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Abstract

Dance serves as a powerful medium for expressing hu-
man emotions, but the lifelike generation of dance is still
a considerable challenge. Recently, diffusion models have
showcased remarkable generative abilities across various
domains. They hold promise for human motion genera-
tion due to their adaptable many-to-many nature. Nonethe-
less, current diffusion-based motion generation models of-
ten create entire motion sequences directly and unidirec-
tionally, lacking focus on the motion with local and bidi-
rectional enhancement. When choreographing high-quality
dance movements, people need to take into account not
only the musical context but also the nearby music-aligned
dance motions. To authentically capture human behavior,
we propose a Bidirectional Autoregressive Diffusion Model
(BADM) for music-to-dance generation, where a bidirec-
tional encoder is built to enforce that the generated dance
is harmonious in both the forward and backward direc-
tions. To make the generated dance motion smoother, a
local information decoder is built for local motion enhance-
ment. The proposed framework is able to generate new
motions based on the input conditions and nearby motions,
which foresees individual motion slices iteratively and con-
solidates all predictions. To further refine the synchronic-
ity between the generated dance and the beat, the beat
information is incorporated as an input to generate bet-
ter music-aligned dance movements. Experimental results
demonstrate that the proposed model achieves state-of-the-
art performance compared to existing unidirectional ap-
proaches on the prominent benchmark for music-to-dance
generation. The code and models are available: https:
//github.com/czzhang179/BADM .

1. Introduction
Dance is a highly effective medium for expressing emo-
tions, facilitating communication, and fostering social in-
teraction. Nevertheless, the creation of new dances re-
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mains a formidable challenge, given the inherently ex-
pressive and freeform nature of dance movements. In or-
der to generate new dance sequences that seamlessly in-
tegrate with both preceding motions and the musical con-
text, various deep learning-based methods have been pro-
posed [9, 21, 22, 29, 31, 37]. However, they typically
treat dance generation as a matching problem. For exam-
ple, some works [44, 53] rely on constructing a codebook
for music-to-motion matching, which hinders their potential
for creative dance generation. And they exclusively rely on
past movements as the sole guide, neglecting the insights of-
fered by future distributions. These methods also encounter
limitations when attempting to generate dances from music
based on user-defined constraints.

Currently, diffusion models have shown remarkable
promise in image processing tasks. Notable initiatives [48,
49] have explored the potential of diffusion models in the
context of human motion generation. However, a signif-
icant drawback is the insufficient attention given to inter-
frame transitions, resulting in sequences that lack coher-
ence. When designing new motions, people always need
to consider the music condition and nearby motions within
a range. But these models primarily emphasize condition-
ing input and global relationships, often neglecting the in-
tricate details crucial for crafting fluid and harmonious mo-
tion. Consequently, the generated dance movements for
each frame may not align smoothly with the motions in
nearby frames, leading to inconsistencies in the overall se-
quence.

In response to the limitations inherent in current method-
ologies, we present the innovative bidirectional Autore-
gressive diffusion model (BADM). Our model introduces a
novel strategy by breaking down the entire noise sequence
into smaller, manageable slices. During the generation of
each slice, our model considers the preceding dance se-
quences and forwarding noise distributions using a cross-
attention layer in a bidirectional way. Then refined noise
slices are sent into the decoder along with conditions iter-
atively. The output dance slices are then concatenated and
refined by a local information decoder to ensure a cohesive
and harmonious overall sequence from a local perspective.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 1. Proposed bidirectional Autoregressive diffusion model (BADM) generates harmony, physically plausible dance based on music
and beat conditions.

Another observation is that the beat information plays an
important role in the art of dance generation, as it guides the
timing of impressive movements. Prior methodologies such
as EDGE [49] exclusively rely on music features. To rectify
this limitation, we extract the beat information as a distinct
and independent condition. Those features are fused with
diffusion timestep as the whole condition. Furthermore, we
also segment both the music and beat features into corre-
sponding slices, allowing the model to focus solely on each
slice. This iterative approach ensures a more precise align-
ment with the rhythm and musical dynamics.

Our approach also offers exceptional editing capabili-
ties ideally suited for dance choreography. It encompasses
joint-wise conditioning and the ability to seamlessly inter-
polate between movements. BADM also gains a remarkable
ability to generate sequences of arbitrary length, granting it
a high degree of versatility and adaptability. In summary,
our contributions are the following:

• We propose a bidirectional autoregressive diffusion
model based framework (BAMD) for music-to-dance
generation. BADM first considers each motion slice sepa-
rately and then refines them by utilizing their bidirectional
dependencies and the local motion enhancement, so as to
generate more harmony dances.

• In order to enhance the beat information and generate bet-
ter music-aligned dances, our model takes music beat as
an independent condition. The music and beat informa-
tion are segmented to help the model focus on each dance
slice iteratively.

• Comprehensive experiments on the widely utilized
music-to-dance datasets AIST++ [30] demonstrate that
our proposed method surpasses previous models by a sig-
nificant margin across various metrics.

2. Related Work

2.1. Human Motion Generation

The quest to achieve lifelike human motion generation has
been a longstanding pursuit. Many prevalent approaches [1,
24, 27] are rooted in graph-based methods, where motion
sequences are decomposed into discrete nodes and then re-
assembled following predefined rules. In recent years, deep
neural networks have emerged as a promising alternative
avenue for generating human motion. Some methods fo-
cus on predicting motion sequences based on initial pose
sequences [11, 13], while others [7, 12, 20] employ bidi-
rectional GRU and Transformer architectures for tasks like
in-betweening and super-resolution. For instance, Holden
et al.[16] utilize autoencoder to acquire a latent representa-
tion of motion, which is then used to manipulate and control
motion with respect to spatial factors such as root trajec-
tory and bone lengths. Moreover, motion generation can be
guided at a higher level by external cues, including action
classes [4], audio signals [2], and natural language descrip-
tions [42]. Notably, Tevet et al. [48] harnesses the power of
pre-trained large language models like CLIP [43] to estab-
lish a shared latent space for both language and motion.

2.2. Music-to-dance Generation

The challenge of generating dances that synchronize with
the input music has fueled the development of a wide array
of deep learning-based techniques. These methods span a
diverse spectrum, encompassing CNN [16], GANs [26, 47],
and Transformer models [28, 29]. Their common goal is to
directly translate the provided music into a continuous se-
quence of human poses. For instance, Esser et al. [8] en-
codes intricate visual elements into quantized patches, em-
ploying Transformers to generate contextually coherent im-
ages at high resolutions, bridging the visual and musical
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Figure 2. Our bidirectional Autoregressive diffusion model (BADM) employs a denoising mechanism to enhance dance sequences from
time t = T to t = 0. BADM begins with a noisy sequence zT at time T , and proceeds to generate an estimated dance sequence x̂. The
denoising procedure is iteratively applied until t = 0. Our autoregressive (AR) model treats the whole noise sequence as K slices. On the
left, we show our model processing the k-th slice at the diffusion timestep t. BADM is employed K times within each BADM process.

aspects of dance generation. In a different approach, Bai-
lando [44] adopts VQ-VAE [50] to maintain temporal co-
herence across various music genres, a crucial element in
dance generation, ensuring that the movements align with
the music’s rhythm and style. And EDGE [49] leverages
conditional diffusion models to craft human dance move-
ments in direct response to musical cues, utilizing the po-
tent audio feature extractor Jukebox [6]. Diffusion based
models also support human motion editing similar as in-
painting [10, 33, 54, 55].

2.3. Diffusion Model

Diffusion models [15, 45] belong to the realm of neural gen-
erative models. They draw inspiration from the stochas-
tic diffusion process, a concept in thermodynamics. In
this paradigm, data distribution samples undergo a gradual
introduction of noise through the diffusion process. Sub-
sequently, a neural model is trained to reverse this pro-
cess, gradually restoring the original sample to its pris-
tine state. Sampling from the learned data distribution in-
volves denoising an initially pure noise vector. The evo-
lution of diffusion models in the field of image genera-
tion has been enriched by earlier works [15, 46]. For
conditioned generation tasks, Dhariwal et al. [5] introduce
classifier-guided diffusion, a concept later embraced and ex-
tended by GLIDE [39], which enables conditioning based
on CLIP textual representations. In recent developments,
some works [19, 23, 25, 32, 42, 48] have advocated for the
adoption of diffusion models in the context of motion gen-

eration tasks and earn promising results.

2.4. Autoregressive Model

An autoregressive model is a statistical or machine learning
paradigm designed to analyze and predict sequential data.
It operates by making predictions for each data point based
on its dependencies on previous observations within the se-
quence. In essence, it posits that each data point’s value
is influenced by the values of its predecessors. While au-
toregressive models have found wide-ranging applications
in fields such as image processing [17, 36, 51], they have
been relatively underutilized in the domain of motion gen-
eration [52]. Given the unique characteristics of dance gen-
eration, we introduce an autoregressive diffusion model to
address this specific task.

3. Method

3.1. Pose Representation

Our objective is to generate a human motion sequence with
a length of N , given arbitrary musical condition c and beat
condition b. We represent these dance sequences as a series
of poses using the 24-joint SMPL format [34]. Each joint’s
orientation is represented using a 6-DOF rotation represen-
tation [56], and a single translation vector for the root, re-
sulting in a total pose vector p ∈ R24×6+3=147. Following
previous work EDGE [49], we incorporate binary contact
labels for the heel and toe of each foot, resulting in a binary
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contact label vector l ∈ R2×2=4. Consequently, the com-
plete representation of the pose sequence is x ∈ RN×151.

3.2. Diffusion Framework

Our diffusion process is represented as a Markov noise pro-
cess [15]. We generate the noise sequence {zt}Tt=0 for each
timestep t. In the forward noising process, x ∼ p(x) is ini-
tially sampled from the data distribution. The forward noise
process is defined as follows:

q(zt|x) = N (
√
αtx, (1− αt)I), (1)

αt ∈ (0, 1) represents constant hyper-parameters. When
αt is sufficiently small, we can approximate the output as
zT ∼ N (0, 1).

To recover the clean dance sequence, our condi-
tioned diffusion motion model treats the distribution
x̂θ(zt, t, c, b) ≈ x as the reverse diffusion process for grad-
ually cleaning zt, with model θ for all diffusion timestep
t. Instead of predicting the variation ϵt as formulated by
DDPM [15], we predict the signal itself, using the follow-
ing simple objective:

Lsimple = Ex,t[||x− x̂θ(zt, t, c, b)||22]. (2)

3.3. Geometric Losses

In addition to the reconstruction loss Lsimple, we adopt
geometric auxiliary losses similar to HDM [48] and
EDGE [49], which encourage the matching in three aspects
of physical realism: joint positions (Lpos, 3), velocities
(Lvel, 4), and foot contact (Lfoot, 5). These losses enforce
physical properties and prevent artifacts, encouraging natu-
ral and coherent motions

Lpos =
1

N

N∑
i=1

||FK(xi)− FK(x̂i)||22, (3)

Lvel =
1

N − 1

N−1∑
i=1

||(xi+1 − xi)− (x̂i+1 − x̂i)||22, (4)

Lfoot =
1

N − 1

N−1∑
i=1

||(FK(x̂i+1)− FK(x̂i) · fi)||22,

(5)

the function FK(·) represents the forward kinematic pro-
cess, which translates joint rotations into joint positions, and
the variable i is the frame index. In Lfoot, fi signifies the
model’s internal estimation of the binary foot contact la-
bel’s influence on the pose at each frame. This approach
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Figure 3. BADM processes each noise slice zk in a bidirectional
way. Generated dance slices are concatenated and sent to the local
information decoder. We show this process at each timestep t.

not only incentivizes the model to forecast foot contact ac-
curately but also enforces it to maintain coherence with its
self-generated predictions. Overall, our training loss is the
weighted sum of the simple objective and the geometric
losses:

L = Lsimple + λposLpos + λvelLvel + λfootLfoot. (6)

3.4. Model

Our model architecture is depicted in Figure 2 and Fig-
ure 3. The inputs of our model are noise slice zt, diffu-
sion timestep t, music condition c, and beat condition b,
where zt, c, and b have the same length. To ensure that the
newly generated motion remains faithful to the preceding
and future motions, we segment the entire noise sequence
into smaller slices. Our model takes into consideration the
previous motions and future noise distributions when gen-
erating the new motion slice. To elaborate on the process,
we divide the complete noise sequence zt into K slices at
the timestep t, represented as (zt1, zt2, ..., ztK). Each noise
slice ztk undergoes a cross-attention layer that considers
the previously generated dance sequence x̂(k−1) and the
subsequent noise part zt(k+1). Each processed noise slice
ẑtk is subsequently sent into the decoder, which contains
feature-wise linear modulation (FiLM) [41], alongside the
segmented music feature ck and beat information bk, the
output is the generated dance slice x̂k.

We also include zero padding for the initial and final
parts to ensure a smooth transition and maintain the in-
tegrity of the generated dance motions. To ensure temporal
context is preserved, we incorporate timestep information
through a token that is concatenated with the music con-
ditioning. The resulting dance sequences (x̂1, x̂2, . . . , x̂K)
are concatenated and sent into a local information decoder.
The local information encoder is constructed using 1D con-
volutional layers. This step is essential to ensure that the
motions from nearby frames exhibit harmony and cohesion.
The final output x̂ is the generated dance which is faithful
to music and beat conditions.
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3.5. Sampling

At each denoising timestep t, BADM predicts the denoised
sample, then reverberates the effect back to timestep t−1 as
follows: ẑt−1 ∼ q(x̂θ(ẑt, c, b), t − 1), ultimately conclud-
ing this process when t reaches zero. Following previous
works, our model’s training approach utilizes classifier-free
guidance [14]. This strategy is implemented by randomly
substituting the conditioning variable with {c, b} = ∅ dur-
ing training, albeit with low probability. The outcome of
guided inference is a blend of unconditionally generated
samples and conditionally generated samples, expressed as
a weighted summation:

x̂(ẑt, c, b) = w · x̂(ẑt, c, b) + (1− w) · x̂(ẑt, ∅). (7)

We can amplify the conditions by setting guidance weight
w>1 during sampling.

3.6. Long-form Sampling

The capability to create dance sequences of diverse lengths,
even spanning several minutes, stands as a vital necessity in
dance generation. The simple idea is to increase the length
of the condition input, but it can result in a linear escala-
tion of computational demands as sequences grow in length.
Additionally, the conditioning factors c and b can exert ad-
ditional pressure on memory resources.

In order to produce extended sequences, we employ a
methodology based on segmenting the sequences into N -
frame slices. To maintain uniformity across adjacent N/2-
frame slices, we apply interpolation, employing a linearly
decreasing weight. Since the frames within each slice have
been encoded through an autoregressive encoder, we con-
tend that the entire slice inherently encapsulates valuable
autoregressive information.

3.7. Editing

To facilitate the post-processing of dances generated by
BADM, we employ a well-established masked denoising
technique inspired by previous models [35, 48]. Our model
offers the flexibility to accommodate a variety of con-
straints, allowing users to apply both temporal and joint-
wise specifications. When provided with a joint-wise or
temporal constraint xknown with positions indicated by a
binary mask m, the following operations are performed at
each denoising timestep:

ẑt−1 := m⊙ q(xknown, t− 1) + (1−m)⊙ ẑt−1, (8)

where ⊙ refers to the Hadamard product, which operates
element-wise to replace the regions of prior knowledge with
forward-diffused samples of the constraint. This technique
ensures that the dance sequences remain editable during the
inference phase, without requiring any additional training
processes.

3.8. Implement Details

We draw inspiration from recent advancements and utilize
Jukebox features as the music condition input. The research
in music information retrieval [3] has shown that pre-trained
Jukebox [6] model can generate highly effective representa-
tions for audio tasks. However, the jukebox feature doesn’t
contain enough beat information, which can be reflected in
generated motions directly. To augment the rhythmic as-
pect, we incorporate one-hot encoding of the music beat as
a condition, which is extracted by the public audio process-
ing toolbox Librosa [18].

In our experiments, we set the hyperparameter K = 6.
When training our models, we employ the Adan optimizer
with a learning rate of 0.0002. All models undergo training
for 2000 epochs, utilizing four NVIDIA Tesla V100 GPUs
for a period of about 1 day, and the batch size is set to 128.

4. Experiments
4.1. Dataset

In our study, we leverage the AIST++ dataset [30], which
is composed of 1,408 meticulously curated dance motions
intricately synchronized with music spanning a wide spec-
trum of genres. We adhere to the train/test partitioning
scheme established by the dataset creators. To maintain
consistency and facilitate analysis, all training examples
have been truncated to a uniform duration of 5 seconds, cap-
tured at 30 frames per second (FPS).

4.2. Baselines

We have selected FACT [30], Bailando [44], and
EDGE [49] as the baselines for our study. FACT [30] is
a full attention cross-modal transform model that can gen-
erate a long sequence of realistic 3D dance motion. Bai-
lando [44] is a subsequent approach, demonstrating re-
markable qualitative performance improvements. Lastly,
EDGE [49] is the most recent transformer-based diffusion
model dance generation. They are the state-of-the-art tradi-
tional and diffusion based music-to-dance generation mod-
els.

4.3. Results

Generation diversity. To evaluate our model’s ability to
generate diverse dance motions when given various input
music, we compute the average feature distance (DIV) in
the feature space as proposed in [28, 44]. We evaluate
the generated dances in two feature spaces: kinetic fea-
ture [40] (denoted as ’k’) and geometric feature [38] (de-
noted as ’g’). The quantitative results are presented in Ta-
ble 1. Our method outperforms EDGE in terms of both
Distk and Distg , achieving improvements of 1.19 and 1.04
in each metric. Furthermore, when compared with Bai-
lando, BADM demonstrates a remarkable enhancement of
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Method Distk → Distg → BA ↑ PFC↓ Ours Win Rate Fixed bones Editing

Ground Truth 8.19 7.45 0.2374 1.332 66.6%± 10.0% ✓ N/A

FACT [30] (ICCV2021) 5.94 6.18 0.2209 2.254 91.6%± 5.0% ✓ ✗

Bailando [44] (CVPR2022) 7.83 6.34 0.2332 1.754 86.6%± 6.6% ✗ ✗

EDGE [49] (CVPR2023) 9.48 5.72 0.2281 1.654 64.9%± 8.3% ✓ ✓

BADM (ours) 8.29 6.76 0.2366 1.424 N/A ✓ ✓

Table 1. We compare BADM against FACT [30], Bailando [44], and EDGE [49]. ↑ means higher is better, ↓ means lower is better, and →
means closer to ground truth is better. We obtain the quantitative results from their respective publications [44, 49], or re-evaluation results
using published code.

0.46 in Distk, showcasing its ability to generate diverse
choreographies instead of converging to a limited set of
templates. The BADM autoregressive encoder takes into
account only the motions in nearby frames, providing it
with the flexibility to adapt to the specific context of each
frame.

Motion-music correlation. To determine how well the
generated dance sequences align with the accompanying
music, we calculate the Beat Align Score (BA) following
[44]. This score quantifies the average temporal distance
between each beat in the music and its nearest correspond-
ing beat in the dance sequence. As shown in Table 1,
BADM beats all previous methods on this metric. These
findings also highlight BADM’s proficiency in improving
the correlation between music and motion.

Physical plausibility. The Physical Foot Contact score
(PFC) [49] evaluates the plausibility of foot-ground interac-
tion, without presuming that the feet should maintain static
contact throughout the entire dance sequence. As shown in
Table 1, BADM demonstrates a substantial improvement of
0.23 compared to EDGE. And BADM boosts the PFC per-
formance by 0.67 compared to Bailando. These results sig-
nify BADM’s superior physical plausibility, driven by the
local information decoder, which allows the model to focus
on the motion at each frame.

Motion quality. Some dance generation works [30, 44]
use the Fréchet Inception Distance (FID) metric [13] to
evaluate the quality of generated dance sequences. FID is
employed to quantify the dissimilarity between the gener-
ated dance sequences and the entirety of motion sequences
present in the AIST++ dataset, encompassing both the train-
ing and test data. Nevertheless, the reliability of this met-
ric has been called into question by EDGE [49], based on
their insightful observations. EDGE has pointed out po-
tential issues, particularly concerning the limited coverage
of the AIST++ test set given its relatively small size. In
spite of these concerns, our model (20.24) still outperforms

Method Ours Win Rate

Bailando [44] (CVPR 2022) 83.3%± 6.7%

EDGE [49] (CVPR 2023) 61.6%± 8.3%

BADM (ours) N/A

Table 2. User study results from in-the-wild music. We compare
BADM against Bailando [44] and EDGE [49].

EDGE (24.71) when assessed using the FIDg ↓ metric,
which means BADM can generate the dance with high qual-
ity.

User study. To gain a deeper understanding of the true
visual performance of our method, we conducted a compre-
hensive user study, comparing the dance sequences gener-
ated by our approach with the baselines on AIST++ dataset.
This study involved 12 participants, each participating in
individual evaluations. Each participant was presented with
a series of 30 pairs of comparison videos, each lasting ap-
proximately 10 seconds. These pairs included our generated
results and those generated by one of our competing meth-
ods, all synchronized to the same music track. Participants
were tasked with discerning which of the two videos exhib-
ited better synchronization with the music.

The detailed statistics derived from this user study can
be found in Table 1. Notably, our method significantly sur-
passes the compared state-of-art method EDGE with 64.9%
winning rates. Our method even has a 66.6% rate to beat
the ground truth dance. This achievement is particularly
remarkable given that the baseline dances exhibited notice-
able distortions during intricate movements.

In-the-wild music. While our method has showcased im-
pressive performance on the AIST++ dataset, it is crucial
to acknowledge that these achievements may not automat-
ically extend to the ’in-the-wild’ music inputs. To evalu-
ate this critical aspect of generalization, we conducted an
assessment of the proposed method and the baseline ap-
proaches. We select several popular songs from YouTube
for this evaluation. As shown in Table 2, BADM has an
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Figure 4. Yellow parts represent fixed motion inputs and blue parts are the generated motion parts. For motion in-betweening (Top), the
first and last frames are fixed. For specific body part editing (Bottom), the lower body joints are fixed to the input motion while the upper
body is altered to fit the input.

83.3% rate to win the Bailando, and a 61.6% rate to beat
EDGE. Those results reflect that our model succeeds in gen-
erating the dances based on diverse music inputs.

Qualitative results. We present several qualitative exam-
ples in Figure 1, where our model’s capabilities are on full
display. Our model excels in generating harmonious dance
sequences that seamlessly incorporate both footwork and
hand movements. In contrast, previous methods, such as
EDGE [49], often falter during complex movements. For
instance, they may produce inaccuracies, causing the gen-
erated human body to be ’lying down’ when it should be
’turning around’.

4.4. Additional Study

Fixed bones. Preserving fixed bone length is a fundamen-
tal criterion for assessing physical plausibility. Our ap-
proach excels in this aspect by operating within the reduced
coordinate space (joint angle space), enabling us to consis-
tently maintain bone lengths. In contrast, methods that op-
erate in the joint Cartesian space, often result in substantial
variations in bone lengths. For example, Bailando can fluc-
tuate bone lengths by as much as 20%.

Motion editing. In this section, we introduce two motion
editing applications: ’in-between’ and ’body part editing,’
each following certain restrictions in the temporal and spa-
tial domains, respectively. In the ’in-between’ application,
we maintain the initial and final motions as fixed reference
parts and challenge the model to generate the intermedi-
ate motions. In the case of ’body part editing,’ we iden-
tify the joints to remain unaltered, allowing the model to
autonomously create the desired adjustments. In our ex-

Method Distk → Distv → BA ↑ PFC↓

GT 8.19 7.45 0.2374 1.332

K = 3 8.49 6.34 0.2290 1.655
K = 5 8.38 6.68 0.2338 1.482
K = 10 7.75 5.82 0.2189 1.756

w/o Beat 7.93 6.62 0.2235 1.537
Unidirection 7.86 6.46 0.2339 1.582
Removing LID 8.02 6.60 0.2319 1.542

BADM 8.29 6.76 0.2366 1.424

Table 3. Ablation study results from beat information, segmenta-
tion step, and unidirectional encoder. ↑ means higher is better, ↓
means lower is better, and → means closer to ground truth is bet-
ter.

periments, we focus on exploring the possibilities of ex-
clusively editing the upper body joints. As showcased in
Figure 4 (TOP), our method demonstrates its proficiency in
generating fluid and coherent motion sequences that seam-
lessly bridge the initial and final motions. Furthermore, as
depicted in Figure 4 (Bottom), our method excels in gen-
erating upper body motions in sync with the music while
keeping the lower body fixed.

4.5. Ablation Study

Beat information. In our setup, we introduce one-hot
beat information as a conditioning factor, and we also ex-
plored the model’s performance when this condition is re-
moved. As illustrated in Table 3, the addition of the beat
condition yields a notable improvement in the beat align-
ment score, showcasing an increase of 0.0131. This out-
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come underscores the importance of this condition, as it
provides the model with more precise and specific guidance
for generating dance sequences.

Segmentation step size. In our experiments, we con-
ducted a comprehensive analysis of different choices for the
hyperparameter K. Initially, we set K = 6, and we ex-
plored various alternatives. As summarized in Table 3, the
results unequivocally favor the model with K = 6 as the
top-performing configuration. Specifically, the model with
K = 6 surpasses its counterpart with K = 3 by a signif-
icant margin of 0.2 on the Distk metric. Additionally, our
model outperforms the model with K = 10 by 0.332 on the
PFC metric. An optimal choice of K can lead to a substan-
tial increase in performance. When K is excessively large,
each time slice encompasses multiple movements, bringing
too many restrictions to the model. Conversely, when K is
too small, individual movements are segmented into exces-
sively meaningless parts, limiting the information available
for analysis.

Unidirectional encoder. In our experimental setup, the
autoregressive encoder incorporates a bidirectional ap-
proach, allowing it to consider the input from both forward
and backward directions. We also conducted experiments
with a unidirectional encoder. In the unidirectional en-
coder configuration, each noise slice ztk undergoes a cross-
attention layer that only takes into account the dance se-
quence x̂(k−1) generated up to that point. The results are
depicted in Table 3. The bidirectional approach can increase
the PFC by 0.158 and boost the Distk metric by 0.43. Those
results reflect that incorporating both forward and backward
information is pivotal in enabling the model to generate
dance sequences that are harmonious and consistent. It’s
worth mentioning that the noise sequence gradually aligns
with the original dance, as the added noises become pro-
gressively smaller.

Local information decoder. In our model, we leverage
1D convolution layers to enhance the intricacies of the
dance sequence from a local perspective. The impact of
this refinement is evident in the outcomes presented in Ta-
ble 3. Notably, when the local information decoder is omit-
ted, both the PFC and Distk experience a discernible de-
cline, amounting to 0.118 in the former and a degradation
of 0.27 in the latter. These findings serve as compelling ev-
idence supporting the efficacy of our chosen components.

5. Discussion
In the final stage of our proposed model, we employ a local
information decoder to enhance the harmony of the gener-
ated motions. We also experimented with a global infor-

mation encoder to refine the output. However, the results
were less than satisfying. The spatial freedom of the body’s
hand and foot movements became constrained, and the body
struggled to execute certain complex movements. Upon
careful examination, we attribute this issue to the global in-
formation component, which compels the motion at each
frame to account for actions in distant frames, ultimately
restricting creative expression. These results further vali-
date our decision to generate each motion based on nearby
motions rather than considering the entire sequence of mo-
tions.

6. Future Work

In our current model, we segment the entire dance sequence
using a fixed step size. In reality, a dance performance con-
sists of distinct lengths and meaningful movements, such
as ’jumping’, ’turning around’, and ’pirouette’. Our ex-
isting segmentation method may inadvertently split these
complete movements into separate segments, destroying the
original meaning and disrupting the dance’s fluidity. In con-
trast, when the segment length is too long, it might encom-
pass multiple independent movements. In our future re-
search, we aim to enhance our segmentation technique by
taking into account the semantic meaning of each move-
ment. This means that we will strive to identify and seg-
ment the dance sequence in a way that respects the integrity
of individual movements, ensuring a more accurate repre-
sentation of the dancer’s artistry and choreography.

7. Conclusion

In our research, we introduce a bidirectional autoregres-
sive diffusion model (BADM) to tackle the challenge of
music-to-dance generation. Recognizing the shortcomings
of prior approaches, we have devised an autoregressive en-
coder specifically tailored for processing dance slices. This
novel encoder allows our model to create motion at each
frame while taking into account the neighboring frame mo-
tions in a range, resulting in generating smoother and more
coherent dance sequences. And we propose the local infor-
mation decoder to further refine the final prediction. More-
over, we have enriched our model by incorporating beat in-
formation, which significantly enhances the connection be-
tween the generated movements and the underlying music.
Through a series of comprehensive experiments and metic-
ulous ablation studies, we have demonstrated the superior
performance of our methods over existing techniques on the
AIST++ dataset across various evaluation metrics. Our re-
search offers a new means to produce harmonious and life-
like dances that resonate with music.
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