interac-
tions also imply adaptations in human relations. HRs and
HOIs mutually forecast each other and form bidirectional
causality. Methods [43, 47] also adopt a causal perspective
to elucidate the causal relationships among humans. These
approaches exhibit similarity in their utilization of tempo-
ral features contextualized with human activities. However,
they neglect to explore the dynamic human-object interac-
tions, leading to a biased focus on irrelevant individuals.

To verify our hypothesis, we perform Granger Causal-
ity Tests [14] on the VOLLEYBALL dataset in Section 1.1.
The results strongly support the existence of bidirectional
causality. Building upon bidirectional causal graphs, we
propose a novel framework for Group Activity Recognition
that jointly models HRs, HOIs, and their correlation to ob-
tain comprehensive representations of group activities. Our
framework, named Bi-Causal, primarily comprises two key
components. First, alongside the conventional human re-
lation module (RM), we introduce an Interaction Module
(IM) designed to capture HOIs by taking human and object
features as inputs and leveraging Graph Convolutional Net-
works (GCN) to facilitate this process. Second, to harness
the bidirectional causality, we establish a Causality Com-
munication Channel to exchange information while mod-
eling HRs and HOIs. We also incorporate the Kullback-
Leibler (KL) divergence function between HRs and HOIs to
enforce information consistency in the final outcome. Our
contributions can be summarized as follows:
• To the best of our knowledge, we are the first to intro-

duce the human-object interaction as a causal factor to
the GAR task. By modeling HOIs, our IM accurately as-
sists in capturing the region in which behavior occurs.

• We highlight the importance of exploring bidirectional
causality in GAR, offering insights for group activity re-
lated research. Specifically, we present a novel bidirec-
tional framework, Bi-Causal, simultaneously modeling
HRs and HOIs and mutually enhancing each other.

• To showcase the strength of our model, we conduct ex-
periments on widely adopted VOLLEYBALL and COL-
LECTIVE ACTIVITY datasets. The results demonstrate
that our method achieves state-of-the-art performance.

1.1. Motivation—Causality test

Causality testing aims to describe the causal relationship be-
tween two entities [51]. The Granger theory involves auto-
regressive modeling and correlation regression modeling of
time series data to analyze regression errors [14, 31]. If in-
troducing environment features results in a reduction of the
regression error, it implies a causal relationship between the
features and the subject. To enhance the reliability of our
hypothesis, we employ Granger Causality Tests to investi-
gate the presence and strength of the bidirectional causality.
We build two models: modelR for HRs and model I → R

90% � = 0.1
F-Critical=1.052

if F-statistic  >  1.052
then Confidence  >  90%

F-statistics ↑ Ts=5 Ts=6 Ts=7 Ts=8 Ts=9 Ts=10

FR→I 1.055 1.070 1.092 1.069 1.045 1.060
FI→R 1.067 1.087 1.069 1.043 1.052 1.052

α 0.150 0.100 0.050 0.020 0.010 0.005
F-Critical 1.041 1.052 1.066 1.084 1.095 1.106
Confidence 85% 90% 95% 98% 99% 99.5%

Figure 2. The confidence in the bidirectional causality. F-
Critical shows the F-Critical Value at Significance Level α. Both
FR→I and FI→R are F-statistics that reflect the confidence in
causality. When the F-statistic is greater than the F-Critical Value,
we consider it as having a corresponding confidence level that
causality exists. Ts denotes the sequence window for inference.

combining both HRs and HOIs. According to the Granger
causality test, if the prediction of I → R outperforms that
of R, we can infer that HOIs causally influence HRs. We
utilize the F-statistic FI→R to quantify the comparison be-
tween models, where a higher F-statistic indicates that the
I → R model outperforms the R model. In the same way,
this approach can also be employed to ascertain the causal
impact of HRs on HOIs (R → I). The detailed method can
be found in the supplementary materials.

Figure 2 shows the values of the two F-statistics for dif-
ferent values of the sequence window Ts. F-statistics indi-
cate the confidence level of the bidirectional causality, i.e.,
FR→I and FI→R. Regarding causality from HRs to HOIs,
we have a 98% confidence level that causality exists. When
Ts equals 5, it performs less optimally but still has a confi-
dence level of over 85%. For causality from HOIs to HRs,
the best and worst results are respectively 98% and 85%.
The vary caused by Ts may be attributed to the fact that an
appropriate sequence length makes causality more evident,
while overly long or too short sequences can introduce in-
terference or information deficiency. The experimental re-
sults demonstrate the existence of bidirectional causality be-
tween HRs and HOIs. We can leverage this causality for
modeling to enhance the construction of HRs and HOIs,
leading to improved representations of group activities.

2. Related Work

2.1. Group Activity Recognition

GAR has gained considerable prominence owing to its ver-
satile applications. The techniques have transitioned from
early manually engineered features and probabilistic graph-
ical models [1–4, 29] to deep learning-based graph mod-
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Figure 3. Illustration of our proposed Bi-Causal. a) Model structure: Based on preprocessed object features (O), person features (P),
and kinematics features (K), Bi-Causal employs two modules RM and IM to extract human relations and human-object interactions from
O and P, integrating them with K. In the process, a causality communication channel enables token exchanges between RM and IM. The
final representations from RM and IM are merged for the ultimate GAR output. b) Explanation: This structure simulates the bi-causality
graph (right) with P (person features), Z (final GAR representation), R (human relations), and I (human-object interactions). In causality
graphs, solid lines indicate direct, dashed lines indicate indirect causal relationships.

els [5, 6, 18, 42, 49]. Recent introductions of attention
mechanisms [12, 15, 17, 20, 21, 23, 42] have further im-
proved the adaptability of visual representation.

Among the methods mentioned above, [15, 19, 42, 43,
45, 49] take the RGB modality features with RoIAlign [16]
as input, emphasizing the organization of human relations.
To enhance the local pose representation for a human and
associated relationship, [12, 20, 22, 50] utilize the keypoints
modality as auxiliary information. However, these meth-
ods overlook the utilization of object information to capture
HOIs, leading to a limited comprehension of the overall
group activity. Therefore, some methods [24, 35, 53] uti-
lize ball tracklets for GAR, but they mainly examine HOIs
based on coordinates or treat objects as additional scene
data, rather than prioritizing the object as the central ele-
ment of the interaction and fully capturing the interaction
dynamics. Furthermore, the methods mentioned above ne-
glect the potential bidirectional causality between HRs and
HOIs, resulting in the separation of relations and interac-
tions. This separation makes it challenging for HRs and
HOIs to perceive and mutually promote each other.

2.2. Causality in Computer Vision

Causality holds promise in the field of computer vision [41,
46] as it contributes to the development of interpretable
models. Recently, scholars have shown a growing interest in
exploring the causal relationships in GAR [43, 47]. Yuan et
al. [47] explores the casual graph to incorporate global vi-
sual context. Xie et al. [43] utilizes Granger causality
tests [14, 31] to describe the complex directed causality re-
lationships among individual movements, capturing asyn-
chronous temporal information among actors. In this work,
we excavate the bidirectional causality that exists in group
activities. Through the Granger causality tests, we establish
the existence of bidirectional causality using the feature se-
quences related to HRs and HOIs extracted at the clip level.

3. Bi-Causal Group Activity Recognition
Figure 3 presents the overall framework of Bi-Causal.

3.1. Feature Extractors

Given a video sequence, we perform uniform sampling to
select a set of T frames and subsequently extract keypoints
from this sequence. We define D as the feature dimension.

Object features are represented by O ∈ RNo×T×D, No

is the number of objects. We calculate information such
as movement speed based on the coordinates of the current
object. Object annotations are obtained from GIRN [24].

Person features are defined as P ∈ RNp×T×D, where
Np denotes the total number of players. For each person,
we aggregate all joint information captured by HRnet [33].

Kinematic features are also obtained from joint infor-
mation, but organized with the inherent grouping informa-
tion. We define it as K ∈ RNm×T×D, where Nm denotes
the number of subgroups. We aggregate all joint coordinates
from a subgroup to get corresponding kinematic features.

3.2. Interaction Module

Our proposed Interaction Module accepts object features
and person features as inputs. Through graph evolution, the
IM engenders interaction features that capture the dynamic
interactions between objects and human entities.

As illustrated in Figure 4, we employ V to symbolize the
entirety of input node features, with each human and object
constituting an individual node. Regarding the node fea-
tures vt at frame t, we execute the dot product of vt with
its transpose, thereby generating the graph edges et, which
serves as a reflection of the extent of interaction among
distinct nodes. Given that HOIs transpire within video se-
quences, it becomes imperative to take into account the tem-
poral dynamics inherent in these interactions. Hence, we
employ E = {et} to signify the graph edges derived from
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Figure 4. Illustration of our Interaction Module. V represents
all the node features (object or person). E stands for the graph
edges. W presents learnable weight parameters.

a video clip spanning T frames, thus enabling the capture
of temporal interaction dynamics through the application of
Self-Attention mechanism to E. Consequently, we acquire
the interaction graph that encompasses the HOIs, denoted as
{V,E}. The interaction graph comprises a set of T graphs,
which are then processed by the Self-Attention mechanism
to model temporal dynamics across these graphs. The out-
put of IM is derived through the following process:

I = σ(Self-Attention(E) · Norm(VW)), (1)

where I is the human-object interaction features, W ∈
RD×D is the weight parameters. σ(·) represents an acti-
vation function, and ReLU [13] is adopted in our method.

Following this, we utilize a Transformer encoder to fuse
the kinematic features with HOI features, thereby yielding
the classification-oriented token denoted as clsinter, akin to
the methodology introduced in ViT [11]. The fusion facil-
itates a more discerning comprehension of inherent group
information of human-object interactions. The clsinter is
obtained through the minimization of the interaction loss
Linter in the following manner:

Linter = −
N∑
i=1

M∑
c=1

yic log(pic), (2)

where pic designates the predicted probability that sample
i pertains to class c, which is determined by classifying
clsinter. yic denotes the result of a sign function, assum-
ing the value of 1 when the true class of sample i equals c,
and 0 otherwise. N signifies the count of samples within a
mini-batch, whileM denotes the number of distinct classes.

3.3. Relation Module

We adopt a Transformer-based approach to model human
relations, drawing inspiration from [15, 20]. The person
features provided as input to the Relation Module encom-
pass both temporal and spatial dimensions.

RST = T-encoder(S-encoder(P)), (3)

RTS = S-encoder(T-encoder(P)), (4)

and R = RST + RTS , (5)

where R represents the extracted relation features, and P
represents person features. The S-encoder and T-encoder
correspond to encoders [38] applied to distinct dimensions.
RST and RTS are two spatiotemporal modeling patterns for
relation evolution by switching the order of space and time.

Similar to the Interaction Module, we likewise fuse kine-
matic features with relation features to acquire the relation
cls-token denoted as clsrela and its associated loss Lrela.

3.4. Causality Communication Channel

To leverage the bidirectional causality between human rela-
tions and human-object interactions, we introduce exchange
tokens. First, we incorporate an empty token into the con-
struction process of both the relation and interaction graphs,
treating it as a node. We then extract information from all
graph nodes to formulate the relation and interaction ex-
change tokens, respectively. Subsequently, we employ ex-
change tokens to reconstruct both the relation and interac-
tion graphs, guided by the prior information conveyed by
exchange tokens (e.g., utilizing the relation exchange token
to guide the reconstruction of the interaction graph).

To better establish bidirectional causality between hu-
man relations and human-object interactions, we implement
the KL Divergence, as in mutual learning [52] to facilitate
their mutual guidance and enhancement. The KL distance
DKL from clsinter to clsrela is computed as:

p̂inter = exp(δ(clsinter)), p̂rela = exp(δ(clsrela)), (6)

DKL(p̂inter||p̂rela) =
N∑
i=1

p̂iinter log(
p̂iinter
p̂irela

), (7)

where N denotes the number of samples in a mini-batch
and δ means a classifier. p̂inter represents the group score.
To be noticed, due to the asymmetry of KL Divergence, we
compute DKL(p̂rela||p̂inter) as well. The total KL Diver-
gence can be formulated as:

LKL = DKL(p̂rela||p̂inter) +DKL(p̂inter||p̂rela). (8)

3.5. Feature Fusion and Objective Function

Once the HR features and HOI features are acquired, we
proceed to employ a Transformer encoder to fuse them, re-
sulting in the final representation of group activities. This
representation is subsequently used during the inference
phase. The fusion encoder can be trained using Lfuse, akin
to the fusion process within the Interaction Module.

In the interaction module, interaction representation is
trained by minimizing Linter. The relation module is
trained by minimizing Lrela. To discern the bidirectional
causality between human relations and human-object inter-
actions, we minimize LKL. The fusion of interaction and
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relation is achieved by minimizing Lfuse. We infer the in-
dividual actions by averaging the predictions from the node
features of the interaction and relation graphs. The total ob-
jective function is constituted as a weighted summation of
all the aforementioned losses:

Lgroup = λrLrela + λiLinter + λfLfuse, (9)

Ltotal = Lgroup + Lperson + λKLLKL, (10)

where Lgroup represents the loss from GAR, Lperson is
from the individual actions recognition. λr, λi, λf and λKL

are hyper-parameters that govern the relative significance of
each loss. Ltotal is employed to train our framework.

4. Experimental Results and Analysis
4.1. Datasets and metric

VOLLEYBALL dataset [18] consists of 55 volleyball videos,
comprising a total of 4,830 labeled clips, with 3,493 clips
in the training set and 1,337 clips in the testing set. The
individual action labels encompass 9 distinct actions, while
the group activity labels encompass 8 activities.

RE-ANNOTATED VOLLEYBALL dataset [8] was created
through the process of re-annotating a subset of group la-
bels within the VOLLEYBALL dataset that were deemed in-
appropriate. A total of 497 reannotations were conducted,
representing approximately 10% of the entire dataset. After
excluding 9 video clips due to changes in camera angles,
the refined dataset now comprises 4,821 clips.

COLLECTIVE ACTIVITY dataset [7] comprises 44
videos with comprehensive annotations. It includes 5 group
activity labels. For our training and testing, we follow the
same split as in previous studies [26, 49], using 32 videos
for training and 12 videos for testing.

In our evaluation, we use the metric of group activity ac-
curacy, in alignment with the method adopted by [20, 53].
We also validated our method within the NBA dataset [45],
which is commonly utilized in weakly supervised group ac-
tivity recognition. Please refer to the supplementary mate-
rials for the experimental results of NBA dataset.

4.2. Implementation details

The feature dimension D is set as 256. For consistent eval-
uation, we follow a standardized approach consistent with
prior research [12, 42, 48, 49, 53], employing input size of
T = 10 frames for both training and testing. The dimen-
sion of the Feed-forward Network layer in all Transformer
encoders is 1024, with ReLU activation functions. Anno-
tations of objects in the VOLLEYBALL dataset are obtained
from [24]. During the training phase, we utilized the Adam
optimizer with a learning rate of 0.001 and a batch size
of 128. Our network is implemented using PyTorch and
trained for 80 epochs on a single NVIDIA Tesla V100 GPU.
Further details are available in the supplementary material.

Model Keypoint RGB Flow Backbone VD ↑ CAD ↑
CERN [30] X VGG-16 83.3 87.2
stagNet [26] X VGG-16 89.3 89.1
HRN [18] X VGG-19 89.5 –
SSU [6] X Inception-v3 90.6 –
HiGCIN [44] X ResNet-18 91.5 93.4
ARG [42] X Inception-v3 92.5 91.0
CRM [5] X I3D 93.0 –
DIN [49] X VGG-16 93.6 –
DECOMPL [8] X VGG-16 93.8 95.5
GroupFormer [20] X Inception-v3 94.1 93.6
Dual [15] X Inception-v3 94.4 –
ACCG [43] X VGG-16 95.5 95.0
Tamura et al. [34] X I3D 96.0 96.5

Dual [15] X X Inception-v3 95.5 –
GIRN [24] X X X I3D+OpenPose 94.0 95.2
GroupFormer [20] X X X I3D+AlphaPose 95.7 96.3
SACRF [25] X X X I3D+AlphaPose 95.0 95.2
AT [12] X X I3D+HRNet 93.5 91

GIRN [24] X OpenPose 92.2 –
AT [12] X HRNet 92.3 –
POGARS [35] X Hourglass 93.9 –
COMPOSER [53] X HRNet 94.6 94.1†
Ours X HRNet 96.1 94.7

Table 1. Comparison with SOTA on the VOLLEYBALL dataset
(VD) and the COLLECTIVE ACTIVITY dataset (CAD) for
group activity accuracy. Keypoint, RGB, and flow (optical flow)
are widely used information modalities, and X in the table means
they are used in the corresponding model. † indicates that this data
is from our replication results. ↑ represents a higher value is better.

4.3. Comparison with the State-of-the-Art

We conduct a comparative analysis between our Bi-Causal
and SOTA methods, on the VOLLEYBALL dataset and the
COLLECTIVE ACTIVITY dataset.

VOLLEYBALL dataset. The comparison results are pre-
sented in Table 1. Our method demonstrates superior per-
formance when compared to previous approaches, both us-
ing the same keypoint inputs as ours and those relying on
different data sources. Notably, we achieve SOTA perfor-
mance even when many methods incorporate additional in-
formation such as optical flow. Among the RGB-only meth-
ods, compared to recent ACCG [43], which does not use ob-
ject features, our method utilizes HOIs to have a more com-
prehensive understanding of group activities, allowing for
accuracy improvements of 0.6%. Without the constraint of
bounding boxes, Tamura et al. [34] uses a detection-based
method to identify and aggregate features to perceive scene
contexts. Though this method reduced information loss, the
lack of HOIs still makes [34] 0.1% lower than ours.

Compared to the current state-of-the-art only using the
keypoint modality, our Bi-Causal achieves considerable
performance. In contrast to COMPOSER [53] with mul-
tiscale representations, our method models HOIs instead of
treating objects as auxiliary features, resulting in a notable
improvement of 1.5%. Furthermore, by exploring HOIs at a
higher level and fully leveraging the bidirectional causality
between HRs and HOIs, our method achieves a significant
improvement of 3.9% compared to GIRN [24].
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Model RGB Keypoint Accuracy ↑

SACRF [25] X 92.8
DIN [49] X 94.3

GroupFormer [20] X 94.4
DECOMPL [28] X 95.2

COMPOSER [53] X 96.2
Ours X 96.8

Table 2. Comparison with SOTA on the RE-ANNOTATED VOL-
LEYBALL dataset.

Method Temporal Multi-graph Accuracy ↑

GAT [39] X 95.4
ARG [42] X 95.5
GIRN [24] X 95.8

IM X X 96.1

Table 3. Comparison of different Interaction Module. Tempo-
ral means whether the temporal dynamics of HOIs are considered.
Multi-graph means whether the module contains multiple graphs.

Base model Causality Accuracy ↑
RM IM R → I I → R

X 93.1
X X 94.7

X X 94.3
X 94.0
X X 95.4
X X X X 96.1

Table 4. Effect of Causality. RM and IM denote using only
the relation module or the interaction module for GAR. R → I
means causality from human relations to human-object interac-
tions is considered and I → R means the opposite.

For the multi-modal methods, our method outperforms
all other methods, despite these approaches utilizing addi-
tional information. This achievement can be attributed to
the full exploitation of bidirectional causality between HOIs
and HRs, enabling them to mutually promote each other
and resulting in a comprehensive perception of various ac-
tivities. In contrast, methods such as GroupFormer [20],
AT [12], and Dual [15], which primarily model HRs, face
challenges when distinguishing activities with comparable
HRs, despite the inclusion of additional information.

COLLECTIVE ACTIVITY dataset. The COLLECTIVE
ACTIVITY dataset primarily consists of simpler actions and
human relations, compared to the VOLLEYBALL dataset.
However, it does not include fixed interactive objects.
Therefore, when working with the COLLECTIVE dataset,
we employ a strategy to detect the most salient object in
the scene that is closest to individuals. We then consider
the interactions between this object and these individu-
als. The comparison results are detailed in Table 1, and
our framework consistently delivers a commendable perfor-
mance. When compared to keypoints-only approaches, our
method continues to yield strong results. Due to the lack
of crucial scene information [34], keypoint-based methods

often exhibit comparatively modest performance compared
to RGB-based methods. Despite this, compared to model
AT, which utilizes both keypoints and RGB information,
our method exhibits a significant improvement of 3.7% due
to the incorporation of bidirectional causality between HRs
and HOIs. Compared to GIRN [24] with multi-modal infor-
mation, we achieve a significant improvement on the VOL-
LEYBALL dataset, while the difference on the COLLECTIVE
dataset is relatively modest. This indicates that our causal
framework yields better results in scenarios where there is
substantial interaction between people and objects. The re-
sults on the COLLECTIVE ACTIVITY dataset reaffirm the
highlights and generalizability of our proposed method.

RE-ANNOTATED VOLLEYBALL dataset. The results
of our comparison with other SOTA methods are presented
in Table 2. Our method surpasses all other approaches on
this dataset, achieving the highest performance. In contrast
to Groupformer, which excels in the RGB modality, our
method achieves a notable improvement of 2.4%. Similarly,
we observe a performance gain of 0.6% compared to COM-
POSER. These results further highlight the discriminative
capability of our approach in the field of GAR.

Interaction modeling comparison. To demonstrate
the effectiveness of our IM, we adapted some graph-based
methods to model HOIs and conducted experiments by re-
placing the IM while keeping all other experimental condi-
tions unchanged. 1) We employed either human or object
features as graph nodes and calculated edges using an at-
tention mechanism to implement the GAT [39] method. 2)
By keeping the input at the joint level, we reproduced the
Person-Object module of GIRN [24] to extract HOIs fea-
tures. 3) We implemented ARG [42] to construct multiple
graphs within a same frame to model HOIs. These methods
have been proven to be highly effective in modeling HRs.
As shown in Table 3, our IM performs favorably against all
the other methods. The reason for the superior performance
of our IM compared to ARG and GAT is that these methods
construct interaction graphs but do not consider the tempo-
ral dynamics of HOIs. In contrast, we construct T graphs
for each frame and employ a transformer encoder to incor-
porate the edges of T graphs with temporal dynamics. In
contrast to GIRN, our method considers humans and ob-
jects as interaction subjects rather than focusing solely on
joints. This broader perspective allows us to capture inter-
actions beyond mere contact and shared motion, resulting
in a more comprehensive representation of HOIs.

4.4. Ablation Studies

In this subsection, we conduct ablation studies in terms of
group activity accuracy on the VOLLEYBALL dataset to in-
vestigate the contribution of each component in our model.

Effect of Causality. To validate the beneficial effect
of bidirectional causality on human relations and human-
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(a) Effectiveness of interaction module

Manner Accuracy ↑

erase 91.9
w/o ball 92.7

w/o self-attention 93.6

IM 95.3

(b) Effectiveness of relation module.

S-encoder T-encoder Path Accuracy ↑

X 93.6
X 94.1

X X S-T 94.5
X X T-S 94.6
X X Dual 95.3

(c) Effectiveness of feature fusion method

Manner Accuracy ↑

sum 94.0
concat 94.3

w/o kinematic 94.7

Ours 95.8

Table 5. Experiment results of ablation studies on the VOLLEYBALL dataset.

(a) Relation (b) Interaction (c) Relation interaction fusion (d) Bidirectional causality

r_set
l_set
r_spike
l_spike
r_pass
l_pass
r_winpoint
l_winpoint

scattered assembled

Figure 5. t-SNE visualization of activity representation on the VOLLEYBALL dataset. Learned from different models: model based on
human relations, model based on human-object interactions, relation and interaction fusion model, and our bidirectional causality method.

object interactions, we perform a series of experiments.
1) RM and 2) IM denote using only human relations or
human-object interactions to describe activities, respec-
tively. In 3) IM w/ R → I, causality from HRs to HOIs
is employed to optimize the information related to human-
object interactions. In 4) RM w/ I → R, causality from
HOIs to HRs is employed to optimize human relations. 5)
‘RM and IM’ incorporates both HRs and HOIs for GAR
without utilizing causality. The corresponding experimen-
tal results are shown in Table 4. Optimizing HRs and HOIs
based on unidirectional causality (settings RM w/ I → R
and IM w/ R → I) results in a 1.4% and 1.6% improve-
ment, respectively, compared to using HRs and HOIs alone,
which signifies the impact of causality. Besides, the 0.4%
improvement observed when transitioning from 5) ‘RM and
IM’ to 3) IM w/ R → I indicates that, compared to solely
introducing HRs information, the addition of causality from
HRs to HOIs results in a more effective model. Overall, the
inclusion of bidirectional causality results in significant im-
provements of 2.1% and 3% compared to using HRs and
HOIs alone, emphasizing the crucial role it plays in GAR.

Variations of Interaction. To assess the efficacy of IM,
we investigate its effectiveness across four distinct settings.
1) The erase setting replaces the GCN used in our IM with
a feed-forward network. 2) w/o ball setting modifies our
interaction module to exclude the ball information. 3) w/o
self-attention setting eliminates the Transformer encoder
previously employed along the edges of our graph for T
frames. All the other aspects of these variants remain con-
stant, and the results are presented in Table 5 (a). In con-
trast to the erase method, our approach demonstrates a no-
table 3.4% increase, providing compelling evidence for the
crucial role played by our Interaction Module. Compared

to the full method, the w/o ball variant shows a 2.6% de-
crease in accuracy, underscoring the pivotal role of objects
for accurately capturing HOIs. In the w/o self-attention set-
ting, there is a 1.7% decrease compared to the full method.
This highlights the capability of our encoder to integrate
temporal information into HOI features. The above exper-
iments on interaction variations indicate that GAR perfor-
mance benefits from our dynamically modeled HOIs.

Variations of Relation. Table 5 (b) presents four differ-
ent settings to examine the effect of RM. The S-encoder and
T-encoder are responsible for modeling HRs in the spatial
and temporal dimensions, respectively. In the S-T setting,
HRs are processed in a spatial-temporal order, while in the
T-S setting, a temporal-spatial order is employed. The Dual
setting combines the results of the S-T and T-S paths using
Equation 5. The result shows that the Dual setting achieves
the best result, with a 0.8% increase against S-T and a 0.7%
increase against T-S. Additionally, Dual achieves 1.7% and
1.2% point gain compared to solely utilizing S-encoder and
T-encoder respectively. These findings highlight the impor-
tance of considering multiple dimensions in modeling HRs,
and using spatial and temporal information in different or-
ders facilitates a more comprehensive characterization of
HRs. The experimental findings reaffirmed the role of the
dual paths postulated by Han et al. [15].

Integration Effect. In our IM and RM, we fuse kine-
matic features with interaction features and relation fea-
tures, respectively. We then fuse the interaction features
and relation features to derive the final activity representa-
tion. Ablation experiments on our fusion method are con-
ducted and presented in Table 5 (c). 1) After projecting
features into the same dimension, sum simply adds the fea-
tures to be fused. 2) concat directly concatenates the fea-
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Figure 6. Visualization of the distinctions between our proposed bidirectional causality model and other models. In causality graphs
(above), Z represents the final representation for GAR. R and I denote HRs and HOIs, respectively. (a) presents the classification results
of various models on an r-set data sample and the classification possibilities of the correct class are annotated in the figure (green).

LKL Linter Lrela Lperson Lfuse Accuracy ↑

X 91.6
X X 93.6

X X X 94.7
X X X 94.8

X X X 94.9
X X X X X 95.8

Table 6. Effectiveness of our multiple loss function.

tures to be fused. 3) w/o kinematic represents not using
the kinematic features to optimize the interaction and re-
lation features. Table 5 (c) demonstrates that compared to
the sum and concat methods, the attention mechanism dy-
namically fuses HR features and HOI features, resulting in
performance improvements of 1.8% and 1.5% respectively.
The omission of kinematic features leads to the absence of
raw motion information and grouping information, result-
ing in a slight decline compared to our fusion strategy.

Effect of Multiple Loss Functions We assess the impact
of different components of our loss function on the perfor-
mance of our network. Table 6 shows that utilizing multi-
ple losses consistently outperforms using only the final fuse
loss function. This improvement stems from the introduc-
tion of constraints of different modules in a multi-module
network, which enhances the consistency of our model and
leads to better performance. By leveraging all components
of our loss, our network achieves the best results.

4.5. Visualization

Group Representation Visualization. Figure 5 displays
the t-SNE [37] visualization of the extracted activity repre-
sentations. These representations are high-dimensional fea-
tures obtained from the test set of the VOLLEYBALL dataset.
We utilize t-SNE to project the group activity representa-
tions onto a two-dimensional plane. The results depicted
in the figure show that describing activities using both HRs
and HOIs concurrently yields superior performance com-
pared to using either HRs or HOIs in isolation. Moreover,
exploring bidirectional causality between HRs and HOIs

further enhances the representation of group activities. The
visualization supports the effectiveness of our framework.

Causality distinction of different models. As illus-
trated in Figure 6, when viewed from a causal perspective,
the Relation Model and Interaction Model describe group
activities from only one aspect (HRs or HOIs), providing an
incomplete understanding of group activities. The Fusion
model combines features from both R and I but does not
consider the potential mutual influence between HRs and
HOIs, leading to a separation between them. In contrast,
our approach establishes bidirectional causality between R
and I, considering their mutual impact and providing com-
prehensive support for GAR. Hence, the first three models
incorrectly classify the given data sample as “right pass”,
while our Bi-Causal correctly identifies it as “right set”.

5. Conclusion

This paper introduces human-object interaction as a causal
factor in Group Activity Recognition. We establish a bidi-
rectional causality relationship between HRs and HOIs
through empirical evidence. We present Bi-Causal, a novel
framework that concurrently models HRs and HOIs, fos-
tering mutual enhancement via a Causality Communica-
tion Channel. Our Interaction Module dynamically captures
spatial and temporal interactions between objects and hu-
mans through graph evolution. Our comprehensive experi-
ments not only showcase the performance of our model but
also highlight the contributions and impacts of each mod-
ule. We believe our work provides valuable insights for fu-
ture research in this field. However, there are limitations to
consider, such as improving bi-causality representation and
expanding our approach to other GAR scenarios.
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