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Figure 1. C3Net generates multimodal contents (e.g., image, audio, and text) taking compound conditions in multiple modalities. The
green and blue arrows are two inferences made by C3Net using different combinations of conditions. C3Net can take any combination of

image, text, and audio as conditions for content synthesis.

Abstract

We present Compound Conditioned ControlNet, C3Net,
a novel generative neural architecture taking conditions
from multiple modalities and synthesizing multimodal con-
tents simultaneously (e.g., image, text, audio). C3Net
adapts the ControlNet [46] architecture to jointly train and
make inferences on a production-ready diffusion model and
its trainable copies. Specifically, C3Net first aligns the
conditions from multi-modalities to the same semantic la-
tent space using modality-specific encoders based on con-
trastive training. Then, it generates multimodal outputs
based on the aligned latent space, whose semantic infor-
mation is combined using a ControlNet-like architecture
called Control C3-UNet. Correspondingly, with this sys-
tem design, our model offers an improved solution for joint-
modality generation through learning and explaining mul-
timodal conditions, involving more than just linear inter-
polation within the latent space. Meanwhile, as we align
conditions to a unified latent space, C3Net only requires
one trainable Control C3-UNet to work on multimodal se-

mantic information. Furthermore, our model employs uni-
modal pretraining on the condition alignment stage, out-
performing the non-pretrained alignment even on relatively
scarce training data and thus demonstrating high-quality
compound condition generation. We contribute the first
high-quality tri-modal validation set to validate quantita-
tively that C3Net outperforms or is on par with the first and
contemporary state-of-the-art multimodal generation [43].
Our codes and tri-modal dataset will be released here.

1. Introduction

Diffusion models have recently emerged as the new state-
of-the-art family of deep generative models, with remark-
able performance on multimodal modeling [1, 33, 35, 37,
47]. Correspondingly, we have observed widespread and
increasing prevalence of strong cross-modal models that
allow generating one single modality from another, in-
cluding but not limited to text-to-text [2, 30], text-to-
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image [5, 12, 13, 35, 39] and text-to-audio [14, 25]. How-
ever, these existing models cannot simultaneously accept
a wider range of input modalities than text or image, nor
are they capable of simultaneously generating multiple out-
put modalities in parallel, which leads to limited applica-
tion in most real-world scenarios where multiple modalities
coexist and overlap with one another. The generation ca-
pability of each step remains intrinsically constrained even
when modality-specific generative models are chained in
sequence a multi-step generation setup, which can be labo-
rious, time-consuming and compute-demanding. In this re-
gard, Composable Diffusion (CoDi) [43] is to date the only
contemporary work capable of concurrently generating any
combinations of modalities, simply by taking linear inter-
polations on the aligned latent space, which results in the
downgraded synthesis qualities. Thus, a better and more
flexible joint-modality generative model is necessary.

To achieve better synthesis results while facilitating
“any-to-any” generation capabilities, we propose Com-
pound Conditioned ControlNet, or C3Net, whose overall
architecture design is adapted from ControlNet [46], which
trains and makes inferences on a production-ready diffusion
model and its trainable copies. Our model first aligns the
conditions obtained from individual modalities to a shared
semantic latent space. During the training of alignment en-
coders, we utilize unimodal pre-training to mitigate the de-
ficiency of high-quality multimodal datasets. The semantic
information obtained from individual modalities is further
combined through a learnable ControlNet-like architecture
called Control C3-UNet. multimodal conditions are then
coordinated and merged into the C3-UNet for multimodal
synthesis. Consequently, our model can generate multi-
modal outputs from the aligned latent space.

Thus, /) C3Net contributes a better solution than
straightforward linear interpolations on the latent space,
synthesizing more complex and diverse outputs beyond
them. Notably, C3Net only requires training one Control
C3-UNet to work on multimodal conditions, which substan-
tially reduces complexity for joint-modality training and
generation. Furthermore, 2) C3Net employs unimodal pre-
training on the condition alignment stage, which facilitates
alignment quality even on relatively scarce training data.
Overall, C3Net outperforms or is on par with the state-of-
the-art multimodal generation counterparts, making it the
next strong baseline for generating complex and diverse
multimodal outputs.

2. Related Work
2.1. Diffusion Models

Diffusion models (DMs) consist of a class of probabilis-
tic generative models capable of understanding the desired
data distribution and synthesizing new samples, through a

continuous application of denoising autoencoders in out-
put generation. For the three dominant formulations, De-
noising diffusion probabilistic models (DDPMs) [11] uti-
lize two Markov Chains for image generation: a forward
chain that injects random noise to the data and transforms
the data distribution into an unstructured simple prior, and
a reverse chain that denoises and recovers the original data
by understanding the learnable transition kernels. Score-
based generative models (SGMs) [40, 41] introduce score
functions defined as the gradient of log probability den-
sity, adding a series of escalating Gaussian noise into the
data and jointly calculating the scores for all noisy data dis-
tributions. Stochastic Differential Equations (SDEs) [41]
can further be leveraged in the injection and denoising pro-
cesses, allowing for the scenario of unlimited time steps or
noise levels in DDPMs and SGMs. Latent diffusion mod-
els (LDMs) [35] first train a Variational autoencoder (VAE)
[18, 34] to encode inputs into a low-dimensional and ef-
ficient latent space, and then apply a diffusion model to
further generate latent codes. By abstracting negligible de-
tails and reducing modeling dimension, the motivation is
to focus on the semantic aspects of the data to achieve
higher computational efficiency. The diffusion models have
achieved state-of-the-art synthesis quality in image inpaint-
ing, image superresolution, and audio generation from text.

2.2. Composable Diffusion

Composable Diffusion (CoDi) [43] is a joint-modality gen-
erative model capable of producing a combination of out-
put modalities in parallel based on a combination of input
modalities, such as text, audio, image and video. CoDi
first trains a latent diffusion model for each modality in-
dependently, adds a cross-attention module to each diffuser,
and further apply an environment encoder to project the la-
tent variables of different LDMs into a shared latent space.
CoDi’s design enables multimodal generation without train-
ing on all possible combinations of modalities, reducing the
size of training from one of exponential to linear.

2.3. Unimodal Pre-training

Unimodal Models trained on large single-modality datasets
can achieve a broader and more diverse coverage of real-
world data distribution, without being constrained by the
presence of cross-modality data pairs. Specifically, using
unimodal models as pre-training can achieve better zero-
shot performance compared with the jointly-trained multi-
modal models, with MAE [8] and T5 [32] outperforming
the state-of-the-art CLIP-based model under similar model
capacities. Moreover, as an effective unimodal pre-training
technique for audio processing tasks, Self-Supervised Au-
dio Spectrogram Transformer (SSAST) [7] enables models
to learn the underlying patterns and features of large, unla-
beled audio datasets and further improve their performance
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Figure 2. C3Net first aligns compound conditions in different modalities to a shared latent space &, where the encoder takes individuals of
compound conditions and generates aligned latent: C'(z,), C(z¢), C(x;) are all in £, and C(z) is an interpolation. The aligned condition
latent is fed to a generative network consisting of C3-UNet and Control C3-UNet, which adaptively learns to coordinate compound con-
ditions in addition to the weighted arithmetic mean in the latent space indicated by the blue dashed box. Thanks to the common latent &,
the Control C3-Unet for different conditions shares the same weight. C3Net generates multiple latent for each modality, denoted as zq, z¢,
z;, for audio, text, and image, respectively. Then, the z’s are decoded using their respective established decoders to generate contents. See

Figure 4 for Control C3-UNet and C3-UNet details.

on the fine-tuning datasets. In the case of C3Net, we first
apply unimodal pre-trained encoders for each modality, and
then fine-tune the encoders on smaller-scale high-quality
datasets based on contrastive learning.

2.4. Multimodal Alignment

Contrastive Language-Image Pre-Training (CLIP) [31, 33]
is a neural network that aligns the text and image modal-
ities by pre-training on a large dataset of text-image pairs
with a contrastive loss function. Given a sample size of
N text-image pairs, CLIP learns to map the two modalities
into a common embedding space by jointly training a text
encoder and image encoder to maximize the cosine similar-
ity of N matched pairs and minimize the cosine similarity
of (N2 — N) unmatched pairs using a contrastive loss func-
tion. Similar with CLIP, Contrastive Language-Audio Pre-
Training (CLAP) [4] aligns the text and audio modalities via
contrastive learning paradigm between the audio and text
embeddings in pair, also following the same loss function.
CoDi [43] proposes the “Bridging Alignment” technique to
align conditional encoders for multimodal generation. CoDi
leverages CLIP as the pretrained text-image paired encoder,
and trains audio and video prompt encoders on audio-text
and video-text paired datasets using contrastive learning,
with text and image encoder weights frozen.

The above alignment techniques can be applied to align
the latent space of LDMs with multiple modalities to

achieve joint multimodal generation. In comparison, C3Net
also utilizes the modality-specific encoders to align the
conditions from multi-modalities to the same latent space,
while it takes a step further by adding neural architecture
similar with ControlNet [46] to facilitate better understand-
ing of multimodal conditions and joint-modality generation.

2.5. ControlNet

ControlNet [46] learns and adds spatial conditioning to con-
trol the large pre-trained diffusion models. By freezing the
original weights for the pre-trained diffusion model, Con-
trolNet leverages a trainable copy of its deep-and-robust
encoding layers to learn the diverse set of conditional con-
trols and avoid overfitting. The original locked model and
the trainable copy are then connected with a zero-initialized
convolution layer called “zero-convolution,” where the con-
volution weights are first initialized to zero and progres-
sively learned throughout the training.

This architecture provides an effective solution for con-
trolling large diffusion models, while ensuring that no new
and harmful noises would be added to the deep features of
the diffusion models. In the design of C3Net, we indepen-
dently apply a ControlNet-like architecture to each input
modality, further enabling our model to learn to coordinate
multimodal conditions and synthesize more optimized re-
sults in the cross-modality generation.
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Figure 3. Uni-modal pre-training of audio encoder. The au-
dio encoder is first initialized using unsupervised pre-training on
large-scale uni-modal data. The encoder is then fine-tuned with
objective learning using high-quality multi-modal data.

3. Method

C3Net is a neural network architecture for synthesizing
multimodal content conditioned on multimodal inputs. Fig-
ure 2 shows C3Net’s overall architecture with content in
different modalities (audio, text and image). We first intro-
duce C3Net’s overall structure in Section 3.1, including the
alignment encoder C(-), and the latent diffusion model con-
sisting of Control C3-Unet and C3-Unet. Then, we explain
the unimodal pre-training for encoders C(-) in Section 3.2
where, unlike many existing multimodal approaches, mul-
timodal training data (e.g., audio and image pair-up) is not
needed in the pre-training stage. Finally, we explain C3-
UNet and Control C3-UNet for compound conditional gen-
eration in Section 3.3.

3.1. Compound Conditioned ControlNet

C3Net (Compound Conditioned ControlNet) takes inspira-
tion of the general architecture from [43] to enable mul-
timodal generation conditioned on compound information,
such as audio, text and image. C3Net first aligns multi-
modal conditions to a shared latent space. We consider a
compound multimodal condition ¢,, ¢;, ¢, respectively de-
noting audio, image, and text conditions, and project them
to a shared latent space & using an encoder C/(+).

We observed that text captioning is ubiquitously adapted
in large-scale multimodal datasets as one of the ground truth
labels, and that as mentioned in [43], certain dual modalities
datasets (e.g., audio and image) are either harshly-aligned
or scarce in quantity. To address this issue, choosing a
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Figure 4. Multimodal generation of C3Net consists of C3-UNet
(top) and Control C3-UNet (bottom in the blue box). Similar to
ControlNet, Control C3-UNet provides additional control to the
C3-UNet. Control C3-UNet takes latent condition aligned from
each modality separately and connects to the C3-UNet at each
level of skip-connection by addition. C(z4), C(x;), C(z:) are
aligned audio, image, text conditions respectively; they are input
one at a time. Each modality is generated by its respective UNet
pair.

shared latent space ¢ in which the text encoder is well-
established is advisable. Following the practical implemen-
tation of [43], we adopt CLIP [31] latent space as our shared
latent space £. Thus, an instance of the compound condition
alignment stage yields a tuple of latent

C($a),0($i),0($t) € 5 (D

denoting the aligned latent from audio, image, and text con-
ditions, respectively.

After acquiring latent conditions, we generate multi-
modal contents using latent diffusion models with C3-UNet
and Control C3-UNet as the backbone. Specifically, we
can sample feature maps zp of any modality from a dif-
fusion model sampling process, which is conditioned on
C(z,),C(x;),C(x¢). Note that the synthesis of different
modalities utilizes different diffusion models. Then, zg is
decoded on respective decoders to generate the content of
its modality.

3.2. Uni-modal Pre-trained Alignment

Our encoders C(-) are multi-modal encoders aligning con-
ditions in different modalities to the shared space . The
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encoders are first pre-trained on unimodal datasets and then
fine-tuned using contrastive learning proposed in [31]. In
contrast, the original settings of [43] is an alignment model
trained from scratch on multi-modal datasets.

We propose to pre-train encoders on unimodal data
because high-quality paired datasets are scarce for some
modalities (e.g., audio and text pair). On the other hand,
many high-quality unimodal datasets are readily available.
In the following, we use the audio encoder as an example.
As shown in Figure 3, we use the pre-trained neural net
from [7] which is a masked auto-encoder. The MAE has
been trained to extract audio features during the unsuper-
vised training stage, which makes it easier for the following
contrastive learning for the audio encoder. We then fine-
tune the audio encoder using high-quality datasets, which
are available on relatively small scales. During the fine-
tuning stage of the audio encoder, we utilize an established
frozen text encoder from [31]. In detail, we use contrastive
objective to fine-tune the pre-trained audio encoder, so that
the audio encoder learns to align audio to latent in £ as sim-
ilar as possible to the latent that its ground truth caption is
aligned to.

Similar to the findings in [20-22, 27, 42, 48], our en-
coder networks can primarily learn the data pattern for re-
spective modalities with unsupervised pre-training. Trained
with fewer but high-quality multi-modal data, our unimodal
pre-trained encoder is on par with or outperformed encoders
trained on only paired data on downstream generation tasks.

3.3. C3-UNet and Control C3-UNet

Figure 4 shows the multimodal diffusion model of our
C3Net, which consists of the C3-UNet and Control C3-
UNet. C3-UNet is a trained UNet F (-, ©) employed in a
latent diffusion model, which generates feature maps con-
ditioned on instances in . Control C3-UNet, similar to the
ControlNet setting in [46], is a trainable copy F (-, ©.) of
the C3-UNet, where O, denotes the trainable copy of pa-
rameters ©. In the implementation of C3Net, we use the
trained UNet of Composable Diffusion [43] as C3-UNet
F(-,0©). Figure 4 shows the detailed architecture'.

The Control C3-UNet can provide additional informa-
tion lost during the latent interpolation. Notably, our Con-
trol C3Net takes the aligned latent C(z,,), C(x;), and C'(z})

IThe trained F(-, ©) is a U-Net with an encoder, a middle block, and
a skip-connected decoder. The encoder and decoder contain 12 blocks,
and the full model contains 25 blocks, including the middle block. Of the
25 blocks, there are 4 down-sampling and 4 up-sampling blocks. Refer to
Figure 4. In C3-UNet, the “Encoder Blocks” contains 12 encoder blocks
in 4 resolutions, while the “x3” indicates the block of the same resolution
repeats three times. Condition latent is encoded using the Latent Encoder,
and diffusion time steps are encoded with a time encoder using positional
encoding. Similar to [46], the Control C3-UNet is a trainable copy of the
12 encoder block and 1 middle block of the C3-UNet. The feature maps
are added to the 12 skip-connections and 1 middle block of the C3-UNet
after a “zero convolution” layer.

separately in each modality. The Control C3-UNet is
trained to provide extra information in each condition by
modifying the feature maps of the C3-UNet. Thanks to the
shared latent space &, it is sufficient to train one trainable
copy of parameters O, for the Control C3-UNet. This is
because conditions from all modalities have been aligned to
the shared £, and a single set of trained parameters ©, is
sufficient for additional control by taking condition latent
already aligned in £ regardless of the original modality.

Our diffusion model follows a similar setting in [43]
and [31]. The C3-UNet takes a linear interpolation of the
aligned latent C'(z,), C(x;),C(x) as the condition. The
Control C3-UNet takes conditions in each modality sepa-
rately and connects to the C3-UNet at each level of skip-
connection after multiplying a constant, which we empiri-
cally set to be 0.1, but it varies depending on the genera-
tion task. Constant multiplied adjusts the additional con-
trol scale the Control C3-UNet provides when using differ-
ent combinations of compound conditions. However, when
only a single condition is provided, the Control C3-UNet
can not provide additional information and therefore we set
the constant to zero.

During training, we use the text-image dataset to
train C3Net’s image and text generation, and the text-
audio dataset for audio generation (training and validation
datasets will be described in Section 4.1). Specifically, we
train Control C3-UNet on each modality separately. Take
image generation as an example, for each image-text pair,
denoted as I and x respectively, in the dataset. The ground
truth text « is aligned to the shared latent space as C'(z), and
a masked text x,,, is generated by randomly selecting 50%
of the text prompt to replace with empty strings and it is
aligned as C'(x,, ). The C3-UNet takes C(z, ), and Control
C3-UNet takes C(x) as condition latent, respectively. The
ground truth image [ is used to generate 2 in a typical la-
tent diffusion model [35]. We train the C3-UNet to predict
noise in a timestep ¢ during the image diffusion. Therefore,
the objective function of each modality can be denoted as

L= Ezo,t,c,eeN(O,l) [HE - EG(Ztvtv C)Hg} 2

where ¢ is the ground truth noise, € (+) is the network, and
¢ is the tuple of C(z,,), C(z).

4. Experiments
4.1. Training Datasets

We collected our training datasets for fine-tuning the align-
ment encoder as well as the respective Control C3-UNet for
image, audio, and text synthesis. Major effort was made
to clean up flawed data in some datasets through data pre-
possessing and relation scores, including CLIP score [9],
CLAP [4] similarity score, and the data quality metrics.
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For the fine-tuning of audio encoder, we used Audio-
Cap [17], a dataset of sounds with event descriptions for
audio captioning. We also added the sound effects from
Epidemic Sound as provided in [45]. We selected 1 mil-
lion ten-second sound clips from AudioSet [6] with optimal
quality and CLAP similarity score to their text captions.

For the fine-tuning of image and text Control C3-UNets,
we utilized the COCO [24] dataset and part of the LAION-
400M [38] dataset, with both consisting of images and cor-
responding text captions. For the fine-tuning of audio Con-
trol C3-UNet, we utilized a combination of AudioCap [17]
and AudioSet [6] for training.

4.2. Tri-modality Test Set

In the absence of k-modality datasets, where k& > 2, for
multimodal synthesis evaluation, it is crucial to construct
a high-quality evaluation set with three modalities (i.e., im-
age, text, and audio) for evaluating C3Net. It is important to
note that a bi-modal test set would be unsuitable for C3Net,
as it only provides one modality as a condition (with the
other serving as ground truth) and cannot effectively evalu-
ate the performance of multimodal conditioned synthesis.

Observing that the AudioCap dataset [17] contains high-
quality audio and text captions, we curated a tri-modal test
set based on AudioCap. Specifically, we first generated
the third modality (i.e., image) using Stable Diffusion [36]
prompted on the AudioCap text captions. We further se-
lected 2,000 data tuples based on image quality and CLIP
score to ensure that the content for each tuple is highly
correlated. As a result, a total of 2,000 tri-modal ground-
truth tuples, each with highly relevant audio, image and text
caption, are available for evaluating C3Net and CoDi [43],
which is to date the most representative (and only) work on
diffusion-based tri-modality content generation. We show
some examples in Figure 5.

4.3. Evaluation Results

Figure 6 shows qualitative comparisons on compound con-
dition image synthesis between C3Net and our baseline. We
will show quantitative comparison in the following.

4.3.1 Unimodal Pre-training

We evaluate the unimodal pre-training results by compar-
ing the image and text generated by C3Net and CoDi [43].
Evaluation is conducted on the AudioCap [17] test set, with
which we generate text captions and images conditioned on
the ground truth audio. Table 1 shows the correlation be-
tween the generated text and its ground truth captions, as-
sessed by scaled CIDEr-D [44] and SPIDEr [26]. Table 2
tabulates the image synthesis quality assessed by the Incep-
tion Score, as well as the correlation between the generated
images and ground truth text captions assessed by the CLIP

A subway train signal plays

followed by a horn honking

as a crowd of people talk in
the background

-

(sound of a busy urban city)

An emergency vehicle has
the siren on

(sound ambulance siren)

bus engine running
followed by a bus horn
honking

(sound of engine and bus honk)

Man speaking continuously
with hissing in the
background

=+

(sound of a man speaking)

Figure 5. Examples from the Tri-modality Test Set.

score [9]. Evaluations on audio synthesis are not available
in this case, as the model design of CoDi does not support
audio generation when taking audio as a condition. Note
that in the scenario of taking an audio as the only condi-
tion, C3Net and CoDi differ only in the alignment stage,
which makes it an ideal ablation study. Under such settings,
C3Net applies an audio encoder pre-trained on unimodal
data, while CoDi uses an audio encoder without unimodal
pre-training.

Method CIDEr-D+  SPIDEr 1
CoDi 0.0654 0.0608
C3Net (Ours)  0.0704 0.0622

Table 1. Unimodal pre-training assessed by the correlation be-
tween the synthesized texts and ground truth text captions on the
AudioCap test set. Comparisons are made between C3Net (with
unimodal pre-trained encoders) and CoDi (without as such).

4.3.2 Multimodal Synthesis

We evaluate the multimodal synthesis capabilities of C3Net
on the Tri-modality Test Set introduced in 4.2. To assess
the synthesis quality on compound conditions, we generate
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Method Inception Score © CLIP T
CoDi 1.7730, 0.1450 23.192
C3Net (Ours)  1.7732, 0.1535 23.325

Table 2. Unimodal pre-training assessed by Inception Score of
the generated images, and the CLIP score between the generated
images and the ground truth text captions. Images are synthesized
conditioning on the AudioSet test set audio.

images, text, and audio conditioned on each respective tuple
within the Tri-modality Test Set.

To evaluate image synthesis, we measure the Fréchet in-
ception distance [ 10] between the synthesized image and its
ground truth image as well as the CLIP score [9] between
the generated image and its ground truth text caption. Ta-
ble 3 shows that C3Net generates images that relate closer
to both the text and image conditions, demonstrating that
our Control C3-UNet architecture offers a more optimized
solution for compound condition image synthesis.

Method FID| CLIP+

CoDi 11.39  25.17
C3Net (Ours)  10.97 25.29

Table 3. Compound conditioned image synthesis assessed on
the Tri-modality Test Set. Generation quality is measured by the
Fréchet inception distance between the synthesized image and its
ground truth image, and the CLIP score between the synthesized
image and its ground truth text caption.

To evaluate text synthesis, we measure the caption corre-
lation metrics between the synthesized text and the ground
truth captions. The caption metrics include BLEU-1 [28],
ROUGE-L [23], CIDEr-D [44], and SPIDEr [26]. Table 4
shows that C3Net generates text outputs more closely cor-
related with the ground truth compared to CoDi.

Method BLEU-11 ROUGE-L{ CIDEr-D{ SPIDEr{
CoDi 0.1059 0.1019 0.0651 0.0631
C3Net (Ours)  0.1104 0.1045 0.0713 0.0665

Table 4. Text synthesis assessed on the Tri-modality Test Set.
We evaluate the correlation between synthesized texts and ground
truth text captions using a variety of caption metrics.

To evaluate audio synthesis, we measure OVL (Over-
all Impression), REL (Text Relevant) similar with the set-
tings in [19], and FAD [16] to evaluate the audio quality.
As shown in Table 5, C3Net outperforms CoDi in terms of
OVL and REL. When measuring the correlation between
the synthesized audio and the ground truth audio, C3Net
yields a slightly weaker FAD score compared to CoDi.

Method OVL1T REL?1 FADJ|
Reference 81.07 79.31 -
CoDi 62.91 59.01 114

C3Net (Ours)  63.25  59.83 11.7

Table 5. Audio synthesis assessed on the Tri-modality Test Set.
The audio evaluation metrics include OVL and REL between the
synthesized audios and the ground truth captions. We also evalu-
ated the FAD between generated audio and its ground truth.

4.3.3 Synthesized Audio Classification

To further assess the quality of audio synthesized by C3Net,
we compare the classification accuracy of the generated im-
age conditioned on the audio-text pairs in the ESC-50 [29]
dataset. In this experiment, we first synthesized audio con-
ditioned on the audio and text pairs. Then, we classified the
generated audio using the classification model given in [3].
Table 6 tabulates the results, where a higher accuracy indi-
cates more optimized audio synthesis on compound condi-
tions, which keeps the shared features in multimodal condi-
tions.

Codi  C3Net (Ours)
Accuracy (%) 21.05 23.25

Table 6. Classification accuracy on synthesized audio conditioned
on audio-text pairs in ESC-50. A higher accuracy indicates a better
ability to keep shared features in multimodal conditions.

5. Conclusion and Discussion

In this paper, we propose C3Net, a multimodal genera-
tive model conditioned on compound content, which ap-
plies unsupervised pre-training on unimodal datasets and
further leverages a ControlNet-like architecture to coordi-
nate compound conditions. Through extensive experiments,
we demonstrate that C3Net is capable of synthesizing high-
quality multimodal contents on compound conditions by
coordinating them through a learnable process, and ad-
dressing the deficiencies of datasets through unimodal pre-
training.

While C3Net has shown remarkable progress in joint-
modality generation, there exist remaining challenges that
need to be addressed in the future. One of the issues is
the choice of the shared latent space, such as the CLIP [31]
latent, which may not be optimal for all modalities, par-
ticularly audio. To address this issue, a contrastive learn-
ing process that takes into account multiple modalities may
be more effective. Another challenge is that aligning la-
tent conditions using contrastive learning may sacrifice the
unique information contained in a modality, as noted in a
previous study [15]. One solution to this issue is to use
a similar alignment objective as proposed in [15], which
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Figure 6. Qualitative comparison of compound-conditioned synthesis. The examples are conditioned on two or more images, texts, and
audio conditions. (a) C3Net optimally extracts the feature of the blank-and-white sketch in the image condition. (b) C3Net better utilizes
the audio condition, the sound of birds twittering. (c) C3Net generates an image of higher quality by focusing on the main subjects in the
text condition. (d) The synthesized caption form C3Net has subject fire service vehicle, which is the optimal combination of subjects in
all conditions. (e) C3Net synthesizes text including person and cat, where the baseline generation only has car. This may be because the
simple interpolation used in CoDi mixes the cat and person features into one subject. (f) The synthesized audio from C3Net rates higher in
probability as a piece of speech classified by the model from [3].

aims to construct more meaningful latent modality struc- tiveness of multimodal generative models, leading to more
tures. Addressing these challenges can improve the effec- advanced and sophisticated content synthesis in the future.
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