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Abstract

Text-driven video editing poses significant challenges in
exhibiting flicker-free visual continuity while preserving the
inherent motion patterns of original videos. Existing meth-
ods operate under a paradigm where motion and appear-
ance are intricately intertwined. This coupling leads to the
network either over-fitting appearance content – failing to
capture motion patterns – or focusing on motion patterns
at the expense of content generalization to diverse textual
scenarios. Inspired by the pivotal role of wavelet transform
in dissecting video sequences, we propose CAusal Motion
Enhancement tailored for Lifting text-driven video editing
(CAMEL), a novel technique with two core designs. First,
we introduce motion prompts, designed to summarize mo-
tion concepts from video templates through direct optimiza-
tion. The optimized prompts are purposefully integrated
into latent representations of diffusion models to enhance
the motion fidelity of generated results. Second, to enhance
motion coherence and extend the generalization of appear-
ance content to creative textual prompts, we propose the
causal motion-enhanced attention mechanism. This mech-
anism is implemented in tandem with a novel causal mo-
tion filter, synergistically enhancing the motion coherence
of disentangled high-frequency components, and concur-
rently preserving the generalization of appearance content
across various textual scenarios. Extensive experimental
results show the superior performance of CAMEL.

1. Introduction
With rapid developments of text-to-image (T2I) diffusion
models [16, 24, 26, 40], there have been several endeav-

*Equal contribution.
†Corresponding author
https://github.com/zhangguiwei610/CAMEL

ors dedicated to replicating this success in text-to-video
(T2V) generation [5, 7, 20, 30]. These models adopt the
paradigm of inflating spatial-only T2I generation models to
the spatiotemporal domain and then train on high-quality
large-scale text-video pairs [1, 32] from scratch. Despite
advancements, this paradigm is computationally expensive
and time-consuming. Since pre-trained T2I models already
capture the knowledge of open-domain concepts, recent
works [14, 22, 33, 41] attempt to train a generalizable mo-
tion modeling module and plug it into the advanced T2I
models for text-driven video editing. This enables preserv-
ing knowledge of pre-trained T2I models by freezing corre-
sponding weights, thereby degrading computational costs.

The main challenges in text-driven video editing lie in
two points: (1) content consistency, i.e., the content in
the generated result should exhibit flicker-free visual con-
sistency; and (2) motion coherence, i.e., the generated
video should preserve the motion patterns from the video
template without structural distortion. To overcome these
challenges, most existing methods focused on parameter-
efficient tuning on additional temporal modeling [33],
or training spatial-temporal Low-Rank Adaptions (LoRAs)
[12]. However, these methods operate under a paradigm
where motion and appearance are intricately intertwined.
This coupling inevitably leads to the network either over-
fitting appearance content, i.e., failing to capture the un-
derlying motion patterns, or focusing only on motion pat-
terns at the expense of content generation to creative tex-
tual prompts. Although recent works on controllable text-
to-video generation [14, 41] introduce signals represent-
ing pre-defined motion patterns (e.g., depth maps or edges),
strict spatial constraints imposed by the signals significantly
limited freedom of motion dynamics.

To this end, we investigate a more suitable solution to
disentangle content and motion dynamics within video tem-
plates through a frequency-based perspective. We first uti-
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Figure 1. Illustration of Haar wavelet transform (Top) and core
components of our approach (Bottom). Within the Haar window,
the decomposed low-frequency components primarily represent
the appearance content of the video, while high-frequency compo-
nents effectively capture variations in motion patterns. We are thus
inspired to introduce CAMEL, a novel technique that enhances
motion coherence and visual consistency through a decoupling-
then-reweighting process of high- and low-frequency components.

lize the classical one-dimensional Haar wavelet transform
[13, 27] to decompose the video template along its tempo-
ral dimension, segregating it into low- and high-frequency
components. In Fig. 1 Top, we empirically interchange
video frames within the predetermined Haar window. Note
that simple swap operations only modify the motion pat-
terns between frames, not the appearance content. This em-
pirical manipulation yields the following insight:

Within the Haar window, the decomposed low-frequency
components exhibit remarkable consistency in their char-
acteristics before and after the swapping of video frames,
while high-frequency components show higher sensitivity to
the nuances of variations in motions.

This finding highlights the efficacy of Haar Wavelet
transform in segregating video sequences into two distinct
components: the low-frequency components predominantly
representing appearance content, and the high-frequency
components capturing variations in motion patterns.

Upon the effective decomposition of a video into high-
and low-frequency components, the ensuing critical task
is to enhance the motion coherence while preserving the
existing knowledge of appearance content within the pre-
trained T2I model. Inspired by the effective integration
of CLIP [23] text embeddings in the T2I model, where
they function as a textual guide for the denoising process
of static image content, an intuitive extension is to intro-
duce the motion condition. The objective is to steer the
denoising process specifically for enhancing the motion co-
herence of generated results. In light of the above, we pro-
pose CAusal Motion Enhancement tailored for Lifting text-
driven video editing (CAMEL), a novel technique with two
core designs, as illustrated in Fig. 1 Bottom. First, we
introduce the concept of motion prompts, designed to sum-
marize motion concepts from video templates through an
optimization process. The optimized motion prompts are
then purposefully integrated into the latent representations
of diffusion models, aiming to enhance motion fidelity in
the generative results. Second, to enhance motion coher-
ence and extend the generalization of appearance content
to creative textual prompts, we propose a CAusal Motion-
enhanced Attnention mechanism, termed CAM-Attn. More
specifically, CAM-Attn incorporates a causal motion filter,
designed to decouple high-frequency components captur-
ing contextualized motion patterns. The decoupled high-
frequency components, once enhanced by learned motion
conditions, are then reintegrated with low-frequency com-
ponents to generate reweighted latent representations. This
synergistic interaction between all core components is piv-
otal in enhancing motion coherence while ensuring the gen-
eralization of appearance content to diverse creative scenar-
ios. Our contributions include:
• We propose motion prompts to summarize motion con-

cepts from video templates through direct optimization.
The learned prompts are purposefully integrated into the
latent representations of diffusion models, aiming to en-
hance motion fidelity in the generative results.

• We develop a causal motion-enhanced attention mecha-
nism, which operates in conjunction with a novel causal
motion filter. The goal is to enhance the motion coherence
of latent representations while preserving content gener-
alization to creative textual scenarios.

• Extensive experiments show that CAMEL performs fa-
vorably on text-driven video editing benchmarks, espe-
cially in enhancing motion coherence and visual consis-
tency of the generated results.

2. Related Work

2.1. Text-to-Video Diffusion models

The significant advancements of Latent Diffusion Models
in the T2I generation [3, 16, 24, 39, 43] demonstrate its
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potential in T2V generation. Video LDM [2] and Mag-
icVideo [42] use a spatiotemporal factorized U-Net to de-
noise from randomly sampled sequences of Gaussian noises
in the latent space. VideoComposer [31] is capable of flex-
ibly composing a video with diverse conditions, e.g. sketch
and motion vectors while maintaining the synthesis qual-
ity. AnimateDiff [7] trains a set of motion layers capable
of being applied to customized T2I models. PYoCo [5] and
VideoFusion [20] propose video noise priors dedicated to
sequential video generation. Despite impressive progress,
training above T2V models from scratch is computation-
ally demanding and necessitates high-quality, large-scale
text-video pairs (e.g., WebVid-10M [1] and InternVid [32]),
which is expensive and time-consuming.

2.2. Text-driven Video Editing

The objective of text-driven video editing is to edit the con-
tent of a video template by animating existing T2I diffu-
sion models and sub-network tuning while preserving the
original motion patterns. This setting is more computa-
tionally efficient compared to training T2V models from
scratch. Tune-A-Video [33] proposes efficient temporal at-
tention tuning to achieve one-shot video generation. Video-
P2P [18] transfers the concept of Prompt-to-prompt [8] edit-
ing to video editing via decouple-guidance cross-attention
control. TokenFlow [6] enforces semantic correspondences
of intermediate diffusion representations across frames, ef-
fectively preserving motion patterns and elevating temporal
consistency. Text2Video-Zero [14] introduces a training-
free method to animate a pre-trained T2I model via repro-
gramming frame-level self-attention with cross-frame atten-
tion. Render-A-Video [37] introduces optical flow [35] as
a prior to guide hierarchical cross-frame constraint, thereby
improving both global and local temporal consistency.

Inspired by the pivotal role of wavelet transform in video
sequence analysis, we develop two core components: a
causal motion-enhanced attention mechanism and learnable
motion prompts. These components work in tandem to en-
hance motion coherence, simultaneously extending appear-
ance generalization to diverse textual scenarios.

3. Method
Given a video template and a source text prompt depicting
it, the goal is to generate a novel video driven by an edited
text prompt P∗. The central challenge lies in generating a
video that not only aligns with the appearance content as
depicted in P∗ but also preserves the motion patterns inher-
ent in the video template. Note that our development builds
upon the foundation of pre-trained T2I models. In the fol-
lowing, we first provide a brief overview of T2I diffusion
models in Sec. 3.1, followed by a specific description of our
approach in Sec. 3.2 and Sec. 3.3. The overall of our ap-
proach is illustrated in Fig. 2.

3.1. Preliminaries

General Text-to-image Generation. Our development is
based on Stable Diffusion (SD) [24], which executes the
denoising process in the latent space of a pre-trained auto-
encoder [29]. During the forward process, an image is ini-
tially mapped to the latent input z0, then perturbed by a pre-
defined Markov process, formulated below:

q (zt | zt−1) = N
(
zt;
√

1− βtzt−1, βtI
)

(1)

where t = 1, . . . , T , with T being the total number of steps
in the forward diffusion process. The parameter βt controls
the noise strength at timestep t. The above iterative process
can be simplified as follows:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (2)

where ᾱt =
∏t

i=1 αt, αt = 1− βt. Besides, ϵ is the Gaus-
sian noise added to the latent input z0. Stable Diffusion
aims to minimize the vanilla training objective proposed in
DDPM [11], formulated below:

L = Ez0,y,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (zt, t, τθ(y))∥22

]
(3)

where y is the corresponding textual prompts given an input
image. ϵθ(·) and τθ(·) denote the noise prediction function
and the text encoder of the SD model, which is implemented
with a modified UNet [25] and the CLIP ViT-L/14 text en-
coder [23], respectively.
Text-to-Image Animation. To animate a pre-trained T2I
model for video generation, a common practice is to inflate
the 2D UNet [25] by incorporating temporal self-attention
layers to learn reasonable motion priors. To be specific, at
each temporal self-attention layer of the UNet, we have:

Attn(Qℓ,Kℓ, V ℓ) = softmax

(
QℓKℓT

√
d

)
· V ℓ (4)

Qℓ = W ℓ
Q ·φ

(
zℓ
)
,Kℓ = W ℓ

K ·φ
(
zℓ
)
, V ℓ = W ℓ

V ·φ
(
zℓ
)

(5)
where the function φ : Rb×h×w×f×c → Rbhw×f×c is to
flatten the intermediate representations zℓ encoded by the
l-th block, and b, f, w, h, c determines the size of the batch,
frame, width, height, and channel dimensions, respectively.
W ℓ

Q,W
ℓ
K and W ℓ

V are learnable projection matrices of the
temporal self-attention layer at the l-th block.

3.2. CAMEL

The goal of CAMEL is to enhance motion coherence while
preserving the generalization of appearance content to di-
verse textual prompts. Below, we outline the underlying
mechanism of CAMEL, including ➊ Motion Prompt Learn-
ing, and ➋ Causal Motion-enhanced Attention.
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Figure 2. The overall of CAusal Motion Enhancement for Lifting text-driven video editing, consisting of ➊ Motion Prompt Learning
and ➋ CAusal Motion-enhanced Attention (CAM-Attn). The synergistic interaction between the two components is pivotal in enhancing
motion coherence, concurrently preserving the generalization of appearance content across various textual prompts. During inference, the
learned motion prompts function as a motion condition, and work synergistically with the textual condition for the denoising process.

➊ Motion Prompt Learning. The objective is to sum-
marize motion concepts from the video template through
direct optimization. Specifically, we initiate a single un-
conditional embedding m to represent the motion pattern
we wish to learn. Subsequently, we use a small trainable
projection network τθ′ to project the motion concept into a
sequence of features τθ′ (m) ∈ RN×dr with length N . Note
that the dimensions dr of the learnable motion concepts are
the same as the dimensions of the pre-trained CLIP text
embeddings. The prompts are then purposefully integrated
into the latent representations of diffusion models, aiming
to enhance motion fidelity in the generative results (See ➋
CAusal Motion-enhanced attention). At each timestep, the
motion prompts are learned through direct optimization, by
minimizing Eq. (3) with additional motion prompts as con-
ditions. Please refer to Sec. 3.3 for more details.

➋ Causal Motion-enhanced Attention. The purpose of
CAusal Motion-enhanced Attention (CAM-Attn) is to en-
hance the motion coherence of latent representations while
extending the generalization of appearance content to cre-
ative textual scenarios. Drawing inspirations from the piv-
otal role of wavelet transform in decomposing video se-
quences into distinct frequency components – with low-
frequency components representing appearance content
and high-frequency components capturing motion patterns
– we first work on developing a novel filter specifically engi-
neered for CAM-Attn. Taking the simplest one-dimensional

Haar Wavelet Transform as an example, we decompose the
high-frequency components from the latent representations
φ
(
zℓ
)

along the temporal dimension, formulated below:

zℓH [:, n, :] =

1∑
k=0

φ
(
zℓ
)
[:, 2n+ k, :] · h(k), (6)

where h =
(√

2
2 ,−

√
2
2

)
and zℓH represents the decom-

posed high-frequency components representing motion pat-
terns (e.g., a man is skiing) within the video template.

Although the Haar wavelet transform is a prevalent tech-
nique in digital signal processing [4, 15, 38], the utility in
disentangling motion patterns from video sequences has its
limitations. As illustrated in Fig. 1 Top, the Haar transform
is inherently constrained by its two-element wide window,
where each high-frequency coefficient is limited to sum-
marize the difference within the internals of the two ele-
ments. Consequently, this limitation manifests in a scenario
where the disentangled high-frequency components might
be overly localized, hindering their capacity to accurately
capture motion patterns that encompass large changes and
extended time spans. Inspired by intuitive human percep-
tion, which typically involves considering motion patterns
from preceding moments to analyze current motion dynam-
ics, we develop a novel causal motion filter, denoted as
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CH,σ , to decompose high-frequency components:

CH,σ (x) [:, n, :] =

σ∑
k=0

x [:, n− k, :] · c(k) (7)

zℓH = CH,σ

(
φ
(
zℓ
))

(8)

where the parameter σ determines the window width of the
filter, and c = (c0, · · · , cσ) represent the set of learnable co-
efficients. Note that we set the window width σ to 11, which
provides a broader perceptual field than that provided by
the Haar wavelet. In contrast to traditional hand-designed
wavelets, the coefficients within the causal motion filter are
made optimizable. This makes the filter highly customiz-
able for text-driven video editing. In Eq. (7), the filter is de-
signed to function through a causal mechanism, closely mir-
roring human cognitive processes. This parallel is particu-
larly notable in its ability to analyze preceding motions as a
precursor to understanding current motion patterns. Such a
design facilitates the effective decoupling of high-frequency
components from the latent representations, thus accurately
capturing contextualized motion patterns.

Subsequently, the disentangled high-frequency compo-
nents are enhanced through a cross-attention mechanism
with learnable motion prompts as motion conditioning. The
specific formulation is as follows:

Qℓ
H = W̃ ℓ

Q · zℓH ,Kℓ
m = W̃ ℓ

K · τθ′ (m), V ℓ
m = W̃ ℓ

V · τθ′ (m)
(9)

ẑℓH = Attn(Qℓ
H ,Kℓ

m, V ℓ
m) (10)

where W̃ ℓ
Q, W̃

ℓ
K and W̃ ℓ

V are learnable projection matrices
dedicated to the l-th CAM-Attn layer. ẑℓH represents the
high-frequency components enhanced by the motion condi-
tions at the l-th layer. The integration of motion prompts
is beneficial to enhance the motion coherence of disentan-
gled high-frequency components, which function under a
paradigm analogous to the textual condition.

Afterward, we reintegrate the enhanced high-frequency
components representing contextualized motion patterns,
with the complementary low-frequency components that
represent appearance content. This integration generates
reweighted latent representations, formulated below:

CAM-Attn := ẑℓH + CL,σ

(
φ
(
zℓ
))

(11)

where CL,σ (·) represents the low-pass filter, which func-
tions in a manner counter to that of CH,σ (·). To be specific,
CL,σ (·) can be implemented simply by subtracting the high-
frequency components from the intermediate representa-
tions φ

(
zℓ
)
. This decoupling-then-reweighting mechanism

is conducive to enhancing the motion coherence of gener-
ated results, simultaneously preserving the generalization
of appearance content to various creative textual prompts.

3.3. Fine-Tuning and Inference

Fine-tuning. During fine-tuning on the video template, we
keep the parameters W ℓ

K and W ℓ
V in the attention layers of

pre-trained T2I diffusion models fixed, and only optimize
W ℓ

Q and our proposed CAMEL module. Overall, the opti-
mization objective can be formulated as follows:

L = Ez0,y,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (zt, t, τθ(y), τθ′ (m))∥22

]
(12)

Inference. During inference, we incorporate structure guid-
ance from the video template. To be specific, DDIM inver-
sion [28] is employed to obtain a latent noise of the source
video. We also incorporate classifier-free guidance [10] to
enhance the video-text alignment of generated results:

ϵ̂θ (zt, t, τθ(y), τθ′ (m)) = w · ϵθ (zt, t, τθ(y), τθ′ (m))

+ (1− w) · ϵθ (zt, t, τθ′ (m))
(13)

where w denotes the guidance scale that adjusts the align-
ment with both textual and motion conditions. Our exper-
iments in Sec. 4 demonstrate that CAMEL performs fa-
vorably in accurately transferring the motion patterns from
the video templates to the generated results, simultaneously
maintaining the generalization of appearance content to di-
verse creative scenarios.

4. Experiments
4.1. Experimental Settings

Dataset. We conducted comparative experiments on 53
videos from the LOVEU-TGVE competition [34], of which
16 videos are from DAVIS [21], denoted as TGVE-DAVIS,
and the other 37 videos are from Videvo, denoted as TGVE-
Videvo. Following the settings of the competition, each
video is uniformly sampled at 32 frames, with a resolution
of 480× 480. Furthermore, each video is associated with a
ground-truth caption and 4 creative text prompts for object
editing, background changes, style transfers, and multiple
changes, respectively.
Implementation Details. We inflate the pre-trained text-to-
image diffusion model Stable Diffusion v1.4, and integrate
our proposed CAMEL into the UNet. The projection net-
work τθ′ we used in this study consists of a linear layer and
a Layer Normalization. The window width σ in Eq. (7)
is set to 11 and the length of learnable motion prompts is
set to 32. We finetune our method for 500 timesteps on a
learning rate 3×10−5 and a batch size 1. During inference,
we implement 50 timesteps for DDIM inversion and DDIM
sampling [28] with classifier-free guidance [10]. All exper-
iments are implemented on a single A100 GPU.

https : / / huggingface . co / CompVis / stable -
diffusion-v1-4
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Edited Prompt: “A car drifts on a snowy road.”

Source Prompt: “A car drifts on a racetrack”

Edited Prompt: “Trucks drive on a racetrack, autumn, fall 
colors.”

Source Prompt: “Trucks drive on a racetrack.”

Video template

CAMEL

Tune-A-Video

Video template

Tune-A-Video

CAMEL

ControlVideoControlVideo

(a)  Effectiveness in Improving  Motion Coherence (b)  Effectiveness in Improving  Content Consistency 

Figure 3. Qualitative comparisons of evaluated methods in improving (a) motion coherence and (b) content consistency.

Method
Video-Text Alignment

Object Background Style Multiple

Tune-A-Video [33] 35.02 34.98 33.31 32.76
Text2Video-Zero [14] 32.69 30.93 32.03 31.58

ControlVideo [14] 30.98 30.96 30.66 30.35

CAMEL 36.52 36.60 34.08 33.92

(a) Evaluated on the TGVE-DAVIS dataset.

Method
Video-Text Alignment

Object Background Style Multiple

Tune-A-Video [33] 35.49 36.15 34.59 35.02
Text2Video-Zero [14] 31.71 31.47 32.11 31.26

ControlVideo [14] 32.91 31.84 31.79 32.79

CAMEL 37.03 37.54 35.26 37.36

(b) Evaluated on the TGVE-Videvo dataset.

Table 1. Quantitative comparisons in video-text alignment with state-of-the-art approaches. The best results are highlighted in bold.

Evaluation Metrics. To evaluate video-text alignment, we
adopt UMTScore [19], which is proven to exhibit a signif-
icantly higher correlation with human standards than CLIP
Score [9]. More specifically, UMTScore replaces the CLIP
model [23] with a more advanced vision-language model
UMT [17], which is pre-trained on large-scale video-text
data [1] and further finetuned on MSR-VTT [36]. In our
assessment of frame consistency, we follow the method
applied in Tune-A-Video [33], which computes CLIP [23]
image embeddings on all frames of generated videos. Sub-
sequently, we report the average cosine similarity between
all pairs of video frames.

4.2. Qualitative Results

Fig. 3 presents a detailed visual comparison of the CAMEL
with the state-of-the-art approaches, especially focusing on
the effectiveness in improving motion coherence and con-
tent consistency of the generated results. In Fig. 3 (a), al-

though Tune-A-Video [33] and ControlVideo [41] can gen-
erate videos that capture the concept of “snowy road”, both
of them fail to capture the crucial motion patterns “drift”
from the original video template. Additionally, Tune-A-
Video loses the key subject “car” towards the end of the
generated result. In contrast to existing methods, our pro-
posed CAMEL excels in not only accurately capturing mo-
tion patterns but also in seamlessly transferring these pat-
terns across a variety of creative textual scenarios. In Fig. 3
(b), although Tune-A-Video captures the “driving” action in
the original video, it has shortcomings in maintaining visual
consistency between frames. This flaw is evident through
the sudden appearance of other trucks and the apparent dif-
ference in truck shapes, reducing the overall visual consis-
tency. On the contrary, our proposed CAMEL demonstrates
the capacity to effectively preserve both subjects and motion
patterns from the original video, and transfer these elements
to a different style, such as “autumn, fall colors”.
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Method
Video-Text Alignment

Object Background Style Multiple

Tune-A-Video [33] 90.73 92.13 91.0 91.32
Text2Video-Zero [14] 92.19 92.12 92.24 92.58

ControlVideo [41] 90.78 89.82 91.71 91.36

CAMEL 93.35 95.16 93.87 93.46

(a) Evaluated on the TGVE-DAVIS dataset.

Method
Video-Text Alignment

Object Background Style Multiple

Tune-A-Video [33] 94.86 95.35 95.40 94.98
Text2Video-Zero [14] 96.43 97.06 96.69 96.7

ControlVideo [41] 96.47 96.07 96.77 96.71

CAMEL 97.10 97.56 97.55 97.02

(b) Evaluated on the TGVE-Videvo dataset.

Table 2. Quantitative comparisons in frame consistency with state-of-the-art approaches. The best results are highlighted in bold.

Index w/ Haar Wavelet w/ Causal Motion Filter w/ Motion Prompt
TGVE-D

Object Background Style Multiple

1 ✓ × × 35.03 34.95 33.24 32.91
2 × ✓ × 36.03 35.98 33.78 33.54
3 × × ✓ 35.31 35.24 33.56 33.14
4 × ✓ ✓ 36.52 36.60 34.08 33.92

Table 3. Ablation study over TGVE-DAVIS dataset. Video-text alignment (UMTScore) is reported.

4.3. Quantitative Comparisons

We compare our method with mainstream text-driven
video editing approaches: Tune-A-Video [33], Text2Video-
Zero [14], and ControlVideo [41]. For Tune-A-Video, we
fine-tune the model on the given video template and use
the DDIM sampler with classifier-free guidance during in-
ference. In Text2Video-Zero and ControlVideo, we utilize
edge maps as the structural conditions. Tab. 1 and Tab. 2
show the quantitative comparison results regarding video-
text alignment and frame consistency. We can observe
that CAMEL achieves consistent improvements on both
datasets. For video-text alignment on the TGVE-DAVIS
dataset, our CAMEL outperforms the competing approach,
Tune-A-Video, by 1.5%/1.62%/0.77%/1.16% UMTScore
on the tasks of object editing, background changes, style
transfer, and multiple editing, respectively. With regard
to frame consistency, our CAMEL also achieves consistent
improvements. The results indicate that each core design
of CAMEL works synergistically to elevate both the textual
faithfulness and content consistency of generated videos.

4.4. Abalation Study

We conduct ablation studies to evaluate the core designs of
CAMEL. The quantitative results are shown in Tab. 3 and
a representative visualization can be seen in Fig. 4.

Effectiveness of Motion Prompt Learning. We im-
plement the “w/o motion prompt” variant by replacing the
cross-attention mechanism in Eq. (10) with the vanilla self-
attention. This alteration causes the high-frequency compo-
nents to interact solely with themselves. From index-2 and
index-4, we observe performance degradation in video-text

alignment under the setting of “w/o motion prompt”. Addi-
tionally, the visualization comparison delineated in Fig. 4
(b) and (d) further shows the pivotal significance of motion
prompts in enhancing the overall motion coherence of gen-
erated videos.

Effectiveness of Causal Motion Filter. From index-
3 and index-4, the implementation of “w/o causal motion
filter” involves a process where the intermediate represen-
tations engage directly with the learned motion prompts.
This results in the coupling of high- and low-frequency
components. From index-3 and index-4, we observe that
UMTScore drops significantly on the task of object editing,
and background changes. The visual comparison in Fig. 4
(c) and (d) further provides clear evidence that the coupling
method can lead to significant limitations: it either causes
the models to fail in accurately capturing motion patterns
or results in a loss of content generalization when adapting
to various textual prompts. In contrast, our CAM-Attn is
beneficial to enhance motion coherence, while maintaining
content generalization to creative textual prompts.

We additionally compare the decomposition of high-
frequency components using our dedicated causal motion
filter and the hand-crafted Haar wavelet. From index-1
and index-2, UMTScore drops significantly when the Haar
wavelet is applied. The corresponding visualization results,
presented in Fig. 4 (a), also illustrate that a too-narrow
window width may perform poorly in maintaining content
consistency along large motion changes. Notably, despite
certain limitations, it still achieves comparable performance
compared to mainstream methods.

9085



“A man is skiing”

“Spider man is skiing on the beach, cartoon style”

Video template

(d) w/ Causal Motion Filter and w/ Motion Prompt

(c) w/ Motion Prompt

(b) w/ Causal Motion Filter

(a) w/ Haar Wavelet 

Figure 4. Visualization of ablation results.

4.5. Effectiveness in Multi-object Editing

We further demonstrate the superior performance of
CAMEL when the edited videos contain multiple objects.
In Fig. 5, compared to Tune-A-Video which exhibits
serious flickering issues in scenes with multiple objects,
e.g., several people, monster trucks, and two quadrotor
drones, CAMEL maintains a high degree of visual con-
sistency. Although recent research [33] has highlighted
limitations of pre-trained T2I models in multi-object edit-
ing, our method effectively overcomes this issue through the
synergistic application of CAM-Attn and the causal motion
filter. This combination facilitates an effective decoupling-
then-reweighting mechanism between motion patterns and
appearance content within the filter window. In compari-
son to global temporal self-attention, this causal interaction
effectively enhances the motion coherence of disentangled
high-frequency components, while preserving the general-

Monster trucks race on a dirt track, autumn, fall colors

Several people ride kayaks in a river, aerial view

CAMEL

Tune-A-Video

CAMEL

Tune-A-Video

Two quadrotor drones swim in the blue ocean on a coral reef.

CAMEL

Tune-A-Video

Figure 5. Illustration of our method’s superior performance in gen-
erating videos that feature multiple objects.

ization of appearance content across multiple objects.

5. Conclusion

In this work, we developed Causal Motion Enhancement for
Lifting text-driven video editing. First, we introduce learn-
able motion prompts to summarize motion concepts from
video templates. Inspired by the pivotal role of wavelet
transform in dissecting video sequences, we propose a
CAusal Motion-enhanced Attention mechanism (CAM-
Attn) in conjunction with a novel causal motion filter. This
synergy between the two components facilitates enhancing
motion coherence, concurrently preserving the generaliza-
tion of appearance content across various textual scenar-
ios. Extensive experimental results show its superior per-
formance on text-to-video editing benchmarks.
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