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Abstract

Recently, deep neural networks have achieved excellent
performance on low-light raw video enhancement. How-
ever, they often come with high computational complexity
and large memory costs, which hinder their applications
on resource-limited devices. In this paper, we explore the
feasibility of applying the extremely compact binary neural
network (BNN) to low-light raw video enhancement. Nev-
ertheless, there are two main issues with binarizing video
enhancement models. One is how to fuse the temporal in-
formation to improve low-light denoising without complex
modules. The other is how to narrow the performance gap
between binary convolutions with the full precision ones.
To address the first issue, we introduce a spatial-temporal
shift operation, which is easy-to-binarize and effective. The
temporal shift efficiently aggregates the features of neigh-
bor frames and the spatial shift handles the misalignment
caused by the large motion in videos. For the second issue,
we present a distribution-aware binary convolution, which
captures the distribution characteristics of real-valued in-
put and incorporates them into plain binary convolutions
to alleviate the degradation in performance. Extensive
quantitative and qualitative experiments have shown our
high-efficiency binarized low-light raw video enhancement
method can attain a promising performance. The code is
available at https://github.com/ying-fu/BRVE.

1. Introduction
Videos captured in low-light environments often suffer from
degradations such as severe noise, color distortion, and lack
of details. This not only causes poor video aesthetic quality
but also impairs the application of video in downstream vi-
sion tasks [6, 11, 49]. To enhance low-light videos, there are
several hardware-based solutions, including using high ISO,
long exposure time, large aperture size, and a flashlight.
However, these methods all have their own limitations. For
example, a high ISO setting amplifies noise, long exposure
time causes motion blur in dynamic scenes, and flashlights
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Figure 1. Efficiency and performance comparison of full precision
networks and binary neural networks (BNNs).

have a limited range. On the other hand, software-based
low-light enhancement methods [4, 5, 9, 14] can compen-
sate for these limitations. Many works [10, 12, 55] have
shown raw videos provide several advantages for low-light
enhancement, such as linearity to scene lumination and high
bit-depth to preserve more dark details. In this work, we fol-
low the raw-to-raw video enhancement pipeline to perform
denoising on linearly scaled raw videos.

Deep learning methods have dominated low-light video
enhancement [5, 14] and denoising [18, 19, 50, 51]. These
deep models, such as convolutional neural networks (CNN)
and transformers, often require high computational costs
and large memory overhead. Nowadays, using mobile de-
vices (e.g. smartphones and hand-held cameras) to capture
videos has become increasingly popular. However, these
devices neither have the ability to directly acquire high-
quality videos in low-light environments nor do they have
enough resources to run deep neural networks. To improve
the efficiency of deep neural networks, many network com-
pression techniques are proposed, including network quan-
tization [13, 24], parameter pruning [32, 53], compact net-
work design [52], and knowledge distillation [33]. Among
these approaches, binary neural network (BNN) stands out
as an extreme case of network quantization, which binarizes
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both weights and activations (features) into only 1-bit (i.e.-
1 and +1) to reduce the memory overhead and uses bitwise
operations to accelerate the computation.

Despite its superiority in efficiency, applying BNN to
low-light video enhancement faces several challenges. i) It
is difficult for BNNs to ensure temporal consistency [5, 48]
to avoid flickering and effectively leverage spatial-temporal
self-similarity, which is crucial for denoising [1, 22]. Some
full precision methods use optical flow [19, 45] or de-
formable convolution [46] for feature alignment and fusion
temporal information. However, they introduce auxiliary
modules that are difficult to binarize. Other methods di-
rectly employ 2D or 3D convolutions [14, 30] for implicit
alignment, which has a limited receptive field to deal with
large motions in videos. ii) Binary convolutions encounter
degradation in representation capability compared to their
full precision counterparts [20]. Because binarizing real-
valued activations and weights to 1-bit leads to information
loss of absolute value and distribution characteristics.

In this paper, we design a binary raw video enhance-
ment model (BRVE) to address these issues. Specifically,
we introduce an efficient spatial-temporal shift operation to
fully exploit the temporal redundancy for video enhance-
ment. We use a cyclic temporal shift to fuse the features
of frames in a local window and perform a spatial shift on
features to enlarge the receptive field and handle the mis-
alignment. These shift operations do not introduce extra pa-
rameters and enable parallel processing of multiple frames
using 2D convolutions. Besides, we propose a distribution-
aware binary convolution that can reduce the performance
gap between binary convolutions and full precision ones. It
employs a distribution-aware channel attention to extract a
real-valued scale factor from the input activation with neg-
ligible computation. The scale factor injects distribution in-
formation of full precision input into vanilla binary convo-
lutions to reduce the quantization error. As shown in Fig-
ure 1, our binarized low-light video enhancement method
can reduce the model size and computation while having a
comparable performance with full precision ones. Our main
contributions can be summarized as follows:
• We build a compact binarized model for low-light raw

video enhancement, which can achieve satisfactory re-
sults with low memory and computation.

• We design an easy-to-binarize spatial-temporal shift op-
eration to tackle the alignment of features and aggregate
temporal information for low-light video enhancement.

• We propose a distribution-aware binary convolution to
mitigate the information loss of real-valued activations
caused by binarization.

2. Related Work
In this section, we review datasets and methods for low-
light video enhancement and various applications of BNNs.

2.1. Low-light Video Enhancement

Compared to low-light image enhancement, enhancing low-
light videos is more challenging because obtaining paired
low-light and clean, noise-free normal exposure videos is
difficult. Therefore, some work uses camera noise model
[36, 38, 39, 48, 54] or Generative Adversarial Networks
(GAN) [31] to synthesize low-light noisy videos for train-
ing neural networks. For real-captured training data, Chen
et al. [5] collects a static Dark Raw Video (DRV) dataset.
To obtain paired low/normal-light videos with motion, some
work adopts mechatronic systems [8, 35] to reproduce the
same motion twice. Jiang et al. [14] builds a dual-camera
system to shoot video pairs at once. A beam splitter is
used to generate two identical light beams and one of them
is weakened through a neutral density (ND) filter. To get
rid of extra equipment, Fu et al. [10] shoots a sequence of
dark/bright frame pairs on a 4K monitor to form a video
pair. Among these datasets, we mainly focus on enhanc-
ing low-light raw videos. Because raw data is directly ob-
tained from the sensor and is not processed by non-linear
operations in the image signal processor (ISP). We use the
linearly scaling then denoising pipeline for low-light raw
video enhancement following previous methods [4, 5, 14].

Directly using low-light image enhancement methods
without considering temporal consistency may cause a
flickering problem. Besides, processing low-light video
frame-wisely leads to inferior denoising performance be-
cause the temporal redundancy is not fully exploited. Re-
cently, many deep-learning models have been developed
to improve temporal consistency and make use of spatial-
temporal information for low-light video enhancement and
denoising [10, 14, 37, 47]. SMOID [14] exploits 3D con-
volutions to aggregate temporal features for video enhance-
ment. Some methods like DVDNet [29] and TOFlow [45]
use optical flow to align neighbor frames or features for de-
noising. RViDeNet [46] performs alignment with pyramidal
deformable convolution for raw video denoising. ShiftNet
[18] adopts grouped spatial-temporal shift to simplify fea-
ture aggregation. In order to improve the efficiency of the
networks, FastDVD [30] uses two-stage cascaded U-Nets
for implicit motion compensation. EMVD [23] leverages a
fusion stage to efficiently reduce noise with former frames.
However, these methods only focus on lightweight network
design without exploring hardware-friendly approaches like
model quantization and binarization.

2.2. Binary Neural Networks

Among the various deep neural network compression tech-
niques, binary neural network (BNN) is an extreme form
of network quantization. In a BNN, the network’s weight
parameters and activation values are represented using 1-
bit values (i.e.-1 and +1) which can significantly reduce the
storage and computational requirements [24]. The pioneer-

25754



Shift Binary 
U-Net

!!"##"!"!$#

!!$#% "!"#"!

Shift Binary 
U-Net

!!"%#"!"#

"!"%"!"#

Shift Binary 
U-Net

!!#"!$#"!$%

!!$%% "!"!$#

Binary 
U-Net

Binary 
U-Net

Binary 
U-Net

Binary 
U-Net

Binary 
U-Net

Binary 
U-Net

"!

!!%

Shift Encoder

DownSample

Binary
Conv Block Shift Decoder

UpSample

Shift Encoder

DownSample

Shift Encoder

DownSample

Shift Decoder

UpSample

Shift Decoder

UpSample

Binary
Conv Block

Binary
Conv Block

Binary
Conv Block

(a) Binary Raw Video Enhancement (BRVE) Model

3×(×)×*!

3×(2 ×
)
2 ×*"

3×(4 ×
)
4 ×*#

3×(8 ×
)
8 ×*$

!!"%#"!"#"! "!"%"!"#!!%

(b) Shift Binary U-Net

Sh
ift

O
pe

ra
tio

n

Binary
Conv

Conv1x1

RPRelu DABC RPRelu
*

3*
2 * *

(c) Shift Encoder/Decoder

×4

×4

×4

×8

×8

×8

(e) Binary Conv Block ×&(d) Binary Fusion Block

…

…

…

…

Figure 2. Overall architecture of BRVE model. (a) BRVE uses a shift binary U-Net for local feature fusion and exploits recurrent
embeddings for long-range feature propagation. (b) Shift binary U-Net. (c) Shift encoder/decoder consists of a shift operation, a binary
fusion block, and several binary conv blocks using the distribution-aware binary convolution (DABC).

ing work [7, 13] uses the sign function to obtain binarized
activations and weights and optimize network parameters
with the straight-through-estimator (STE). However, BNNs
face the loss of precision due to quantization error, gradi-
ent error, and limited representation ability. To reduce the
quantization error, XNOR-Net [26] utilizes scaling factors
for weights and activations. IRNet [25] proposes to normal-
ize the weights to retain information and increase informa-
tion entropy. To reduce the gradient error, many efforts have
been made to optimize the approximation of the sign func-
tion. Liu et al. [20] uses a piecewise quadratic function. Qin
et al. [25] introduces an error decay estimator (EDE) with
the tanh function. Xu et al. [43] proposes to decompose the
sign function with Fourier series. Wu et al. [40] develops
a Rectified STE (ReSTE) to balance the gradient estimat-
ing error and the training stability. To improve the capabil-
ity of BNNs, Bi-real [20] preserves real-weight activations
through a simple shortcut. ReActNet [21] and INSTA-BNN
[17] learn a channel-wise threshold to improve the binary
activation function for activations.

In addition to its widespread use in high-level vision
tasks, BNNs are also applied in low-level vision [2, 15, 41,
42]. Jiang et al. [15] removes batch normalization (BN)
layers and introduces a binary training mechanism for im-
age super-resolution. Xia et al. [41] designs a basic binary
convolution unit (BBCU) for image restoration. Cai et al.
[2] proposes a BiSRNet for hyperspectral image reconstruc-
tion. Nevertheless, how to use binary networks to extract
temporal information in videos has not been discussed.

3. Method

In this section, we first introduce our low-light raw video
enhancement pipeline. Then we present the architecture of
our binary raw video enhancement (BRVE) model. Finally,
we elaborate on the details of the distribution-aware binary
convolution and spatial-temporal shift operation.

3.1. Binary Raw Video Enhancement Model

Problem Formulation. Given a consecutive sequence of
low-light noisy raw video frames in Bayer pattern, de-
noted as {IB

1 , IB
2 , ..., IB

T }, where IB
i ∈ RH×W and T

is the number of input frames. Following previous work
[4, 46], we first pack each 2 × 2 Bayer pattern into four
color channels. Benefiting from the linear relationship of
raw data with exposure levels, we utilize a predefined scal-
ing factor r to amplify low-light videos to a proper bright-
ness. These packed and amplified frames are denoted as
{IP

1 , IP
2 , ..., IP

T }, where IP
i ∈ RH

2 ×W
2 ×4, which are then

fed into the BRVE model to generate clean bright frames
{OP

1 ,O
P
2 , ...,O

P
T }.

Overall Architecture. The overall architecture of our
BRVE model is illustrated in Figure 2 (a). In the first stage,
we use a binary U-Net [27] to extract features for each in-
put raw frame. The binary U-Net uses binary conv blocks as
encoders and decoders. The structure of binary conv blocks
is shown in Figure 2 (e). It adopts the distribution-aware
binary convolution (DABC) to improve the capability of
BNNs, which will be introduced in Section 3.2. As the high
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system gain in low-light photography and the amplification
factor increase the noise, the first U-Net can also serve as
a pre-denoising step. As shown in Figure 2 (b), the main
component of BRVE is a shift U-Net, which expoit shift en-
coders/decoders in each level. As illustrated in Figure 2 (c),
it applies shift operation for spatial-temporal feature fusion
in a local sliding window, which will be discussed in Sec-
tion 3.3. In the last stage, we also use a binary U-Net to
aggregate features in the former two stages for raw video
reconstruction. Following previous BNN work [20, 41], we
do not binarize the first convolution in the first U-Net to
retain more information of raw input and the last convolu-
tion in the last U-Net to better maps features to bright and
denoised raw frames.
Recurrent Embedding. As shown in Figure 2 (a), we add
recurrent embeddings between neighbor windows for long-
range feature propagation. For a local temporal window
{t − 1, t, t + 1}, the shift binary U-Net takes two embed-
ding features Et−1,Et from previous window and F 1

t+1 as
input. The first output F 2

t−1 is then fed into the next stage
and the latter two outputs Et,Et+1 are used as recurrent
embeddings for next window.

3.2. Distribution-Aware Binary Convolution

The main reason for the performance degradation of binary
convolutions is the loss of full precision information in the
convolution kernel weights and activations. To address this
issue, real-valued scale factors [26, 44] are often adopted
to multiply with the output of binary convolution. How-
ever, most of them are fixed during inference making it less
flexible to use the information of different real-valued input
activations. To fully exploit full precision information, we
propose the distribution-aware binary convolution (DABC)
that uses distribution-aware channel attention (DACA) to
efficiently generate dynamic scale factors in terms of the
distribution characteristic of input activations.
Binary Convolution. The core of the binary convolution
is to binarize full precision activation Af ∈ RH×W×C and
kernel weight W f ∈ RCout×C×K×K to a binary set B =
{−1,+1}. As shown in Figure 3 (a), the binarize procedure
of the weight can be represented as

W b = Sign(W f ) =

{
+1, W f > 0
−1, W f ≤ 0

,

Si =
||W f

i ||1
C ×K ×K

, i = 1...Cout,

(1)

where W b ∈ BCout×C×K×K is the binary kernel weight.
Following previous work [26], the scale factor S ∈ RCout is
used for reducing the quantization error of the binary kernel
weight. The real-valued activation is binarized by the RSign
[21] function, i.e.,

Ab = RSign(Af ) = Sign(A
′
), (2)

Binary
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!"

"!
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Figure 3. Distribution-Aware Binary Convolution (DABC).

where Ab ∈ BH×W×C is the binarized activation and
A

′
= Af − α, where α ∈ RC is a learnable channel-

wise parameter that controls the threshold for binarizing the
input activation. With binary activation and weight, the bi-
nary convolution ⊗ can be efficiently computed using bit-
wise operations

Ab ⊗W b = bitcount(XNOR(Ab,W b)). (3)

Distribution-Aware Channel Attention. To reduce the
information loss from real-valued activation, we first collect
several channel-wise statistics from A

′
, which describes the

distribution characteristic of the activation [17]. Inspired
by the efficient channel attention module [34], we use a
1D convolution followed by a Sigmoid function to extract
a distribution-aware scale factor from these statistics with
negligible computation and parameters. As shown in Fig-
ure 3 (b), the DACA module can be represented as

X = Concat(mean(|A
′
|),mean(A

′
), std(A

′
)),

DACA(A
′
) = Sigmoid(Conv1d(X)),

(4)

where X ∈ RC×3 and DACA(A
′
) ∈ RC×1. Finally, the

distribution-aware binary convolution is defined as

Y = (Ab ⊗W b)⊙ S ⊙DACA(A
′
) (5)

where Y ∈ ZH×W×Cout is the output activation rescaled
with the factors from weights and DACA module.
Basic Binarized Modules. As shown in Figure 2 (e), a
binary convolution and a RPRelu [21] function form the bi-
nary conv block. RPRelu function can be formulated as

RPRelu(Y ) =

{
Yi − γi + ζi, Yi > ζi
βi(Yi − γi) + ζi, Yi ≤ ζi,

(6)

where γi, ζi,βi ∈ RCout are learnable parameters. As in-
corporating a full precision shortcut connection is crucial in
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binary convolution to compensate for the information loss,
we add the full precision input Af with the output of binary
convolution following previous work [20, 41]. However, bi-
nary convolution needs to change the channel number of ac-
tivation (i.e. C ̸= Cout) in the shift encoder/decoder, which
disables the addition of shortcut as well as the multiplica-
tion of DACA module. As shown in Figure 2 (d), we use
a full precision 1× 1 convolution to replace them to match
the channel in the binary fusion block. To minimize com-
putation cost, the binary fusion block is only used once in
each shift encoder/decoder. We use bilinear upsampling and
average pooling for downsampling in the binary U-Net.

3.3. Spatial-Temporal Shift Operation

Spatial-temporal self-similarity is a crucial property for
video denoising. Previous methods either use complicated
models that are difficult to quantize [19, 45, 46] or directly
use convolution [30] for temporal feature fusion. Inspired
by the ShiftNet [18], we introduce a temporal-spatial shift
operation, which propagates information between neighbor
frames through the temporal shift and enlarges the recep-
tive field of the network with the spatial shift. The shift
operation is performed at the beginning of each shift en-
coder/decoder as shown in Figure 2 (c). It is efficient and
parameter-free because it only transforms the input features
and uses subsequent binarized modules described in Section
3.2 for feature fusion.
Cyclic Temporal Shift. In order to enable bi-directional
feature propagation, ShiftNet [18] performs forward and
backward temporal shift alternatively in a sequence of fea-
tures. However, caching these features requires a significant
storage overhead and prevents online processing [19]. We
propose a cyclic temporal shift to aggregate features in a
three-frame local window to reduce the feature cache.

As shown in Figure 4, the inputs of shift operation are
three consecutive features {Ft−1,Ft,Ft+1}. Each of them
is first split into two parts along the channel dimension

[fi,f
s
i ] = Split(Fi), i ∈ {t− 1, t, t+ 1}, (7)

where Fi ∈ RH×W×C and fi,f
s
i ∈ RH×W×C/2. The first

part fi keeps information of frame i and the second part fs
i

is passed to the neighbor frame to perform spatial-temporal
shift and obtain F s

i for feature fusion.
In cyclic temporal shift, the second part features

fs
t−1,f

s
t shift to next position and feature fs

t+1 becomes
the first one, as shown in Figure 4. After the temporal shift,
we can obtain a reordered set of features

St = {st−1, st, st+1} = {fs
t+1,f

s
t−1,f

s
t }. (8)

However, performing the cyclic temporal shift operation
once is insufficient to integrate each feature with the other
two features in the local window. We also shift the features
in the opposite direction along the temporal dimension and
the shifted set St becomes {fs

t ,f
s
t+1,f

s
t−1}. In each level

of shift binary U-Net, we conduct cyclic temporal shift for
two directions alternatively to fuse the features adequately.

Spatial Shift. Both camera motion and object movement
in the scene can result in the misalignment of features be-
tween frames. Nevertheless, directly fusing the first part
feature fi with shifted feature si by binary convolutions
cannot handle large motions. Following previous work [18],
we adopt the spatial shift operation to enlarge the receptive
field of subsequent binary convolution blocks and cope with
misalignment in all possible directions.

Specifically, we first define a spatial shift kernel

K = {(x, y)|x, y ∈ {−8,−4, 0, 4, 8}, (x, y) ̸= (0, 0)},
(9)

where |K| = 24 and each element (x, y) in the kernel repre-
sents the number of pixels to shift along the corresponding
axis. We divide each temporally shifted feature si into |K|
slices. Each slice spatially shifts in a different direction ac-
cording to the shift kernel

s
′

i,j = Shift(si,j , (xj , yj)), j = 1...|K|, (10)

where si,j is the j-th slice of si and empty area of s
′

i,j

caused by spatial shift is filled by zero. Then we concate-
nate all shifted slices to obtain three spatially shifted fea-
tures {s′

t−1, s
′

t, s
′

t+1}, where s
′

i = Concat(s
′

i,1, ..., s
′

i,|K|).
Finally, we concatenate spatial-temporal shift features to-
gether with the unshifted feature for each frame

F s
i = Concat(fi, s

′

i, si), i ∈ {t− 1, t, t+ 1}, (11)

where F s
i ∈ RH×W×3C/2 is then fed into a binary fusion

block and several binary conv blocks for spatial-temporal
feature fusion, as shown in Figure 2 (c).

4. Experiments
In this section, we evaluate our BRVE model on two low-
light raw video enhancement datasets. We also conduct ex-
tensive experiments to analyze our proposed model.
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Method Gain0 Gain15 Gain30 Params
(M)

FLOPs
(G)PSNR ↑ SSIM ↑ ST-RRED ↓ PSNR ↑ SSIM ↑ ST-RRED ↓ PSNR ↑ SSIM ↑ ST-RRED ↓

SMOID [14] 39.74 0.9733 0.0446 39.43 0.9751 0.0461 40.06 0.9769 0.0431 12.21 15.11
RViDeNet [46] 41.09 0.9778 0.0510 40.94 0.9803 0.0494 41.60 0.9818 0.0500 8.57 65.77
FastDVD [30] 40.37 0.9724 0.0765 40.66 0.9768 0.0664 40.59 0.9763 0.1812 2.48 10.50
EMVD-L [23] 41.10 0.9785 0.0657 40.34 0.9804 0.0691 41.13 0.9819 0.0796 9.6 17.52
EMVD-S [23] 39.71 0.9707 0.0732 39.23 0.9735 0.0804 39.88 0.9756 0.0875 0.81 1.66
LLRVD [10] 41.51 0.9799 0.0388 41.75 0.9823 0.0330 42.13 0.9840 0.0350 6.29 46.14
FloRNN [19] 41.39 0.9801 0.0468 40.74 0.9823 0.0560 41.55 0.9842 0.0558 10.49 24.57
ShiftNet [18] 42.11 0.9836 0.0328 42.28 0.9848 0.0273 42.70 0.9863 0.0280 13.38 32.87
BNN [13] 33.44 0.8417 0.2242 33.16 0.8524 0.2961 34.25 0.8508 0.2511 0.29 1.38
Bireal [20] 36.81 0.9227 0.1320 36.71 0.9424 0.1572 37.34 0.9413 0.1142 0.29 1.38
IRNet [25] 33.29 0.8119 0.1848 33.52 0.8378 0.1834 34.35 0.8543 0.1758 0.29 1.38
ReActNet [21] 37.20 0.9245 0.1502 37.27 0.9514 0.1484 37.93 0.9449 0.1088 0.31 1.55
BTM [15] 37.87 0.9445 0.0908 38.14 0.9545 0.1081 38.14 0.9581 0.1058 0.28 1.35
BBCU [41] 39.92 0.9736 0.0745 40.11 0.9756 0.0660 40.48 0.9780 0.0637 0.3 1.47
BRVE (Ours) 40.05 0.9742 0.0639 40.25 0.9765 0.0557 40.64 0.9786 0.0570 0.3 1.49

Table 1. Quantitative results on SMOID dataset. Our BRVE model outperforms other BNN methods at all three gain levels. BRVE also
surpasses the performance of full precision EMVD-S with similar computational costs.

4.1. Experiment Settings

Datasets. Two low-light raw video datasets are adopted
in our experiment. SMOID [14] has 309 video pairs of 103
scenes. The resolution of each frame is 480 × 640. Three
low-light videos are captured in each scene using different
ADC gain levels (i.e. 0, 15, and 30). We use 70 scenes for
training, 16 for validation, and 17 for testing. LLRVD [10]
contains 210 video pairs of 70 scenes. The resolution of
each frame is 1400 × 2600. For each scene, three videos
with different low-light ratios are captured by fixing ISO
and adjusting exposure time. We use 60 scenes for training,
4 for validation, and 6 for testing. These two datasets are
captured with different cameras and SMOID has different
noise distribution at different gain levels, which can com-
prehensively evaluate our BRVE model.

Training Details. We use a sequence of 10 frames to train
the models on both datasets. The batch size is set to 1 and
the input raw patch size is set to 256 × 256. We adopt
Charbonnier loss [3] to train 100K iterations using Adam
optimizer [16] and the cosine annealing scheduler with the
learning rate set to 2 × 10−4. We implement BRVE with
PyTorch and train it on an NVIDIA RTX 3090 GPU.

Metrics. We use the average peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) of all enhanced
raw frames to assess the restoration quality of each method.
In order to take temporal distortion into account, we use the
spatio-temporal reduced reference entropic differences (ST-
RRED) [28] to evaluate the video quality. Higher PSNR and
SSIM mean better restoration quality and lower ST-RRED
indicates better video fidelity.

Method PSNR ↑ SSIM ↑ ST-RRED ↓
SMOID [14] 37.07 0.9580 0.0391
RViDeNet [46] 37.39 0.9620 0.0400
FastDVD [30] 36.39 0.9450 0.0724
EMVD-L [23] 37.00 0.9576 0.0473
EMVD-S [23] 36.70 0.9527 0.0527
LLRVD [10] 37.74 0.9650 0.0347
FloRNN [19] 37.47 0.9634 0.0377
ShiftNet [18] 37.87 0.9661 0.0346
BNN [13] 31.04 0.7393 0.0817
Bireal [20] 35.90 0.9356 0.0701
IRNet [25] 34.10 0.8768 0.0967
ReActNet [21] 35.78 0.9330 0.0697
BTM [15] 36.56 0.9499 0.0556
BBCU [41] 36.95 0.9575 0.0457
BRVE (ours) 37.07 0.9581 0.0455

Table 2. Quantitative results on LLRVD dataset.

Effciency Evaluation. Following previous BNN work
[2, 20, 26, 41], we calculate BNN operations by OPsb =
OPsf/64 where OPsf is full precision operations, and
the parameters of BNNs is computed by Paramsb =
Paramsf/32 where Paramsf is real-valued parameters.
The overall FLOPs is OPsb + OPsf , we use each model
to process a video with 100 frames and a resolution of
256 × 256 for counting the per-frame FLOPs. The total
number of parameters is Paramsb + Paramsf .

4.2. Compare with State-of-the-arts

Comparison Methods. We compare our method with
various full precision video denoising networks including
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Low-light / Linear Scaled Frame

BNN [13] Bireal [20] IRNet [25] ReActNet [21]

BTM [15] BBCU [41] BRVE (ours) GT

Figure 5. Visual comparison of different low-light video enhancement methods on SMOID datasets.

Low-light / Linear Scaled Frame

BNN [13] Bireal [20] IRNet [25] ReActNet [21]

BTM [15] BBCU [41] BRVE (ours) GT

Figure 6. Visual comparison of different low-light video enhancement methods on LLRVD datasets.

SMOID [14], RViDeNet [46], FastDVD [30], EMVD [23],
LLRVD [10], FloRNN [19], and ShiftNet [18]. We train
two versions of the lightweight EMVD model, denoted as
EMVD-L (large) and EMVD-S (small). We also compare
our distribution-aware binary convolution with other bina-
rization methods, including BNN [13], Bireal [20], IRNet
[25], ReActNet [21], BTM [15], and BBCU [41].

Quantitative Comparison. We illustrate the perfor-
mance on the SMOID dataset and the model complexity
in Table 1. The upper part shows the results of full pre-
cision models, while the lower part shows the results of
the BNNs. It can be observed that ShiftNet [18] outper-
forms other full precision methods, which shows the effec-
tiveness of the shift operation. Besides, we can find that
all the BNN methods greatly reduce the parameters and op-
erations. Compared with the state-of-the-art BNN module
BBCU [41], our distribution-aware binary convolution im-
proves the performance of BNN at all gain levels with only
1.4% additional computation cost.

Table 2 demonstrates the quantitative results of the
LLRVD dataset. Our method not only surpasses the
lightweight full precision EMVD-S model with similar
FLOPs by 0.49 dB but also achieves comparable results to
the EMVD-L model while utilizing only 9.4% of its FLOPs

mean(| · |) mean(·)
std(·) PSNR ↑ SSIM ↑ ST-RRED ↓

% % 36.95 0.9575 0.0457
% ! 37.02 0.9578 0.0457
! % 37.01 0.9577 0.0450

w/o shift 36.70 0.9544 0.0517
BRVE (ours) 37.07 0.9581 0.0455

Table 3. Ablation study on the DACA module and shift opeartion.

and 3.3% of the parameters.

Visual Comparison. The qualitative results on the
SMOID dataset and LLRVD dataset are illustrated in Fig-
ures 5 and 6, respectively. We show both low-light and
noisy linear scaled frame in the left. Benefiting from the
distribution-aware binary convolution, our BRVE exhibits
superior visual quality, effectively removing the noise and
restoring more details compared to other BNN methods.

4.3. Analysis of the Proposed Method

Ablation Study. We first conduct the ablation study to
verify the effect of different channel-wise real-valued statis-
tics on our DACA module. The result is shown in Table
3, where the first column represents whether to use the ab-
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Method PSNR ↑ SSIM ↑ ST-RRED ↓
Raw2Raw+ISP 30.46 0.8399 0.2021
Raw2RGB 27.42 0.8131 0.2952
RGB2RGB 24.84 0.7988 0.5951
Raw2Raw+ISP+H264 30.19 0.8416 0.1828
RGB2RGB+H264 24.75 0.8158 0.5622
H264+RGB2RGB 20.03 0.6130 1.4228

Table 4. Comparison of different low-light video enhancement set-
tings on LLRVD dataset. Metrics are computed in RGB domain.

solute value, the second column represents whether to use
the mean and standard deviation. We can observe that the
performance can be improved after injecting each of these
statistics into binary convolution. BRVE model obtains a
better result by using all of these statistics to describe the
distribution characteristic of full precision activations.

We also perform an ablation study on the spatial-
temporal shift operation. As shown in the fourth row of
Table 3, the performance declines significantly without the
shift operation, which indicates the effectiveness of shift
operation in exploiting spatial-temporal self-similarity for
low-light raw video denoising.

Comparison on Video Enhancement Settings. Table
4 compares different low-light video enhancement set-
tings, including raw-to-raw (Raw2Raw), raw-to-RGB
(Raw2RGB), and RGB-to-RGB (RGB2RGB) on the LL-
RVD dataset. The raw output of the Raw2Raw setting is
converted to RGB domain with ISP. All metrics are evalu-
ated in RGB domain with the ground truth (GT).

The Raw2Raw setting adopted in this paper shows the
best performance, where the low-light enhancement model
serves as a pre-processing step before ISP. In the Raw2RGB
setting, the network jointly learns to enhance low-light
videos and the non-linear process of ISP. It is less effective
than the Raw2Raw setting because it is difficult for the net-
work to learn the ISP accurately. In the RGB2RGB setting,
we use the network to enhance dark RGB videos, which
leads to a significant performance decline. The reason is
that RGB videos are quantized into 8-bit and the informa-
tion of low-intensity pixels in the dark is lost.

In addition, we also discuss the influence of video com-
pression on low-light video enhancement. As shown in Ta-
ble 4, H264 compression has little impact on the quality
of enhanced videos. However, enhancing compressed low-
light videos causes severe degradation, which demonstrates
the importance of enhancing the video in the early stages of
the image processing pipeline on edge devices.

Effect of Sliding Stride. We discuss the influence of the
sliding window stride on the recurrent propagation. In the
BRVE model, the stride is set to one and the shift binary U-
Net outputs one feature at a time. The last two features are
used as recurrent embeddings. We can also set the stride to

1 2 3
Strides

36.4

36.6

36.8

37.0

37.2
1.49

37.07

0.89

36.95

0.69

36.86

PSNR ST-RRED FLOPs (G)

0.046

0.047

0.048

0.049

0.050

0.0455
0.0466

0.0502

Figure 7. Effect of the sliding window stride on recurrent propaga-
tion. A larger sliding stride can further boost the efficiency while
compromising the temporal consistency.

two or three to further improve the model efficiency. When
setting the stride to two, the shift binary U-Net outputs two
features at a time and uses the last feature as the recurrent
embedding. When setting the stride to three, the shift binary
U-Net outputs all three features in the local window, and no
recurrent embedding is added between windows.

As shown in Figure 7, using a stride of two reduces about
40% FLOPs compared to the original BRVE model. But the
performance drops 0.12 dB in PSNR, which indicates that
using more features in recurrent embedding is helpful for
video enhancement as more long-term history information
is incorporated. Using a stride of three to process each win-
dow independently can maximize efficiency. But the large
increment of ST-RRED shows that the temporal consistency
is greatly impaired without recurrent propagation.

5. Conclusion
In this paper, we propose a BRVE model for low-light raw
video enhancement. First, we propose the distribution-
aware convolution to mitigate the performance gap between
BNNs and CNNs. It extracts full precision distribution char-
acteristic information with DACA module to improve the
capability of binary convolutions. Second, we introduce a
spatial-temporal shift operation to fuse temporal informa-
tion and maintain temporal consistency. It is parameter-
free and enables efficient parallel processing for features in
a local window. Experiments on two low-light raw video
datasets demonstrate our BRVE model can achieve compa-
rable performance with some full precision models using
less memory and computational costs.
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