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Figure 1. (a) Large motions in optical flows are highlighted in blur maps. (b) Comparison of FLOPs between the standard spatio-temporal
transformer and the blur-aware spatio-temporal transformer. (c-d) Summary of the standard spatio-temporal transformer and the blur-aware
spatio-temporal transformer. (e-f) Summary of the standard flow-guided feature alignment and blur-aware feature alignment. (g) In the
visual comparisons on the GoPro dataset, the proposed BSSTNet restores the sharpest frame.

Abstract

Video deblurring relies on leveraging information from
other frames in the video sequence to restore the blurred re-
gions in the current frame. Mainstream approaches employ
bidirectional feature propagation, spatio-temporal trans-
formers, or a combination of both to extract information
from the video sequence. However, limitations in mem-
ory and computational resources constraints the temporal
window length of the spatio-temporal transformer, prevent-
ing the extraction of longer temporal contextual informa-
tion from the video sequence. Additionally, bidirectional
feature propagation is highly sensitive to inaccurate op-
tical flow in blurry frames, leading to error accumula-

� Corresponding author: h.yao@hit.edu.cn

tion during the propagation process. To address these is-
sues, we propose BSSTNet, Blur-aware Spatio-temporal
Sparse Transformer Network. It introduces the blur map,
which converts the originally dense attention into a sparse
form, enabling a more extensive utilization of information
throughout the entire video sequence. Specifically, BSSTNet
(1) uses a longer temporal window in the transformer, lever-
aging information from more distant frames to restore the
blurry pixels in the current frame. (2) introduces bidirec-
tional feature propagation guided by blur maps, which re-
duces error accumulation caused by the blur frame. The ex-
perimental results demonstrate the proposed BSSTNet out-
performs the state-of-the-art methods on the GoPro and
DVD datasets.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Video deblurring aims to recover clear videos from blurry
inputs, and it finds wide applications in many subsequent
vision tasks, including tracking [5, 16], video stabiliza-
tion [15], and SLAM [8]. Therefore, it is of great interest
to develop an effective algorithm to deblur videos for above
mentioned high-level vision tasks.

Video deblurring presents a significant challenge, as it
necessitates the extraction of pertinent information from
other frames within the video sequence to restore the blurry
frame. In recent years, there have been noteworthy ad-
vancements [1, 4, 11–13, 24] in addressing this challenge.
Flow-guided bidirectional propagation methods [1, 4, 12,
13, 24] employ flow-guided deformable convolution and
flow-guided attention for feature alignment. However, inac-
curate optical flow in blurry frames causes the introduction
of blurry pixels during bidirectional propagation. VRT and
RVRT [11, 12] use spatio-temporal self-attention with tem-
poral window to fuse the information from video sequence.
Due to the high memory demand of self-attention, these
approaches frequently feature restricted temporal windows,
limiting their ability to incorporate information from distant
sections of the video.

Analyzing videos afflicted by motion blur reveals a cor-
respondence between the blurry regions in the video and ar-
eas with pixel displacement, where the degree of blurriness
is directly associated with the magnitude of pixel displace-
ment. Moreover, The blurry regions are typically less fre-
quent in both the temporal and spatial aspects of the blurry
videos. By leveraging the sparsity of blurry regions, the
computation of the spatio-temporal transformer can focus
solely on these areas, thereby extending the temporal win-
dow to encompass longer video clips. Moreover, bidirec-
tional feature propagation based on blurry regions enables
the minimization of error accumulation. As shown in Fig-
ure 1a, the green box area represents the blurry region in
the frame. Similarly, both the forward and backward optical
flows in the same location are also maximized, indicating a
correlation between the motion and blurry regions.

By introducing blur maps, we propose BSSTNet, Blur-
aware Spatio-temporal Sparse Transformer Network. Com-
pared to methods based on spatio-temporal transformer,
BSSTNet introduces Blur-aware Spatio-temporal Sparse
Transformer (BSST) and Blur-aware Bidirectional Feature
Propagation (BBFP). The proposed BSST efficiently uti-
lizes a long temporal window by applying sparsity on input
tokens in the spatio-temporal domain based on blur maps.
This enables the incorporation of distant information in the
video sequence while still maintaining computational ef-
ficiency. BBFP introduces guidance from blur maps and
checks for flow consistency beforehand. This aids in mini-
mizing the introduction of blurry pixels during bidirectional
propagation, ultimately enhancing the ability to gather in-

formation from the adjacent frames.
The contributions are summarized as follows.

• We propose a non-learnable, parameter-free method for
estimating the blur map of video frames. The blur map
provides crucial prior information on motion-blurry re-
gions in the video, enabling sparsity in the transformer
and error correction during bidirectional propagation.

• We propose BSSTNet, comprising two major compo-
nents: BSST and BBFP. BSST incorporates spatio-
temporal sparse attention to leverage distant information
in the video sequence while still achieving high perfor-
mance. BBFP corrects errors in the propagation process
and boosts its capability to aggregate information from
the video sequence.

• We quantitatively and qualitatively evaluate BSSTNet on
the DVD and GoPro datasets. The experimental results
indicate that BSSTNet performs favorably against state-
of-the-art methods.

2. Related Work
Many methods in video deblurring have achieved impres-
sive performances. The video deblur methods can be cate-
gorized into two categories:
RNN-based Methods. On the other hand, some re-
searchers [6, 18, 20, 23, 25, 26] are focusing on the
RNN-base methods. STRCNN [6] adopts a recurrent neu-
ral network to fuse the concatenation of multi-frame fea-
tures. RDN [23] develops a recurrent network to recurrently
use features from the previous frame at multiple scales.
IFRNN [18] adopts an iterative recurrent neural network
(RNN) for video deblurring. STFAN [26] uses dynamic
filters to align consecutive frames. PVDNet [20] contains
a pre-trained blur-invariant flow estimator and a pixel vol-
ume module. To aggregate video frame information, ES-
TRNN [25] employs a GSA module in the recurrent net-
work. Recently, the BiRNN-based method [1, 4, 13, 24, 28]
has achieved impressive deblur results through aggressive
bidirectional propagation. BasicVSR++[1] adopts aggres-
sive bidirectional propagation. Based on BasicVSR++,
RNN-MBP[28] introduces the multi-scale bidirectional re-
current neural network for video deblurring. STDANet [24]
and FGST [13] employ the flow-guided attention to align
and fuse the information of adjacent frames. However, due
to error accumulation, these methods do not effectively fuse
the information from long-term frames. Ji and Yao [4] de-
velop a Memory-Based network, which contains a multi-
scale bidirectional recurrent neural network and a memory
branch. However, the memory branch introduces a large
search space of global attention and ineffective alignment.
Transformer-based Methods. The Spatio-temporal trans-
former is widely used in video deblurring [11, 12].
VRT [11] utilizes spatio-temporal self-attention mechanism
to integrate information across video frames. Due to the
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Figure 2. Overview of the proposed BSSTNet. BSSTNet consists of three major components: Blur Map Estimation, Blur-aware Bidirec-
tional Feature Propagation (BBFP), and Blur-aware Spatio-temporal Sparse Transformer (BSST).

computational complexity of self-attention, VRT employs a
2-frame temporal window size and utilizes a shifted window
mechanism for cross-window connections. However, the
indirect connection approach with a small window size fails
to fully exploit long-range information within the video se-
quence. RVRT [12] divides the video sequence into 2-
frame clips, employing small-window spatio-temporal self-
attention within each clip and Flow-guided biderectional
propagation and alignment between clips. However, due
to the small window constraint of spatio-temporal self-
attention and the error accumulation caused by the optical
flow of blurred frames in Flow-guided biderectional propa-
gation, RVRT still falls short of fully utilizing the informa-
tion from the entire video sequence.

3. Our Approach

3.1. Overview

As shown in Figure 2, the BSSTNet contains three key
components: Blur Map Estimation, Blur-aware Bidirec-
tional Feature Propagation (BBFP), and Blur-aware Spatio-
temporal Sparse Transformer (BSST). First, the forward
and backward optical flows, denoted as {Ot+1→t}T−1

t=1 and
{Ot→t+1}T−1

t=1 , are estimated from the downsampled video
sequence X̂ = {X̂t}Tt=1. Then, Blur Map Estimation gen-
erates the blur maps B = {Bt}Tt=1 for each frame are gen-
erated based on {Ot+1→t}T−1

t=1 and {Ot→t+1}T−1
t=1 . Next,

BBFP produces the aggregated features F̂ using Blur-aware
Feature Alignment (BFA). After that, BSST generates the
refined features F from F̂ with the Blur-aware Sparse
Spatio-temporal Attention (BSSA) layers. Finally, the de-
coder reconstructs the sharp video sequence R = {Rt}Tt=1.

3.2. Blur Map Estimation

Given the optical flows {Ot+1→t}T−1
t=1 and {Ot→t+1}T−1

t=1 ,
the unnormalized blur maps B̂ = {B̂t}Tt=1 can be obtained
as follows

B̂t =

2∑
i=1

((Ot→t+1)
2
i + (Ot→t−1)

2
i ) (1)

Specially, we define O1→0 = 0 and OT→T+1 = 0. The
blur map B and sharp map A can be generated as follows

Bt =
B̂t −min(B̂)

max(B̂)−min(B̂)
At = 1−Bt (2)

where i and t index the channel of optical flows and the time
steps, respectively.

3.3. Blur-aware Bidirectional Feature Propagation

Within BBFP, bidirectional feature propagation propagates
the aggregated features F̂ in both the forward and back-
ward directions, incorporating Blur-aware Feature Align-
ment (BFA). BFA is designed to align features from neigh-
boring frames to reconstruct the current frame. As shown
in Figure 1e and Figure 1f, the standard flow-guided fea-
ture alignment aligns all pixels in the neighboring frames,
whereas BFA selectively integrates information from sharp
pixels guided by blur maps. This prevents the propagation
of blurry regions from the features of neighboring frames
during bidirectional feature propagation.
Bidirectional Feature Propagation. Assuming the current
time step is the t-th step, and the corresponding propagation
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Figure 3. The details of BFA. Note that W⃝, C⃝, and
⊕
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“Warp”, “Concatenation”, and “Element-wise Add” operations,
respectively.

branch is the j-th branch, the generation of the current time
step aggregated feature F̂j

t can be obtained as

F̂j
t = BFA(F̂j−1

t , F̂j
t−1, F̂

j
t−2,

W(F̂j
t−1,Ot→t−1),W(F̂j

t−2,Ot→t−2),

Ot→t−1,Ot→t−2,At−1,At−2) (3)

where BFA and W denote the “BFA” and “Backward Warp”
operations, resepectively. F̂j−1

t represents the feature ag-
gregated from the t-th time step in the (j − 1)-th branch.
F̂j

t−1 and F̂j
t−2 are the features generated from the previ-

ous and the second previous time step. The aforementioned
process progresses forward through the time steps until it
reaches t = T . The backward propagation process mirrors
the forward propagation process.

Blur-aware Feature Alignment. Different from the stan-
dard flow-guided feature alignment [1] that aligns all pix-
els in neighboring frames, BFA introduces sharp maps to
prevent the introduction of blurry pixels in the neighboring
frames. As illustrated in Figure 3, along with features F̂j

t−1

and F̂j
t−2 from previous time steps, the corresponding op-

tical flows Ot→t−1 and Ot→t−2, and the warped features
W(F̂j

t−1) and W(F̂j
t−2), sharp maps At−1 and At−2 are

additionally introduced. These sharp maps serve as addi-
tional conditions to generate the offsets and masks of the de-
formable convolution layers [3]. Moreover, the sharp map
acts as a base mask for DCN by being added to the DCN
mask. This ensures that only sharp regions of features are
propagated.

Spatial Sparse in Query Space

Temporal Sparse in Query Space Temporal Sparse in Key/Value Space

Spatial Sparse in Key/Value Space

𝐠!, 𝐠"

Order by Blur Levels Order by Blur Levels

…

Multi-head Self Attention

K/V TokensQuery Tokens
… … …

Features 𝓕"Blur Maps 𝓑

…
…

… …

G
lo

ba
l F

ea
tu

re
s

Lo
ca

l F
ea

tu
re

s

Flatten by Window Flatten by WindowSelect Top 50% Select Bottom 50%

…

…

𝐘%!, 𝐘%"𝐘%#

𝐄$ 𝐄𝒌, 𝐄𝒗

𝐈$ 𝐈𝒌, 𝐈𝒗, 𝐠𝒌, 𝐠𝒗

𝐄! 𝐄"

𝐄$, 𝐄𝒌, 𝐄𝒗

𝐄#

PP

𝐔

𝐔 𝐔

𝐔 𝐔

Figure 4. The details of BSST. Note that P⃝ denotes the “Window
Partition” operation. “Flatten by window” indicates that query to-
kens are flattened for each query window, and K/V tokens are gen-
erated in a similar manner. Multi-head Self Attention is also com-
puted on the query and K/V tokens generated for each window.

3.4. Blur-aware Spatio-temporal Sparse Trans-
former

The spatio-temporal attention is commonly employed in
video deblurring and demonstrates remarkable perfor-
mance, as shown in Figure 1c. However, the standard
spatio-temporal attention method often restricts its temporal
window size due to computational complexity, thereby con-
straining its capability to capture information from distant
parts of the video sequence. To overcome this limitation,
we introduce the Blur-aware Spatio-temporal Sparse Trans-
former (BSST). As illustrated in Figure 1d, BSST filters out
unnecessary and redundant tokens in the spatio and tempo-
ral domain according to blur maps B. As shown in Fig-
ure 1b, allowing BSST to include a larger temporal window
while maintaining computational efficiency. The detailed
implementation of BSST is illustrated in Figure 4.

Given the aggregated features F̂ = {F̂t ∈
RH/4×W/4×C}Tt=1 from the last branch of BBFP, we em-
ploy a soft split operation [14] to divide each aggregated
feature into overlapping patches of size p × p with a stride
of s. The split features are then concatenated, generating the
patch embeddings z ∈ RT×M×N×p2C . Next, the blur map
B are downsampled by average pooling with a kernel size
of p×p and a stride of s, resulting in B↓ ∈ RT×M×N×p2C .
For simplicity, p2C is denoted as Cz . After that, z is
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fed to three separate linear layer transformations, result-
ing in z̃q ∈ RT×M×N×Cz , z̃k ∈ RT×M×N×Cz , and
z̃v ∈ RT×M×N×Cz , where M , N , and Cz respectively de-
note the number of patches in the height and width domains,
and the number of channels. Subsequently, z̃q, z̃k, z̃v are
partitioned into m × n non-overlapping windows, generat-
ing partitioned features Eq,Gk,Gv ∈ RT×m×n×h×w×Cz ,
where m×n and h×w are the number and size of the win-
dows, respectively. Utilizing the embedding z and incor-
porating depth-wise convolution, the generation of pooled
global tokens gk and gv takes place as follows

gk = lk(DC(z))
gv = lv(DC(z)) (4)

where DC represents depth-wise convolution, and gk,gv ∈
RT×hp×wp×Cz . Following that, we repeat and concate-
nate gk with Gk and gv with Gv , resulting in Ek,Ev ∈
RT×m×n×(h+hp)×(w+wp)×Cz . Note that for the key/value
windows, we enlarge its window size to enhance the recep-
tive field of key/value [14, 27]. For simplicity, we ignore it
in the following discussion.
Spatial Sparse in Query/Key/Value Spaces. We observe
that the blurry regions are typically less frequent in both
the temporal and spatial aspects of the blurred videos. Mo-
tivated by this observation, we only choose the tokens of
blurry windows in Eq and tokens of sharp windows in
Ek,Ev to participate in the computation of spatio-temporal
attention. This ensures that the spatio-temporal attention
mechanism focuses solely on restoring the blurred regions
by the utilization of sharp regions in video sequences. First,
the blur maps of windows U ∈ RT×m×n are generated by
downsampling B↓ ∈ RT×M×N using max pooling. Next
, the spatial sparse mask of windows is obtained as follows

Qt,i,j =


1, if Ut,i,j ≥ θ,

∀t ∈ [1, T ], i ∈ [1,m], j ∈ [1, n]

0, otherwise

S = Clip
(∑T

t=1
Qt, 1

)
(5)

where θ,Clip,S ∈ Rm×n are the threshold for considering
related windows as blurry windows, a clipping function that
set S to 1 if

∑T
t=1 Qt > 0, and the spatial sparse mask

for Eq , Ek and Ev , respectively. Then, the spatial sparse
embedding features Iq , Ik, and Iv are generated using the
following equations

Iq = Concat({Eq
t,i,j | Si,j = 1, i ∈ [1,m], j ∈ [1, n]}Tt=1)

Ik = Concat({Ek
t,i,j | Si,j = 1, i ∈ [1,m], j ∈ [1, n]}Tt=1)

Iv = Concat({Ev
t,i,j | Si,j = 1, i ∈ [1,m], j ∈ [1, n]}Tt=1)

(6)

where Concat denotes the “Concatenation” operation. If
Si,j = 0, it indicates that the window’s position indexed
by (i, j) in the video sequence does not encompass blurry
tokens. This allows us to exclude the tokens within those
windows from the spatio-temporal attention mechanism.
Iq ∈ RT×msns×hw×Cz , while both Ik and Iv share the
size of RT×msns×(h+hp)(w+wp)×Cz , where ms and ns rep-
resenting the number of selected windows in m and n do-
mains, respectively.
Temporal Sparse in Query Space. Along the temporal do-
main, we choose the windows of the blurry region for query
space, ensuring that the spatio-temporal attention mecha-
nism is dedicated to restoring only the blurry regions of the
video sequence. Given the spatial sparse embedding fea-
tures Iq , the spatio-temporal sparse embedding yq is gener-
ated as follows

Hq = {Iqt,i,j | Ut,i,j ≥ Top(Kq,Ui,j),

i ∈ [1,ms], j ∈ [1, ns]}Tt=1

Yq = Concat(Hq) (7)

where Yq ∈ RKq×msns×hw×Cz . Top(Kq, ·) represents the
operation of finding the Kq-th largest element in a vector.
For each window located at position (i, j) in Iq , within the
temporal domain, we selectively chose the top Kq windows
with the highest blur levels for deblurring.
Temporal Sparse in Key/Value Spaces. In contrast to
the query space, we select the sharp regions in Ik, Iv for
key/value spaces. Due to the high similarity in textures
between adjacent frames, we alternately choose temporal
frames with a stride of 2 in each BSST. In BSSTNet, con-
sisting of multiple BSSTs, odd-numbered BSSTs select
frames with odd numbers, while even-numbered BSSTs
choose frames with even numbers, resulting in a 50% re-
duction in the size of the key/value space. Given the spatial
sparse embedding features Ik and Iv , the spatio-temporal
sparse embedding features yk and yv are generated as fol-
lows

Hk = {Ikt,i,j | Ut,i,j ≥ Top(Kkv, 1−Ui,j),

t mod 2 = 0, i ∈ [1,ms], j ∈ [1, ns]}Tt=1

yk = Concat(Hk)

Hv = {Ivt,i,j | Ut,i,j ≥ Top(Kkv, 1−Ui,j),

t mod 2 = 0, i ∈ [1,ms], j ∈ [1, ns]}Tt=1

yv = Concat(Hv) (8)

where yk,yv ∈ RKkv×msns×(h+hp)(w+wp)×Cz .
Spatio-temporal Sparse Attention. The spatio-temporal
sparse query embedding yq is reshaped into Ŷq ∈
Rmsns×Kqhw×Cz . Similarly, The spatio-temporal sparse
key/value embedding yk and yv are each reshaped
into Ŷk ∈ Rmsns×Kkv(h+hp)(w+wp)×Cz and Ŷv ∈
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Table 1. Quantitative comparisons on the GoPro dataset. The best results are highlighted in bold.

Method STFAN [26] STDAN [24] RNN-MBP [28] NAFNet [2] VRT [11] RVRT [12] Shift-Net+ [10] BSSTNet

PSNR 28.69 32.62 33.32 33.69 34.81 34.92 35.88 35.98
SSIM 0.8610 0.9375 0.9627 0.9670 0.9724 0.9738 0.9790 0.9792

Table 2. Quantitative comparisons on the DVD dataset. The best results are highlighted in bold.

Method STFAN [26] ARVo [9] RNN-MBP [28] STDAN [24] VRT [11] RVRT [12] Shift-Net+ [10] BSSTNet

PSNR 31.24 32.80 32.49 33.05 34.27 34.30 34.69 34.95
SSIM 0.9340 0.9352 0.9568 0.9374 0.9651 0.9655 0.9690 0.9703

Rmsns×Kkv(h+hp)(w+wp)×Cz , respectively. For each win-
dow in msns, the self-attention is calculated as follows:

Attention(Ŷq, Ŷk, Ŷv) = Softmax

(
ŶqŶ

T
k√

Cz

)
Ŷv (9)

In BSST, the multi-head self-attention is introduced to ob-
tain the output embedding zs ∈ Rms×ns×Kqhw×Cz .

zs = MSA(Ŷq, Ŷk, Ŷv) (10)

where MSA is the “Multi head Self-Attention” function.
After applying our sparse strategy to eliminate unnecessary
and redundant windows, we use self-attention following
Eq. 9 on the remaining windows to extract fused features.
Specially, standard window spatio-temporal attention is ap-
plied to unselected (less blurry) windows, allowing features
to be restored to their original size. Subsequently, these fea-
tures are gathered through a soft composition operation [14]
to serve as the input for the next BSST. The output of the
final BSST is denoted as F.

4. Experiments
4.1. Datasets

DVD. The DVD dataset [21] comprises 71 videos, consist-
ing of 6,708 blurry-sharp pairs. These are divided into 61
training videos, amounting to 5,708 pairs, and 10 testing
videos with 1,000 pairs.
GoPro. The GoPro dataset [17] consists of 3,214 pairs
of blurry and sharp images at a resolution of 1280×720.
Specifically, 2,103 pairs are allocated for training, while
1,111 pairs are designated for testing.

4.2. Implementation Details

Training Details The network is implemented with Py-
Torch [19] . The training is conducted with a batch size of 8
on 8 NVIDIA A100 GPUs, and the initial learning rate is set

The source code is available at https://github.com/
huicongzhang/BSSTNet

Table 3. The comparison of FLOPs and runtime on the DVD
dataset. The top two results are marked in bold and underlined.
Note that FLOPs and runtime are computed for a single frame with
a resolution of 256× 256.

Method RVRT [12] Shift-Net+ [10] BSSTNet

PSNR 34.30 34.69 34.95
SSIM 0.9655 0.9690 0.9703

GFLOPs 88.8 146 133
Runtime (ms) 23 45 28

to 4 × 10−4. The network is optimized with L1 loss using
Adam optimizer [7], where β1 = 0.9 and β2 = 0.999. The
flow estimator in BSSTNet uses pre-trained weights from
the official RAFT [22] release and remains fixed during
training. During testing, T , Kq , and Kkv are set to 48, 24,
and 24, respectively. During training, they are 24, 12, and
12, respectively. In the training phase, input images are ran-
domly cropped into patches with resolutions of 256 × 256,
along with the application of random flipping and rotation.
Hyperparameters To strike a better balance between video
deblurring quality and computational efficiency, the value
of θ is set to 0.3. The patch size p and stride z are set to 4
and 2, respectively.

4.3. Main Results

DVD. The quantitative results on the DVD dataset are
shown in Table 2. The proposed method demonstrates su-
perior performance in terms of both PSNR and SSIM com-
pared to existing state-of-the-art methods. Specifically, in
comparison to the best-performing state-of-the-art method,
Shift-Net+, the proposed BSSTNet achieves an improve-
ment of 0.26 dB in PSNR and 0.0013 in SSIM. Examples
from the DVD dataset are presented in Figure 5a, demon-
strating that the proposed method generates images with in-
creased sharpness and richer visual details. This highlights
the robustness of the method in eliminating large blur in dy-
namic scenes.
GoPro. In Table 1, the proposed BSSTNet shows favor-
able performance in terms of both PSNR and SSIM when
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(a) Qualitative comparison on the DVD dataset

Input VRT RVRT

GTBSSTNetShift-Net+
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Figure 5. Qualitative comparison on the GoPro and DVD datasets. Note that “GT” stands for “Ground Truth”. The proposed BSSTNet
produces images with enhanced sharpness and more detailed visuals compared to competing methods.

compared to state-of-the-art methods on the GoPro dataset.
BSSTNet achieves higher PSNR and SSIM values com-
pared to Shift-Net+. The visual results in Figure 5b further
illustrate that the proposed method restores finer image de-
tails and structures.
FLOPs and Runtime. We conducted a comparison of the
computational complexity (FLOPs) and runtime between
our method, RVRT, and Shift-Net+, as presented in Ta-
ble 3. In contrast to the state-of-the-art Shift-Net+, our ap-
proach demonstrates a 13 GFLOPs reduction in FLOPs and
achieves a speedup of 1.6 times.

4.4. Ablation Study

Effectiveness of BBFP. To evaluate the effectiveness of
BBFP, we conduct an experiment by excluding BBFP from
BSSTNet. As illustrated in Table 5, the omission of BBFP
in Exp. (b) results in a reduction of 0.21 dB in PSNR
and 0.0011 in SSIM. BFA plays an important role in pre-
venting the introduction of blurry pixels from neighboring
frames. As shown in Table 6, replacing BFA with Stan-
dard Flow-guided Feature Alignment results in a decline in
performance. To highlight the improved feature alignment
capability of BBFP, we visualize the aligned features in Fig-
ure 6, comparing them with the standard feature bidirec-

Current Frame

Features from SFBPFeatures from BBFP

Previous Frame

Figure 6. Comparison of feature alignment between BBFP
and Standard Flow-guided Bidirectional Propagation (SFBP).
Compared to SFBP, BBFP prevents the propagation of blurry re-
gions from the features of neighboring frames during propagation.
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Table 4. Comparison of different temporal lengths in terms of PSNR, SSIM, Runtime, Memory, and GFLOPs between the Standard
Spatio-temporal Transformer (SST) and BSST.. The results are evaluated on the DVD dataset. Note that “TL.” and “Mem.” denote
“Temporal Length” and the used memory on GPU, respectively. SST runs out of memory for a temporal length of 60.

TL. SST BSST
PSNR SSIM Time (ms) Mem. (GB) GFLOPs PSNR SSIM Time (ms) Mem. (GB) GFLOPs

12 34.59 0.9684 470 6.35 171 34.52 0.9681 336 2.40 122
24 34.83 0.9696 925 13.10 251 34.74 0.9692 684 4.79 127
36 34.92 0.9702 1332 20.40 277 34.85 0.9697 1026 7.30 130
48 34.97 0.9704 1776 28.27 329 34.95 0.9703 1368 9.97 133
60 - - - - - 35.01 0.9706 1712 12.78 137

Table 5. Effectiveness of BBFP and BSST. The best results are
highlighted in bold. The results are evaluated on the DVD dataset.

Exp. (a) (b) (c) (d)

BBFP ✓ ✓
BSST ✓ ✓

PSNR 33.78 34.74 34.10 34.95
SSIM 0.9645 0.9692 0.9661 0.9703

Table 6. Comparison between BFA and Standard Flow-guided
Feature Alignment (SFFA). The best results are highlighted in
bold. The results are evaluated on the DVD dataset.

PSNR SSIM

SFFA 34.82 0.9696
BFA 34.95 0.9703

Table 7. Comparison of various token sparsity strategies. The
best results are highlighted in bold. The results are evaluated on
the DVD dataset.

PSNR SSIM GFLOPs

Random 50% 33.92 0.9651 133
100% 34.98 0.9704 329

Top 25% 34.78 0.9694 127
Top 50% (Ours) 34.95 0.9703 133

tional propagation (SFBP). Benefiting from the incorpora-
tion of blur maps, BBFP prevents the propagation of blurry
regions from the features of neighboring frames during the
propagation process, resulting in sharper features.
Effectiveness of BSST. To evaluate the effectiveness of
BSST, we conduct an experiment by excluding BSST from
BSSTNet. As shown in Table 5, the omission of BSST in
Exp. (c) results in a notable degradation of 0.85 dB in PSNR
and 0.0042 in SSIM. To further evaluate the effectiveness
and efficiency of BSST, we compare different token spar-
sity strategies. Table 7 demonstrates that using fewer token
numbers or randomly selecting tokens will result in a sig-
nificant decline in performance. This result suggests that
without guidance from the blur map, discarding tokens in

the spatio-temporal domain results in the loss of valuable
information in the video sequence. Moreover, our spar-
sity strategy, which involves using the top 25% of tokens,
achieves performance comparable to using all tokens while
utilizing only approximately 43% of the FLOPs. This indi-
cates that our sparsity strategy effectively leverages tokens
in sharp regions within the video sequence.

Comparison of Different Temporal Length. In Table 4,
we present a comparison of the Standard Spatio-temporal
Transformer (SST) under different sequence lengths in
terms of PSNR, SSIM, Runtime, Memory, and GFLOPs.
As the sequence length increases, the computational com-
plexity of SST grows rapidly. In contrast, BSST’s computa-
tional complexity is less affected by the sequence length, al-
lowing BSST to utilize longer sequences and boost deblur-
ring performance. Specifically, when the sequence length is
60, BSST shows a modest gain in PSNR and SSIM. Consid-
ering the balance between performance and computational
load, we ultimately choose 48 as the length for the input
video sequence.

5. Conclusion

In this paper, we present a novel approach for video de-
blurring, named BSSTNet. Utilizing an understanding of
the connection between pixel displacement and blurred re-
gions in dynamic scenes, we introduce a non-learnable,
parameter-free technique to estimate the blur map of video
frames by employing optical flows. By introducing Blur-
aware Spatio-temporal Sparse Transformer (BSST) and
Blur-aware Bidirectional Feature Propagation (BBFP), the
proposed BSSTNet can leverage distant information from
the video sequence and minimize the introduction of blurry
pixels during bidirectional propagation. Experimental re-
sults indicate that the proposed BSSTNet performs favor-
ably against state-of-the-art methods on the GoPro and
DVD datasets, while maintaining computational efficiency.
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