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Abstract

Supernet is a core component in many recent Neural Ar-
chitecture Search (NAS) methods. It not only helps embody
the search space but also provides a (relative) estimation
of the final performance of candidate architectures. Thus,
it is critical that the top architectures ranked by a super-
net should be consistent with those ranked by true perfor-
mance, which is known as the order-preserving ability. In
this work, we analyze the order-preserving ability on the
whole search space (global) and a sub-space of top archi-
tectures (local), and empirically show that the local order-
preserving for current two-stage NAS methods still need to
be improved. To rectify this, we propose a novel concept of
Supernet Shifting, a refined search strategy combining ar-
chitecture searching with supernet fine-tuning. Specifically,
apart from evaluating, the training loss is also accumulated
in searching and the supernet is updated every iteration.
Since superior architectures are sampled more frequently in
evolutionary searching, the supernet is encouraged to focus
on top architectures, thus improving local order-preserving.
Besides, a pre-trained supernet is often un-reusable for one-
shot methods. We show that Supernet Shifting can fulfill
transferring supernet to a new dataset. Specifically, the last
classifier layer will be unset and trained through evolution-
ary searching. Comprehensive experiments show that our
method has better order-preserving ability and can find a
dominating architecture. Moreover, the pre-trained super-
net can be easily transferred into a new dataset with no loss
of performance.

*Correspondence author. The work was partly supported by NSFC
(92370201, 62222607).

Figure 1. An illustration of global and local order-preserving abil-
ity. For global one, we care about coarse-grained comparison to
wipe out poor architectures in entire search space. For local one,
we care about fine-grained comparison to rank the architectures in
a subspace of top architectures.

1. Introduction

Apart from traditional manually designed neural networks
e.g. VGG [27] and RESNET [13], Neural Architecture
Search (NAS), as an important part of Automated Machine
Learning (AutoML), aims to automatically search an opti-
mal architecture in a certain search space.

Early NAS approaches [2, 19, 39, 40] adopt a time-
consuming pipeline by sampling architectures and training
their weights separately. To speed up the search procedure,
many recent approaches introduce performance estimators
for each architecture. Though there exists a performance es-
timation gap, the search stage focuses more on the relative
ranking of architectures rather than true performance.

Some works [18, 23, 30] propose zero-cost proxies,
which only require one forward step or one backward step.
Nevertheless, it cannot perform consistently well on di-
verse tasks [1]. Other works [3, 6, 24] build up a super-
net that contains all candidate operations and connections
in the search space. Once a supernet is trained, all archi-
tectures can be quickly evaluated by loading the supernet
weight. Since such a supernet-based performance estimator
is widely used, the order-preserving ability, i.e. whether the
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estimated architecture ranking is consistent with true per-
formance ranking, is an important index. In this work, we
delve into two aspects of order-preserving ability. One is
global order-preserving ability to distinguish good archi-
tectures from poor ones in the whole search space. The
other is local order-preserving ability to rank top architec-
tures that have good performance. We argue that both the
above abilities are important. Poor global order-preserving
abilities will lead to unsatisfactory results since it cannot
screen out poor architectures. Poor local order-preserving
ability will reduce search efficiency.

Some NAS approaches, like DARTS [20] and GDAS [9],
introduce an architecture parameter optimized during su-
pernet training. It lets supernet focus on part of the ar-
chitectures, improving local resolution. However, it can’t
ensure global order-preserving ability. Some previous
works [11, 15, 35] have pointed out that an early bias is
easily introduced. The search direction may be led wrongly
in the early stage.

Other works like SPOS [11] and FairNAS [6] ensure
global order-preserving ability. They treat NAS as a two-
stage process. First, a single-path supernet is trained by uni-
form sampling and all architectures’ weights are optimized
equally. Then, a searching algorithm like evolutionary al-
gorithm (EA) is applied. This method ensures fairness in
the training stage so global order-preserving ability is bet-
ter. However, the local order-preserving ability still needs
to be improved. We select the top-10 architectures during
searching and retrain them separately. The Kendall’s tau of
the accuracy in supernet and after retrain is only 0.17, which
is far from satisfactory. While although the choice blocks
are similar, there do exist a non-negligible accuracy gap of
0.8% after retrain. The problem is that weights of different
architectures are not fully decoupled due to weight-sharing
strategy. Some works [12, 16, 21, 29, 33] point out that
the phenomenon of multi-model forgetting exists in weight
sharing. Uniform sampling strategy avoids early bias and
ensures fairness, but may not be precise in local compari-
son. In fact, the supernet is encouraged to focus on some
local superior architectures. Inferior architectures may pro-
duce noise and should be neglected.

However, ensuring both isn’t straightforward. Uniform
sampling isn’t precise enough. Biased sampling is needed
to focus on some superior architectures, but it can lead to
improper bias and hurt global order-preserving ability.

To this end, we propose a refined search strategy combin-
ing architecture searching with supernet fine-tuning to both
achieve high global and local order-preserving ability. To
ensure global order-preserving, we first train a supernet by
uniform sampling to avoid early bias and ensure fairness. To
improve local order-preserving, we add a Supernet Shift-
ing stage during searching. Specifically, we calculate and
accumulate the training loss together with evaluation when

an architecture is sampled. After each iteration of evolu-
tionary searching, the supernet is updated. Since superior
architectures are sampled more frequently in evolutionary
searching, our shifted supernet is encouraged to focus on
top architectures, thus having better local discernment and
better local order-preserving ability. While for inferior ar-
chitectures, the supernet gradually forgets them. Unlike su-
perior architectures, we don’t care about the fine-grained
estimation since they should all be eliminated in searching.

Moreover, our method has better transferability com-
pared to other one-shot NAS methods that have to train a
new supernet for a new dataset. In contrast, our method can
adopt the original supernet and fine-tune the weight during
the search procedure. Plenty of previous work on transfer
learning and pre-trained models [8, 14] proves that weights
can be inherited and only need some small changes for dif-
ferent tasks. This provides a theoretical basis to transfer
supernet to different datasets.

Overall, our contributions can be summarized as follows:
1) Comprehensive analysis about order-preserving

ability for NAS methods. Many NAS methods adopt prox-
ies to estimate performance to speed up the search process,
making order-preserving ability a general metric. In this
work, we further define global and local order-preserving
ability and verify the dilemma of current NAS method.

2) A stable strategy improving both global and lo-
cal order-preserving ability. This work introduces su-
pernet shifting, a simple but effective method to improve
global and local order-preserving ability. Supernet is self-
adaptively revised during searching. Compared with previ-
ous method, our method is by design more in line with the
essence of NAS in the sense of paying adaptive attention to
different architectures, and meanwhile introduces less bias.

3) A flexible and efficient strategy realizing transfer-
ring during searching. Our method neatly realizes the
transfer of supernet by reusing the feature encoder part of
pre-trained supernet. This allows flexible design of de-
coders to better fit different tasks. Transferring with search-
ing further ensures efficiency. To the best of our knowledge,
this is the first time an entire supernet can be transferred.

4) Strong Performance. Experiments in Sec. 4 show
the general effectiveness of our method. It improves both
global and local order-preserving ability and can obtain
dominating architectures. Flops can be reduced by 5M and
the accuracy increases by 0.3% on ImageNet-1K. For trans-
ferability, it can accelerate searching process for ten times
compared with SPOS without performance loss.

2. Related Works
One-shot NAS. Early NAS approaches [2, 19, 39, 40] train
different architectures separately. The cost of time is of-
ten unaffordable. ENAS [24] introduces weight-sharing
strategy so that different architectures can be jointly opti-
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mized. This greatly speeds up the NAS process. Based on
weight-sharing strategy, One-Shot NAS [3] further adopts
path dropout technique to train a supernet. Once a super-
net is trained, the architectures can simply inherit weight
from it. Most follow-up works adopt this strategy. They can
be roughly divided into two classes based on their search
space. Some works [4, 5, 9, 10, 20] adopt contiguous
search space. They introduce an architecture parameter and
use gradient decent to optimize the supernet weight and the
architecture parameter. Another line of works [6, 11, 28]
adopt discrete search space. They treat NAS as a two-stage
problem. In supernet training stage, only one path is sam-
pled and optimized from search space. Then searching algo-
rithms are applied to find the optimal architecture. This type
of method is usually more stable and is easier to optimize.
A widely used NAS method SPOS [11] falls into the sec-
ond category. SPOS trains a supernet by uniform sampling
and applies evolutionary searching algorithm to search for
optimal architecture. This is our main baseline.

Evolutionary-based NAS. Evolutionary algorithm is
widely used in discrete optimization problem. It simulates
the process of biological evolution process. New candidates
are created by crossover and mutation. Large-Scale Evo-
lution of Image Classifiers [25] first introduces evolution-
ary algorithm into NAS problem. New candidate architec-
tures are produced and trained separately. After the pro-
posal of weight sharing strategy and supernet, evolution-
ary algorithm is widely used in the works [6, 11] using
discrete search space as a sample strategy during searching
stage. Specifically, SPOS [11] applies evolutionary search-
ing algorithm first on a single-path supernet while Fair-
NAS [6] uses NSGA-II. It’s widely accepted that evolu-
tionary searching algorithm is more efficient than random
searching since it takes use of the current evaluation results.

Transferability in NAS. Transfer learning aims to find
an effective way to transfer the knowledge learned from a
source domain to a target domain. Usually, the weights of
the pre-trained model are carefully fine-tuned and the struc-
ture is often adjusted to adapt it to the target domain. Trans-
ferability is an important feature for NAS method, since
it can significantly reduce the time cost and hardware re-
striction for NAS application. However, few NAS meth-
ods find an effective way to realize tranferability. Some
NAS methods [20, 32] first search on a small-scale dataset
like Cifar10 [17], then extend the searched architecture to
large-scale datasets like ImageNet-1K [7]. This transfer
mode could be unreliable because of the diverse data dis-
tribution. Some works [26, 34] introduce meta learning to
achieve transferability. However, this is often complicated.
The model and hyperparameters have to be carefully de-
signed and they usually lack explainability. To the best of
our knowledge, no previous work has transferred an entire
pre-trained supernet to a new dataset.

Figure 2. Pipeline of our method with two stages. In the training
stage, a single-path supernet is trained by uniform sampling. Each
architecture is equally treated. In the searching stage, evolutionary
searching is applied. When an architecture is sampled, the train-
ing loss is calculated and accumulated apart from evaluating. At
the end of each iteration, the supernet is updated. Since superior
architectures are sampled more frequently in evolutionary search-
ing, the supernet is expected to shift to focus on top architectures.

Table 1. Overview of different one-shot NAS methods. By adding
supernet shifting, our method introduces extra attention on partial
architectures based on their validation performance. Therefore,
the local resolution can be improved and less bias is introduced.
Besides, ours has the best transferability.

Method Supernet
training Search Attention to

different architectures
global
resol.

local
resol.

transferable
supernet

DARTS [20] gradient descent,
path dropout / biased by architecture

parameter at start
% ! %

OneShot [3] path dropout random
search equal attention ! % %

SPOS [11] uniform
sampling EA equal attention ! % %

FairNAS [6] strict fairness
sampling EA strictly equal attention ! % %

Ours uniform
sampling

EA with
shifting

biased by validation
after uniform training

! ! !

3. Method
3.1. NAS Retrospection from Order-preserving

To have a deeper understanding of different NAS methods
and their advantages as well as shortcomings, we use some
mathematical expressions to show their training pipelines
and training goals. Thus, we need to make some definitions
for the following mathematical expressions.

We denote N as the supernet, θ as the learned architec-
ture variable, α represents different architectures, τ(α) rep-
resents a sampling distribution of architecture α. A repre-
sents the entire search space and u(A) represents a uniform
sampling over the search space. WA represents the weight
of the entire supernet andWα

A represents the weight of ar-
chitecture α inherited from supernetWA.

As discussed above, we divide the previous one-shot
NAS into two main categories. Methods in the first cat-
egory [4, 5, 9, 10, 20] use continuous search space and
introduce an architecture variable θ which is jointly opti-
mized with supernet weights. Their optimization steps are
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described as follows:

(θ,Wθ) = argmin
θ,W

Ltrain(N (A(θ),W)) (1)

The existence of θ leads the supernet to focus on a local
set of architectures, and this improves the local resolution
near θ. This kind of method theoretically works well if θ is
optimal. However, as some works [11, 15, 35] points out,
θ is jointly optimized and this may introduce early bias. So
the supernet may be misled and trapped into local optimal
architecture, which hurts global order-preserving ability.

Approaches in the other category [6, 11, 28] use discrete
search space and get rid of the learnable architecture vari-
able θ. They first train a supernet by uniform sampling and
apply searching algorithms to find the optimal architecture
based on their performance on the supernet. Their optimiza-
tion steps are sequential, which can be illustrated as:

WA = argmin
W

Eα∼u(A)[Ltrain(N (α,W))] (2)

α∗ = argmax
α

ACCval(N (α,Wα
A)) (3)

By removing θ and applying uniform sampling, it better
achieves the fairness of comparison and the global order-
preserving ability. However, it isn’t precise enough for lo-
cal comparison because it pays equal attention to every sin-
gle architecture. Our work aims to achieve both global and
local order-preserving ability. Sec. 3.2 aims to ensure the
former and Sec. 3.3 aims to improve the latter.

3.2. Single-Path Supernet Training

First, we construct a single-path supernet. The construction
and training of supernet follow SPOS [11]. Specifically,
the supernet has a series of choice blocks, and each choice
block further could be specified by certain configurations.
Only one choice is invoked at the same time. The supernet
is trained by uniform sampling. Every single architecture is
treated equally. The training process can be defined as:

WA = argmin
W

Eα∼u(A)[Ltrain(N (α,W))] (4)

As will be shown in the experiments in Sec. 4.3, global
order-preserving ability for the supernet trained by uniform
sampling is quite ideal, so that most poor architectures
can be effectively eliminated. However, the local order-
preserving ability is still far from satisfactory.

3.3. Supernet Shifting

After training a supernet by uniform sampling, the variance
of different architectures’ accuracy is relatively small. This
is enough for global comparison. The supernet can dis-
tinguish between good architecture and poor architecture.

However, it’s not capable enough to distinguish the best ar-
chitecture from several similar architectures, and this seri-
ously affects its performance.

To solve the problem, the supernet weights should be
shifted based on the performance of different architectures
evaluated on the current supernet. Specifically, the architec-
tures which perform better should be more emphasized and
sampled more frequently. It can be depicted as:

WA∗ = argmin
W

Eα∼τ(α)[Ltrain(N (α,Wα
A)] (5)

The prior distribution τ(α) is important. If τ(α) is a
uniform, the equation is the same as Eq. 4. As discussed
above, for architecture α, we want the sampling probability
τ(α) and the performance of α to be positively correlated:

r[τ(α), ACCval(N (α,Wα
A))] > 0 (6)

Thus, after the shifting stage, the supernet is led to fo-
cus on better architectures. We then search for the optimal
architecture based on the shifted supernet.

α∗ = argmax
α

ACCval(N (α,Wα
A∗)) (7)

Compared with those biased architecture sampling
strategies using architecture parameter θ [5, 9, 20], this sam-
pling strategy could be more precise and more reliable as
fairness can be ensured in the supernet training stage and
the sampling distribution is determined by their evaluation
performance directly.

Till now, there is problem remaining unsolved. A proper
sampling strategy satisfying Eq. 6 isn’t straightforward.

We take use of the property of evolutionary searching
algorithm to solve the problem. The main difference be-
tween evolutionary searching algorithm and random search-
ing is that, for different architectures, the probability of be-
ing sampled by evolutionary searching algorithm is differ-
ent. The evolutionary searcher tends to sample the archi-
tectures which are similar to the current top architectures,
so better architectures are sampled more frequently. There-
fore, we can claim that the sampling probability of evolu-
tionary searching algorithm satisfies Eq. 6

Thus, we implement Eq. 5 and Eq. 7 homogeneously and
realize supernet shifting together with evolutionary search-
ing. Specifically, when an architecture is sampled in evo-
lutionary searching stage, apart from evaluating the valida-
tion performance, the loss is calculated according to tens of
training iterations and is accumulated. After one iteration
of evolutionary searching, the supernet is updated. Thus, it
will be shifted to focus on a local set of good architectures
due to the biased sampling distribution. This improves the
precision for local comparison.

Fig. 3 shows the supernet shifting process during the evo-
lutionary searching stage. The accuracy increases for supe-
rior architectures while remains or even decreases for infe-
rior ones. This verifies our assumption.
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Figure 3. Trajectory of Supernet Shifting process. We sample 5
searched superior architectures (bottom) and 5 random architec-
tures (top). We monitor their error rate over iterations of evolu-
tionary searching. Iteration 0 denotes the original supernet trained
by uniform sampling. The shifting supernet gradually focuses on
superior architectures and dismisses inferior ones.

Since supernet keeps shifting in searching, we have
to eliminate the bias produced by the changing supernet.
Therefore, repeatedly sampling should be allowed. Specif-
ically, for a single particular architecture, we allow a new
sample in each iteration of evolutionary algorithm and we
will update its latest accuracy. After each iteration, we
keep the top-50 different architectures for later mutation and
crossover process.

As will be empirically shown in the experiment in
Sec. 4.2 and Sec. 4.3, adding the additional shifting stage
significantly improves the local order-preserving ability
on the superior architectures searched by evolutionary
searching algorithm and the global order-preserving ability
doesn’t decay. One can obtain dominating architectures on
different datasets by applying supernet shifting. This veri-
fies the general effectiveness of our method.

Since we implement supernet shifting and architecture
searching homogeneously, and the shifting process need
few iterations for training comparing with evaluation, the
additional time cost is quite little. Take ImageNet-1K as
an example, the total time for evolutionary searching stage
only rises from 17 GPU hours to 19 GPU hours.

Alg. 1 shows the entire searching stage of our method. It
can be applied in any two-stage NAS method, after a super-
net is trained to improve the local resolution of the supernet.

3.4. Supernet Transferring

The lack of transferring ability is a common problem for
previous NAS methods. For a new dataset, most of the pre-
vious methods need to train a new supernet before searching
stage. This is quite time-consuming, which may need sev-
eral GPU days.

The success of transfer learning and pre-trained mod-

Algorithm 1 Supernet shifting during EA searching

Input: Pre-trained Supernet N with weightsW , Size of a
population T .

Output: Pareto optimal architectures.
1: Initialize a population of architectures Top T and get

the validation accuracy
2: repeat
3: Generate a new population of architectures by EA

{At}Tt=1 = Generate new candidates(Top T, T )
4: Initialize total gradient∇W = 0
5: for t = 0 to T do
6: Get validation accuracy for architecture At

ACCAt
= validate(N ,W,At, val data)

7: compute and accumulate the gradient of supernet
∇WAt = get gradient(N ,W,At, train data),
∇W+ = ∇WAt

8: end for
9: Update the supernet weightsW ← ∇W

10: Update current Top T for next iteration Top T =
Update Top T (Top T , {At}Tt=1, {ACCAt

}Tt=1)
11: until The end of search stage

els has shown the inner-correlation of different downstream
tasks and different datasets. Our method is inspired by fine-
tuning, which is one of the most straight-forward and effec-
tive implementations of transfer learning.

With a little modification, our supernet shifting stage can
be used to transfer a pre-trained supernet to a new dataset.
Specifically, we keep the feature-extraction part of the su-
pernet and only set a new fully-connected layer for predic-
tion. The supernet is fine-tuned for tens of iterations when
an architecture is sampled in the evolutionary searching al-
gorithm. The loss is updated immediately instead of accu-
mulating for faster transfer. Since the feature extraction part
has a strong internal correlation on different datasets, only
prediction layer needs to train from scratch. So the supernet
is quickly shifted to a new dataset after several architectures
are sampled. The searching algorithm can work properly.

We also try a different mode, freezing the feature ex-
traction part and only fine-tuning the final prediction layer.
In experiment, fine-tuning the whole supernet works better,
especially on CIFAR-100 dataset. This is probably because
ImageNet-1K dataset isn’t large-scale enough. Thus, the
general knowledge learned can’t overcome the gap of data
distribution. Moreover, since we adopt a lightweight search
space, fine-tuning the whole supernet isn’t time-consuming.
If a more complicated supernet is pre-trained on a larger-
scale dataset, the second mode may be better.

Note that the size of images may vary in different
datasets, we try two different solutions. The first solution is
to simply resize the image into a fixed size like 224 × 224,
while the second solution is to set an up-sampling or down-
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Table 2. Overview of different methods on improving relative per-
formance estimation in weight-sharing strategy. Some works [38]
reduce the shared-weight. Some works [12, 37] directly reduce
gradient conflict. Some other works [31, 36] including ours adopt
a nonuniform sampling strategy to focus on superior architectures.
Comparing with other methods, ours consumes little extra time,
storage and introduce less early bias.

Method Strategy Extra
storage Extra time cost

Few-shot
NAS[38]

Reduce shared weight: split
supernet into sub-supernets

sub-
supernet None

SUMNAS[12]
Reduce gradient conflict:
Reducing gradient direction

conflict in training
None Compute reptile gradient in

training

AttentiveNAS[31]
Nonuniform sample: Focus
on Pareto-best and worst in

training
None Pre-train evaluator +

evaluation in training

GreedyNAS[36]
Nonuniform sample:

Multi-path sampling with
rejection in training

None Extra evaluation in training

Ours
Nonuniform sample: Shift

supernet to focus on superior
architectures in searching

None
Loss accumulate in

searching(in total 2 GPU
hours)

sampling layer in the network. This layer is also initialized
and trained during searching together with the prediction
layer. By experiment, the former method works better.

In the experiment, we find the transferring supernet con-
verges quickly after sampling several architecture. And af-
ter 4 iterations of evolutionary searching, the transferring
supernet achieves nearly the same accuracy as a new super-
net which is trained from scratch for 80,000 iterations on
the new dataset. This strongly confirms that the supernet is
theoretically transferable.

Note that our transferring method is time-saving with no
loss of performance. Since no new supernet is trained, we
make the searching process 10 times faster and even get a
dominating architecture comparing with training a new su-
pernet on ImageNet-100 dataset. The detailed experiments
are shown in Sec. 4.4

3.5. Approach Summary and Remarks

We propose a refined searching method for NAS. By in-
troducing supernet shifting, the supernet gradually focus
on superior architectures and both global and local order-
preserving ability can be ensured. Moreover, a pre-trained
supernet can be transferred into other tasks effectively.

Table 2 shows the comparison of different method try-
ing to overcome multi-model forgetting and improve per-
formance estimation in weight-sharing. Ours consumes lit-
tle extra time and storage. Encouraging supernet to focus
on top architectures in searching instead of training further
introduces less early bias, and supports transferability.

Our method also inherits the flexibility and simplicity of
two-stage NAS. Multiple constraints can be added in the
evolutionary searching stage to restrict the maximum flops,
parameters and latency.

4. Experiment

4.1. Experiment Setting

Dataset. To show the general effect of our method, three
different datasets are used. The biggest dataset is ImageNet-
1K [7], which contains 1000 different classes, over one mil-
lion images for training and 50,000 images for validation.
ImageNet-1K is the most important dataset in our experi-
ment. Since getting retrain performance of a large num-
ber of architectures on ImageNet-1K is time-consuming, we
also use ImageNet-100 dataset. ImageNet-100 is a dataset
sampled from ImageNet-1K. It contains 100 classes and
each class contains 1300 images for training and 50 images
for validation. ImageNet-100 dataset is mainly used to eval-
uate the order-preserving ability and the performance of su-
pernet transferring. Besides, we also use Cifar-100 [17] in
supplementary experiments.

Search Space. Our search space also follows SPOS.
It is based on ShuffleNet-V2 [22], which is a powerful
lightweight network. There are total 20 searching blocks
and 4 choices for each block. The total search space is 420.
We use FLOPS ≤ 330M as complexity constraint in evo-
lutionary searching as well.

Training. For the training of supernet and the retrain-
ing of the searched architectures, we use the same set-
ting (including hyper-parameters, data-augmentation strat-
egy, learning-rate decay, etc.) as SPOS. The batchsize is
1024, the supernet is trained for 150,000 iterations and the
searched architecture is trained for 300,000 iterations on
ImageNet-1K. For ImageNet-100, the batchsize is 256, the
supernet is trained for 80,000 iterations and the searched
architecture is trained for 120,000 iterations. To further en-
sure fairness, we use the same supernet weight for different
searching algorithms if the search space is the same. Train-
ing uses 4 NVIDIA GeForce RTX 3090 GPUs and searching
uses 1 NVIDIA GeForce RTX 3090 GPU.

4.2. Searching Result

For comparison, we implement multiple searching algo-
rithms and retrain the searched architecture. It involves:

1) Randomly select five architectures and choose the best
architecture according to retrain performance

2) Oneshot(Train a supernet by uniform sampling and
use random search to select the best architecture from 100
candidates according to supernet evaluation)

3) SPOS (train a supernet by uniform sampling and apply
evolutionary searching algorithm)

4) FairNAS (train a supernet with strict-fairness sam-
pling and apply evolutionary searching algorithm)

Table 3 shows the retrain result on different datasets of
different NAS methods. We get a dominating architecture
which has the lowest flops and the highest accuracy.
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Figure 4. We choose 5 depth multipliers: 0.5, 1.0, 1.5, 2.0 and 4.0.
For each we train a new supernet to which we apply our method
and the SPOS method. Then, we retrain the searched architecture
separately and compare the results on ImageNet-100.

Table 3. The retrain result on different datasets. For fairness, we
implement different strategies ourselves in the same search space
based on ShuffleNet-V2.

ImageNet-1K ImageNet-100
Method Flops Top-1 acc Top-5 acc Flops Top-1 acc
Random select 324M 73.29 91.01 312M 85.42
Oneshot [3] 326M 73.52 91.44 304M 85.41
SPOS (block) [11] 323M 74.01 92.25 304M 85.50
FairNAS [6] 326M 74.03 92.31 300M 85.44
Ours 318M 74.28 92.92 299M 85.61

To further verify the scaling performance, we use dif-
ferent depth multipliers to scale up the search space. By
comparing with SPOS in Fig. 4, our method outperforms
SPOS under every depth multiplier.

Moreover, since most previous methods [6, 31, 36] all
make improvements in supernet training stage, our method
can improve the searching quality by adding supernet shift-
ing in evolutionary searching stage in a plug-and-play man-
ner. The result is shown in Tab. 4

4.3. Order-preserving Ability

As discussed before, for one-shot NAS problem using su-
pernet as relative performance predictor, the most important
feature of supernet is the order-preserving ability between
supernet performance and retrain performance. Since it’s
time-consuming to get the retrain accuracy of a large num-
ber of architectures, we use ImageNet-100 in this part.

We analyze the global order-preserving ability and the
local order-preserving ability separately. Specifically, We
choose 10 good architectures and 20 random architectures
as poor architectures. Each architecture is retrained from
scratch for 50,000 iterations. We have verified that all
10 good architectures are better than the 20 poor architec-

Table 4. Retrain result on ImageNet-1K in different search
spaces w/ or w/o supernet shifting for different baseline meth-
ods(implemented by ourselves).

Method
w/o shifting w/ shifting

Flops (M) Top-1 acc Flops (M) Top-1 acc
ShuffleNet-V2 (main search space)

SPOS 323 74.01 318 (↓ 1.5%) 74.28 (↑ 0.35%)
FairNAS 326 74.03 321 (↓ 1.5%) 74.36 (↑ 0.45%)
GreedyNAS 329 74.17 325 (↓ 1.2%) 74.17 (→)
AttentiveNAS 319 74.22 324 (↑ 1.6%) 74.38 (↑ 0.22%)

MobileNet-V2 (supplementary search space)
SPOS 333 73.42 329 (↓ 1.2%) 74.01 (↑ 0.80%)
FairNAS 329 73.39 331 (↑ 0.6%) 74.13 (↑ 1.01%)
GreedyNAS 336 73.59 332 (↓ 1.2%) 73.82 (↑ 0.31%)
AttentiveNAS 335 74.12 332(↓ 0.9%) 74.23(↑ 0.15%)

Figure 5. Experiments on order-preserving ability. The number of
good architectures predicted correctly as the top-10 architectures
indicates the global ranking. The Kendall’s tau coefficient of the
10 good architectures indicates the local consistency.

tures after retraining. Global order-preserving ability means
whether the model is able to distinguish good architectures
and poor architectures, so we counted how many of the top-
10 architectures evaluated by supernet in the overall 30 ar-
chitectures are the ten good architectures. And local order-
preserving ability refers to whether the supernet can predict
the relative performance of similar good architectures. So
we introduce Kendall’s tau coefficient, an index indicating
the positive correlation of two ranks, as our metric. We cal-
culate Kendall’s tau coefficient of the 10 good architectures
to evaluate the prediction of local relative performance.

Fig. 5 shows the result of our experiment. We can see
that for the supernet trained by uniform sampling strategy,
the global ranking is quite ideal but the local consistency
still needs to be improved. At the beginning of the searching
stage, both the global ranking and the local consistency de-
creases. This is probably because the searching experience
is not enough for evolutionary searching algorithm and thus
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Table 5. The retrain result on different transferring methods on
ImageNet-100 and Cifar-100. Time cost consists of supernet train-
ing and searching and is measured in GPU hours.

ImageNet-100 CIFAR-100
Method Flops Top-1 acc Time Flops Top-1 acc Time
same architecture 307M 85.50 / 233M 74.73 /
supernet 304M 85.50 48 228M 75.40 20
supernet + shifting 299M 85.61 50 230M 75.62 21
Ours 299M 85.83 6 226M 75.38 3

the sampling doesn’t satisfy Eq. 6. After several iterations
of evolutionary algorithm, we can see a contiguous improv-
ing of local consistency and global ranking. This verifies
that by using a reliable biased sample strategy like ours, the
local order-preserving ability can be improved. After 15 it-
erations, the local Kendall’s tau rate achieves a high score
and remains nearly unchanged, which indicates the conver-
gence, and ensures the fairness of final comparison.

4.4. Supernet Transfer

To evaluate the transferability of our method, we first pre-
train a supernet on ImageNet-1K and use our method to
transfer the pre-trained supernet to downstream datasets in-
cluding ImageNet-100 and Cifar100 during supernet shift-
ing to search for the optimal architecture. We set three dif-
ferent method for comparison.

1. ImageNet-1K→ downstream: Choose the architec-
ture searched on ImageNet-1K directly.

2. downstream only - SPOS: Train a new supernet and
search by evolutionary algorithm on downstream dataset.

3. downstream only - Ours: Train a new supernet and
search by evolutionary algorithm with supernet shifting on
downstream dataset.

For these three different methods, the input size is all
resized to 224× 224 to ensure fairness.

Table 5 demonstrates the results. Our transferring
method can speed up the search process for about 10 times
by reusing the encoder of supernet. Meanwhile, the search
quality does not decrease. Instead, we even find dominating
architecture in ImageNet-100. This shows the supernet as
pre-trained on large-scale datasets like ImageNet-1K con-
tains general knowledge and can improve the performance
on downstream datasets.

We find our transferring method usually prefers architec-
tures with lower flops and fewer parameters. This is prob-
ably because simpler architectures usually converge faster
and thus they can occupy an advantageous position at the
start of evolutionary searching.

4.5. Time Cost Analysis

As our method involves the supernet shifting together with
evolutionary search, the additional time cost is rather small.

Table 6. Time cost on ImageNet-1K in GPU hours and the top-1
accuracy is estimated under the same Flops. The total search time
is divided into supernet training time and evolutionary search time.

Method Training Search Top-1 acc
SPOS [11] 150 17 73.91
Ours 150 20 74.11
SPOS(short training) [11] 100 17 73.52
Ours(short training) 100 20 73.96

Moreover, since supernet is fine-tuned in shifting, the re-
quirements of the quality of pre-trained supernet is lower.
We only need a rough global prediction on different archi-
tectures, and the local resolution can be improved during
supernet shifting. Thus, the supernet training iterations can
be reduced without significantly hurting performance.

In Table 6, we shorten supernet the training stage from
150K iterations to 100K iterations. Under the same flops,
the top-1 accuracy searched by our method only decreases
by 0.1, while the accuracy searched by SPOS drops by 0.4.

Therefore, under some resource-limited situations where
the supernet cannot be trained for sufficient iterations and
thus can’t provide accurate estimation, our method can help
to maintain performance.

5. Conclusion and Outlook

In this work, We have proposed supernet shifting, a strong
and flexible method to improve order-preserving ability and
transferability for Neural Architecture Search. With little
additional time cost, the supernet can focus on superior
architectures and thus ensure both local and global order-
preserving ability. The search quality can be improved. Ex-
tensive experiments demonstrate the effectiveness.

Besides, a pre-trained supernet can be transferred to a
new dataset in searching. This gives space for developing
new NAS pipelines for future study. We believe a super-
net pre-trained on a large-scale dataset will be open source
and can be transferred to other tasks effectively. Optimal
architectures can be searched by only applying searching
algorithms with no need of tricky and time-consuming su-
pernet training. This will significantly reduce the time cost,
hardware restriction and searching difficulty for NAS. NAS
and AutoML can be widely applied to various situations.

Limitations. For efficiency reasons, our supernet shift-
ing is highly dependent on the sampling by EA. Although
statistically correct, there are no explicit expressions on the
sampling distribution. Mutation makes the sampling even
more uncontrollable. Besides, whether it’s fair and effective
for different architectures to compare in an ever-changing
supernet still needs to be verified.
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