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Abstract

Knowledge distillation (KD) possesses immense poten-
tial to accelerate the deep neural networks (DNNs) for
LiDAR-based 3D detection. However, in most of prevail-
ing approaches, the suboptimal teacher models and insuf-
ficient student architecture investigations limit the perfor-
mance gains. To address these issues, we propose a simple
vet effective Category-aware Knowledge Distillation and
Pruning (CaKDP) framework for compressing 3D detec-
tors. Firstly, CaKDP transfers the knowledge of two-stage
detector to one-stage student one, mitigating the impact of
inadequate teacher models. To bridge the gap between the
heterogeneous detectors, we investigate their differences,
and then introduce the student-motivated category-aware
KD to align the category prediction between distillation
pairs. Secondly, we propose a category-aware pruning
scheme to obtain the customizable architecture of compact
student model. The method calculates the category pre-
diction gap before and after removing each filter to eval-
uate the importance of filters, and retains the important fil-
ters. Finally, to further improve the student performance,
a modified I0U-aware refinement module with negligible
computations is leveraged to remove the redundant false
positive predictions. Experiments demonstrate that CaKDP
achieves the compact detector with high performance. For
example, on WOD, CaKDP accelerates CenterPoint by half
while boosting L2 mAPH by 1.61%. The code is available
at https://github.com/zhnxjtu/CaKDP.

1. Introduction

LiDAR-based 3D object detection (LiDAR-3DOD) is one
of the effective ways of scene understanding, and it is cru-
cial for autonomous driving [11, 51, 53], VR [23], and
robotics [34], et al. Recently, the release of several high-
quality point cloud datasets [1, 12, 43] promote the applica-
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tion of DNNs on LiDAR-3DOD. However, the cumbersome
parameters and computations hinder the practical deploy-
ment of these DNNs. Hence, effective model compression
schemes should be investigated for detector acceleration.

Knowledge distillation (KD) [4, 16, 33, 52, 62] can be
used for model compression. It applies a compact stu-
dent model to capture the knowledge of large-scale teacher
model, and then the student model is used for inferring like
the teacher model. Besides, network pruning [14, 27, 44,
63] is also one of the useful compression techniques. It re-
moves the redundant connections or structures to get the
lightweight model. These compression methods are well-
explored on 2D vision [9, 16, 31, 33], but often yield unsat-
isfactory gains on 3D detection, due to the distinct informa-
tion recorded in different types of raw data [7, 60].

Recently, a few methods start to explore the KD [7, 50,
56, 60] and pruning techniques [20, 26] for compression on
3D detection task. However, several methods [7, 50, 60]
face challenges that can lead to inadequate results: (1)
Leaking the application of potent teacher models. To
ensure the consistency of transferred information, most of
previous works [7, 50, 60] conduct KD between the ho-
mogeneous distillation pairs. However, when achieving a
one-stage student detector, employing another detector with
the same architecture but wider width as the teacher hin-
ders student’s improvement, due to the capacity limitation
of teacher. (2) Leaking the exploration for lightweight
student architectures. Different from KD on 2D vision
tasks [4, 9, 22, 47, 62], there are few off-the-shelf student
networks in 3D detection. Previous methods [7, 50, 60] ob-
tain the student network by reducing the width of each layer
or backbone with the same ratio. However, the number of
indispensable filters for each layer is different, thus these
schemes neglect to search the optimal compact architecture,
leading to inferior student. (3) Leaking the removal of stu-
dent’s prediction errors. After distillation, the student de-
tectors still generate a large number of false positive (FP)
predictions, reducing the detection precision.
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To address these issues, in this paper, we propose a
simple yet effective Category-aware Knowledge Distillation
and Pruning (CaKDP) framework. CaKDP mainly consists
of the following three components:

Firstly, to prevent imprecise student detectors caused by
distilling the knowledge of capacity-limited teacher detec-
tors, our method conducts KD between heterogeneous de-
tectors. By comparing the output of one- and two-stage de-
tectors, a notable gap is observed in the category predic-
tions (Cate-Preds). Hence, we propose student-motivated
category-aware KD (SKD) to achieve precise one-stage stu-
dent detectors by bridging the gap of Cate-Pred of distilla-
tion pairs. In each epoch, our SKD utilizes non-maximum
suppression (NMS) to select Cate-Preds of representative
samples (RSs) from the student detector, which serve as
the student’s knowledge. Besides, we employ the positions
of these RSs as queries to retrieve corresponding features
in the teacher detector, and then the corresponding second
stage Cate-Preds of these selected features are utilized as
teacher’s knowledge (as shown in Fig. 3(b)).

Furthermore, to search for the optimal lightweight archi-
tecture of the student model and make student customizable,
we introduce a category-aware pruning scheme. Inspired
by [19, 28, 48, 64] and our observations (Section 3.2), the
Cate-Pred plays an important role in 3D detection. Hence,
we propose to measure the importance of each filter by the
Cate-Pred gap before and after pruning, and selectively re-
move unimportant filters to prune the detector.

Finally, we remove FP samples in prediction results to
enhance the detection precision. Since FP samples ex-
hibit smaller intersection over union (IOU) with the ground
truth bounding boxes, we leverage an IOU head to predict
IOU values and subsequently eliminate predicted bounding
boxes with smaller IOU scores. Our approach is different
from previous methods [19, 48, 64], which utilize the IOU
head for category correction (as shown in Fig. 1(b)).

Our contributions can be summarized as: (1) We pro-
pose category-aware KD to conduct distillation between
heterogeneous detectors. Our method can achieve the one-
stage detectors with higher performance. (2) We introduce
category-aware architecture pruning scheme to the 3D de-
tector compression. Our method simultaneously measures
different types of filters to obtain the customizable student
model. (3) We propose modified IOU-aware refinement
module. It removes redundant FP samples to further en-
sure the precision of detectors. (4) Extensive experiments
on KITTI [12] and Waymo Open Dataset (WOD) [43] il-
lustrate that our CaKDP can achieve faster and more accu-
rate detectors. For example, on KITTI, CaKDP reduces the
parameters of SECOND by 3.1x while achieving a 5.05%
improvement in moderate mAP@R40; Besides, on WOD-
mini, it halves the computational overhead for CenterPoint
while boosting L2 mAPH by 1.60%.
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(b) Differences in IOU-aware refining.

Figure 1. Differences between our approach and previous meth-
ods. In (a), [60] conducts KD at @ and @. [7, 50] conduct KD at
@ and ®. Compared to these previous KD schemes, our method
transfers the Cate-Preds of the second stage of teacher to one-stage
student (detailed in Fig. 3), rather than the aligned knowledge at
the first stage. In (b), [19, 48, 64] leverage scheme @.

2. Related Work

2.1. LiDAR-based 3D Object Detection

LiDAR-3DOD aims to detect the objects by analyzing point
cloud data. Recently, plenty of DNNs are introduced for
LiDAR-3DOD, which can be clustered into two types:

One-stage detectors for LIDAR-3DOD. One-stage 3D
detectors are faster with less memory footprint. Some point-
based one-stage detectors [35, 36] directly extract the fea-
tures from raw points for detection. In contrast, numerous
voxel-based methods [0, 49, 66] execute detection by ana-
lyzing the voxels generated by point clouds. VoxelNet [66]
is the pioneer of this kind of work. To accelerate VoxelNet,
abundant detectors, such as SECOND [49], PointPillar [25],
VoxelNeXt [6] and CenterPoint [54] are further proposed.

Two-stage detectors for LiDAR-3DOD. To achieve
more accurate detection, two-stage 3D detectors [10, 38—
41] introduce a region of interest (ROI) module to capture
the shallower features for prediction refinement. For exam-
ple, Point-RCNN [38] introduces the SA module to achieve
accurate results. PV-RCNN [39] refines the predictions by
aggregating multi-scale features. Moreover, Voxel-RCNN
[10] proposes voxel ROI pooling to correct the predictions.

In this paper, we mainly focus on achieving efficient and
accurate one-stage voxel-based detectors, because the sec-
ond stage of detectors brings more memory and computa-
tion usage, and point-based methods exhibit more irregular
memory access patterns and are general less efficient [26].
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Figure 2. Visualization of predictions of detectors. x- and y-axis represent the predicted IOU and category prediction, respectively.
SECOND [49] and CenterPoint [54] are one-stage detectors. Voxel-RCNN [10], PV-RCNN [39] and PartA2 [40] are two-stage detectors.
The proportions of predictions above the red line and between the red and blue lines are marked on the red and blue lines, respectively.

2.2. Knowledge Distillation

Knowledge Distillation (KD) can be leveraged for model
compression by transferring the knowledge from large-scale
teacher model to the compact student one. Dozens of KD
schemes achieve consistent effectiveness in 2D vision [2—
4,9, 16, 24, 33, 37, 52, 55, 62]. However, since the point
clouds are sparse and irregular, directly conducting KD on
3D detection by image-based KD schemes usually leads
to inadequate performance [60]. Recently, a few methods
initially explore dedicated KD for detector acceleration on
LiDAR-3DOD [8, 50, 60, 65]. For example, Yang et al. [50]
propose pivotal position logit KD to compress 3D detectors.

While these approaches [7, 50, 60, 65] are applicable for
3D detector compression, most of them conduct KD on ho-
mogeneous distillation pairs, and neglect to delve into the
gap between heterogeneous detectors (as shown in Fig. 1).
Although a few methods [5, 32] in 2D vision distill between
heterogeneous models, they introduce additional special-
ized modules in inference phase [32], or involve complex
feature decomposition [5]. Additionally, in LIDAR-3DOD,
previous KD methods [7, 50, 60] typically predefine the
same retaining width of each layer to get student models
in a coarse-grained fashion, which ignores the fine-grained
exploration of architectures.

2.3. Architecture Pruning

Structured pruning [17, 27, 30, 31, 42, 61] is another ef-
fective technique for model compression, it removes the re-
dundant structures to obtain the compact models, without
generating the sparse and irregular pruned weights [13, 14].
Li et al. [27] utilize L1 norm to evaluate and prune the fil-
ters. Besides, a few methods [18, 31, 57, 59] leverage the
intermediate layer feature and its transformation to measure
the importance of filters for pruning.

The above methods have shown promising results in 2D
classification, and a few recent researches [20, 26] have
delved into pruning for 3D vision. Lee et al. [26] propose
a parameter pruning scheme based on the spatial point dis-
tribution. This method leads to irregular weights, and can
only compress 3D convolutions. Huang et al. [20] propose
the channel pruning plug-in that only compress the point-
based models. In this paper, we introduce an effective struc-
tured pruning scheme for 3D detector compression, which

can prune both 2D and 3D backbones simultaneously.

3. Methodology

3.1. Preliminary

We first briefly introduce the notations in our method. Most
of one-stage voxel-based detectors [49, 54] consist of L'-
layer 3D backbone, L2-layer 2D backbone and L3-layer
detection head. W = {Wy,..., W} is utilized to repre-
sent the convolutions (filters) in the model, where W; =
{Wi 1,...,w; n, } represents the i-th layer with NV; convo-
lutions, L = L' 4+ L? 4+ L3. Given a point cloud dataset
{z;li=1,.., NP} with NPC frames. After voxeliza-
tion, 3D backbone and 2D backbone are leveraged to ex-
tract features sequentially, and then the features are input to
detection head to generate the category and location predic-
tions. We leverage p; € RN “XC to represent the category
prediction of the i-th frame, where N* and C' represent the
number of anchors (for anchor-based methods) and cate-
gories, respectively. For two-stage detectors [39, 41], an
additional ROI head is introduced to refine the predictions
of the first stage. pt € RV xC represents the category pre-
diction of the second stage, where N represents the num-
ber of ROIs. N* <« N?¥, as ROIs are partial high-quality
predictions selected through NMS from all anchors.

3.2. Category-aware Knowledge Distillation

We first introduce category-aware KD in our framework to
improve the performance of compact one-stage detectors.
The gap between heterogeneous detectors. To build a
bridge for KD, we begin by investigating the gaps between
heterogeneous detectors. In [19], the classification and re-
gression heads are added to a bare one-stage network in turn
to illustrate the second stage can significantly affect the cat-
egory prediction (Cate-Pred). Inspired by this, we further
visualize the prediction results of heterogeneous detectors.
As the location prediction (Loc-Pred) involves multiple di-
mensions, we represent it by IOU between the prediction
result and the nearest ground truth bounding box (Bbox),
which is referred as predicted IOU. Fig. 2 illustrates the re-
markable gaps in Cate-Preds between heterogeneous detec-
tors. Above the red line, the two-stage detector generates
more predictions, while the one-stage detector shows dense
predictions between the red and blue lines compared to the
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Figure 3. TKD vs. SKD. The backbone is omitted for simplicity.
Red dashed line represents the KD loss, blue dashed line repre-
sents the pipeline to select the knowledge for distillation.

two-stage detector. This suggests that the two-stage detector
achieves higher category confidence. Moreover, the Loc-
Preds of heterogeneous detectors are similar.

Category-aware KD (CaKD). According to Fig. 2, to
make one-stage detector get accurate predictions, we distill
the Cate-Preds to narrow the gap between heterogeneous
detectors. However, the Cate-Preds from one-stage detec-
tors indicate the confidence of dense anchors, while those
from two-stage detectors pertain to sparse sampled ROIs.
Consequently, the crucial challenge lies in how to align the
Cate-Preds between heterogeneous detectors.

Teacher-motivated KD. To tackle this problem, we can
use the positions of ROIs in the two-stage teacher detec-
tor as queries to select the Cate-Preds of anchors at corre-
sponding positions in the one-stage detector. Subsequently,
the Cate-Preds form heterogeneous detectors are aligned
for KD. We refer to this scheme as teacher-motivated KD
(TKD), as shown in Fig. 3(a). However, this scheme is
suboptimal, because the ROIs in the teacher network re-
main unchanged across different epochs, and thus the fixed-
position Cate-Preds in the student detector are utilized to
capture the teacher’s knowledge in the training phase. Be-
sides, the knowledge derived from teachers’ ROI predic-
tions may not fully meet the requirements of students.

Student-motivated KD. To flexibly capture knowledge
from the teacher model, as shown in Fig. 3(b), we propose
an adaptive student-motivated KD (SKD). In SKD, we first
use NMS to select the Cate-Preds of representative samples
(named to distinguish from ROIs, and abbreviated as RSs)
from the student network. After that, we utilize the posi-
tions of these RSs to find the anchors (from the first stage
of teacher) as teacher’s ROIs, and the Cate-Preds of these
ROIs from the second stage of teacher are used to supervise
the selected student predictions. We formulate SKD as:

NPC 1 NiRS
~ t
Loaxn =Y was O (P —Pz!JS) M
i=1 T =1

where N represents the number of selected RSs in the
i-th frame. p; ; represents the Cate-Pred of the j-th selected

RS from one-stage student detector, and pflj» represents the

corresponding Cate-Pred from two-stage teacher detector.

Compared with other KD methods for LIDAR-3DOD
[7, 50, 60], CaKD fully investigates the second stage knowl-
edge for KD, without requiring feature consistency and
avoiding the complexities of feature transfer. Moreover,
CaKD elegantly tackles the foreground-background imbal-
ance problem [9, 47, 50] in KD for object detection tasks,
because it focuses on transferring knowledge related to the
object areas through RS selection.

Furthermore, we attempt to elucidate the effectiveness
of Eq. (1) from an alternative perspective. Eq. (1) can
be viewed as a more potent localization quality estimation
(LQE) [29, 58]. Unlike previous methods that use IOU or
centerness information to rescore Cate-Preds [19, 21, 46,
48, 64], the LQE information in Eq. (1) is derived from
the more robust two-stage teacher networks. Moreover, the
evaluation information in Eq. (1) is also Cate-Pred (from
teachers), which does not have semantic gaps.

3.3. Category-aware Pruning

A well-designed architecture is also crucial for achieving
the high-performance student detectors, hence we introduce
category-aware pruning method in our framework for stu-
dent architecture exploration.

Previous KD methods for 2D detection use mature stu-
dent networks (e.g., ResNet-18 [15]). However, there
are few predefined students in LIDAR-3DOD. A few KD
schemes [7, 50, 60] get the student network by reducing the
width of each layer with the same ratio, which can be ex-
pressed as:

3 L* N
)\min ZZZ)\k kM(Wk k)
ikjk k=1ik=1jk=1 (2)
A Nk ik
s.t. Z”—# =nF,if=1,.., L k=1,2,3.
Nik

where A is an indicator. If the filter needs to be retained,
then A = 0, otherwise A = 1. M represents the pruning
metric for the filter, the larger it is, the more important the
filter is, and the filter should be retained. L* represents the
number of layers of different modules. N, represents the
number of filers. n* represents the pruning ratio of different
modules. Eq. (2) exposes three issues of previous schemes
[7, 50, 60]: (1) Each module is narrowed independently.
However, all modules should be evaluated and pruned si-
multaneously, as they collaboratively generate predictions.
(2) The same pruning ratio is used for each layer. However,
the optimal architectures need to be explored, due to dif-
ferent number of critical filters are contained in each layer.
(3) These methods reduce the width using empirical knowl-
edge (i.e., M is a constant) and train from scratch to create a
compact detector, leading the compact detector to overlook
the crucial parameters of original pretrained detector.
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To address these problems, we propose category-aware
pruning (CaPr). We first reformulate Eq. (2) to:

L N;

ZZ)‘Z M(wi ;)

)\”
i=1 j=1 (3)

<zf_lz;:xz-,j> /5 e

In Eq. (3), filters from all modules, including 3D and 2D
convolutions, are measured and pruned concurrently. This
implies that the number of filters in each layer is determined
by filters” importance ranking across all convolutions. Sub-
sequently, we introduce a metric capable of evaluating both
2D and 3D convolutions simultaneously.

Measuring features for filter evaluation and pruning is an
effective paradigm, as features encapsulate crucial informa-
tion from both the filter and input data [20, 31, 57, 59]. The
Cate-Pred is the vital feature of detectors (as stated in Sec-
tion 3.2), making it an ideal information for filter evaluation.
Considering that, regardless of the convolution type, a filter
plays an important role in the network as long as it helps en-
sure accurate Cate-Preds. Consequently, we formulate the
Cate-Pred gap before and after the removal of each filter to
demonstrate the importance of the corresponding filter:

NVAL 1
n=1

where N4 and NV AL represent the number of anchors and
the number of frames in validation set. /v,  p;, represents
the Cate-Pred of model after pruning the filter w; ;. If
M(w; ;) is larger, then w; ; plays a crucial role for the
Cate-Pred, making it pivotal in the model, and thus it should
be retained. We substitute Eq. (4) into Eq. (3):

NVAL 1
n Y3 Y N P = i)
=1 j=1 n=1 (5)

<zi_lz;:m> J5 s

Obviously, Eq. (5) can be minimized by pruning
25:1 Zj\[:l Ai,j filters with the lowest rankings in terms
of Cate-Pred gaps. We summarize the pruning pipeline as:

Pruning pipeline. As shown in Fig. 4: (1) Start with
the original pretrained detector containing all its filters W,
and its Cate-pred is p; (Step ‘@’); (2) Then, individually
remove each filter w; ;, and perform inference on the verifi-
cation set to get the corresponding Cate-Pred /v, . py, (Step
‘@’); (3) Calculate the metric in Eq. (4) for each filter (Step
‘@’); (4) Sort the metric values in ascending order, and re-
move filters corresponding to the top 7 metric values (Step
‘@’); (5) Conduct Fine-tuning on the pruned detector to
restore the performance and get the customizable compact
student model (Step ‘®”).
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Figure 4. Pipeline of category-aware pruning.

(a) Predict w/o IOU.

(b) Predict with IOU.

Figure 5. Visualization of predictions before and after IOU-aware
refinement. Red boxes represent the ground truth Bboxes, while
the remaining boxes represent the predicted Bboxes. The predicted
1OUs for objects in (b) are 0.75 (left) and 0.73 (right), respectively.

3.4. Modified IOU-aware Refinement

Even after distillation and careful investigation of the archi-
tecture, the student network still produces plenty of false
positive (FP) samples, which impacts the detector accuracy
(as shown in Fig. 5(a)). To address this issue, in our frame-
work, we leverage an additional IOU head to help remove
redundant FP samples (as depicted in Fig. 1(b)).

In training phase, the loss function for training IOU
head can be expressed as:

NPC ¢
1 - 10U 10U .label
Liov =) WZ plGV —plgUiet)® (6)

i=1 7

10U label

where p/9Y and p/§ represent predicted IOU and

10U label, respectlvely. NZ-I oU+ represents the number of
samples with p/§U-1*b¢! > 0. N represents the number of
elements in IOU head.

In inference phase, we apply predicted IOU to generate
mask M/ to remove FP samples (as shown in Fig. 1(b)).
If p/ QU > 8, then M/QU = 1, and the corresponding Cate-
Pred participates in NMS If p/9Y < 6, then M/QV =
and the Cate-Pred does not partlclpate in NMS, where disa
small threshold. The final Cate-Pred used for NMS can be
expressed as: pxi = MIOU . p2.

Our method is orthogonal to previous IOU-aware re-
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| Model RR KD Car Ped. Cyc. Para. FLOPs mAP

‘Scheme Config. Car Ped. Cyc. Para. FLOPs mAP

Stu | SECOND [49] 1.00 81.33 5295 65.89 53 80.7 66.72
CenterPoint [54]  1.00 78.50 51.85 67.78 5.8 96.5 66.04

Tea‘Voxel—RCNN[lOJ 1.00 84.97 57.74 73.73 11.0 81.6 72.15
Stu | SECOND [49] 1.00 83.27 60.88 75.13 53  81.0 73.09

Stu‘SECONDH‘)J 1.00  81.33 5295 6589 5.3 80.7 66.72
Tea‘Voxel—RCNN[l()] 1.00 8497 57.75 73773 11.0 81.6 72.15

0.75 83.09 6291 7348 33 542 73.16
0.50 82.72 60.44 72.15 15 302 71.77
0.30 79.18 53.78 66.61 0.6 17.7 66.52
CenterPoint [54]  1.00 82.85 60.84 73.73 5.8 979 7248
0.75 82.72 59.59 73.51 35 673 7194

0.50
0.35

Tea | PV-RCNN [39] 1.00
Stu | SECOND [49] 1.00

80.40 60.65 72.18 1.8 395 71.07
73.98 58.65 66.73 1.1 313 6645

8425 57.67 7233 13.1 93.1 71.42
83.01 58.61 73.82 53 810 7181

SRCUNN VNSNS (X SCNSNS NSNS % [RSSS(SSSNS[x|=xx

0.75 82.69 59.92 71.99 33 542 71.53

0.50 82.40 60.12 71.17 1.5 302 71.23

0.30 79.46 5296 6586 0.6 17.7 66.10

CenterPoint [54]  1.00 83.40 57.56 70.89 5.8 979 70.62
0.75 83.32 58.10 72.82 3.5 673 7141

0.50 80.53 59.11 70.25 1.8 395 69.96

0.35 74.06 58.12 67.08 1.1 313 6642

Tea‘PaItAZ [40] 1.00 82.22 60.42 72.65 63.6 933 71.77
Stu | SECOND [49] 1.00 82.66 60.08 73.51 53 81.0 72.08
0.75 82.85 60.51 73.86 3.3 542 7241

0.50 82.71 57.62 72.10 1.5 302 7081

0.30 77.18 5338 66.51 0.6 17.7 65.69

CenterPoint [54]  1.00 8299 58.12 72.07 58 979 71.06
0.75 83.05 58.12 7329 35 673 7149

0.50 80.14 59.28 72.24 1.8 395 70.55

0.35 74.85 57.73 65.15 1.1 313 6591

Table 1. Results of CaKDP on KITTI dataset. ‘RR’ represents
retaining ratio. The moderate AP@R40 and moderate mAP@QR40
are reported. The best result is marked in blue.

finement methods [19, 48, 64]: (1) Our method utilizes
predicted IOU to remove redundant FP samples (‘@ in
Fig. 1(b)), rather than rescoring the entire Cate-Preds (‘@’
in Fig. 1(b)). (2) Our method leverages all samples for train-
ing, whereas previous methods [19, 48, 64] only train with
samples having IOU greater than 0.

3.5. Final Loss of CaKDP Framework

The compression pipeline of CaKDP framework is that we
first prune the student detector by CaPr (Section 3.3), and
then restore the performance of pruned student detector by
training with task loss, CaKD loss (Eq. (1)) and IOU-aware
loss (Eq. (6)). The final loss can be formulated as:

Lcaxpp = Lrask + - Loaxp + 8- Lrov  (7)

where Lr1,s; represents the vanilla loss, involving clas-
sification loss and regression loss, for training detectors
[6, 10, 54]. « and B represent the factors to modulate the
influence of KD loss and IOU-aware loss.

4. Experiment

4.1. Experiment Setting

Datasets and Networks. We leverage various distillation
pairs on different datasets to verify our proposed method.

For KITTI dataset [12], several two-stage detectors, includ-
ing Voxel-RCNN [10], PV-RCNN [39] and PartA?2 with the

Stu | + VanillaKD [16]  0.75 81.04 53.22 63.62 3.0 457 6596
+ GID [9] 0.75 81.61 53.04 67.62 3.0 457 6743
+ PD [60] 0.75 81.34 50.64 66.42 3.0 457 66.13
+ SparseKD [50] 0.75 81.18 51.51 67.66 3.0 457 66.78
+ CaKDP 050 82.72 60.44 72.15 1.5 302 7177
Tea ‘ PV-RCNN [39] 1.00 8425 57.67 7233 13.1 93.1 7142
Stu | + VanillaKD [16]  0.75 81.60 50.19 6430 3.0 457 65.36
+ GID [9] 0.75 81.71 51.78 6451 3.0 457 66.00
+ PD [60] 0.75 81.64 47.81 67.19 3.0 457 6555
+ SparseKD [50] 0.75 81.64 50.76 66.76 3.0 457 66.39
+ CaKDP 0.50 82.40 60.12 71.17 1.5 302 71.23
Tea ‘ PartA2 [40] 1.00 8222 6042 72.65 636 933 7177
Stu | + VanillaKD [16]  0.75 81.41 4930 6534 3.0 457 65.35
+ GID [9] 0.75 81.84 5355 67.16 3.0 457 6752
+ PD [60] 0.75 80.90 51.22 6437 3.0 457 6550
+ SparseKD [50] 0.75 8197 51.68 63.63 3.0 457 6576
+ CaKDP 050 8271 57.62 72.10 1.5 302 70.81

Table 2. Comparison between CaKDP and previous KD methods
on SECOND (trained on KITTI). ‘Config.” is the width retaining
ratio of each layer for other methods, while it represents the re-
taining ratio for CaKDP. The result of CaKDP is marked in bold.

sparse convolution based UNet [40], are used as teachers
to assist the training of one-stage detectors (SECOND [49]
and CenterPoint [54] with different detection head). Addi-
tionally, for large-scale Waymo Open Dataset (WOD) [43],
CenterPoint with residual-based 3D backbone is used as
student to capture the knowledge of Voxel-RCNN and PV-
RCNN++ [41], respectively. Moreover, similar to [50], we
also extract 20% of the training data and all validation set
from WOD to generate WOD-mini for fast verification.

Configurations. In all experiments, [ is set to 1.0.
When distilling knowledge to SECOND, the threshold of
NMS is set to 0.7 to select RSs for KD, and the minimal
Cate-Pred of selected RSs is set to 0.25. When training the
lightweight CenterPoint on WOD, the threshold and mini-
mal Cate-Pred are set to 0.7 and 0.1 in NMS to select RSs
for KD, respectively. For each student detector, we set dif-
ferent n to compress the model, while the retaining ratio
(1-n) is recorded in the subsequent tables. We keep other
training and evaluation configurations in OpenPCDet [45]
as default. All the experiments are deployed on 8 GeForce
RTX 3090 or XP GPUs. More detailed configurations are
demonstrated in the supplementary material.

4.2. Results on KITTI Dataset

We first demonstrate the effectiveness of our method on
KITTI dataset. As shown in Table 1, CaKDP can achieve
the accurate and compact student detectors. For example,
when Voxel-RCNN is used to supervise SECOND, CaKDP
reduces the storage requirement of detector by 8.8 x without
affecting its detection precision (SECOND-x0.3).

To further illustrate the effectiveness of CaKDP, we take
SECOND as student to compare the results of CaKDP with
those of other KD methods. As depicted in Table 2, CaKDP
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‘ Model RR KD Para. FLOPs L2mAP L2 mAPH Model ‘ Para. FLOPs L2mAP L2 mAPH

Stu ‘ CenterPoint [54] 1.00 X 7.8 114.8 66.32 63.88 SECOND [49] 53 845 62.29 58.74
Tea | PV-RCNN++[41] 1.00 X 161 1235 7007 67.67 CenterPoint [54] 78 1148  68.07 65.66
Stu | CenterPoint[54] 100 ¢ 7.8 1162  68.77 66.51 PV-RCNN [39] 13.1 1185  67.06 63.74
070 v 47 79.1 68.58 66.27 PV-RCNN++ [41] 16.1 1235 71.47 69.27

050 v 28 55.6 67.85 65.48 Voxel-RCNN [10] 16.8 103.3 70.15 67.90

035 v 18 390 6544 62.97 CenterPoint + SparseKD [50] | 4.0 478 - 65.75

Tea \ Voxel-RCNN [10] 1.00 ¢ 18.7 117.6 69.70 67.46 CenterPoint + SparseKD [50] | 2.8 36.9 - 64.83
Stu | CenterPoint [54] 100 ¢ 7.8 1162  68.78 66.51 CenterPoint’ + CaKDP 78 1162  69.74 67.59
070 v 47 791 6867 66.36 CenterPoint? + CaKDP 47 791  69.56 67.36

o “; - ggg e B CenterPoint!! + CaKDP 28 556 6954 6727

- ; ; i i CenterPoint! + CaKDP 1.8 39.0 68.01 65.63

Table 3. Results on WOD-mini. ‘L2’ represents "'LEVEL 2°.

‘ Scheme Config. Para. FLOPs L2 mAP L2 mAPH
Stu ‘ CenterPoint [54] 1.00 7.8 1148  66.32 63.88
Tea ‘ PV-RCNN++ [41]  1.00 16.1 1235  70.07 67.67
Stu | + VanillaKD [16]  0.65 34 545 66.04 62.07

+ GID [9] 0.65 3.4 54.5 66.04 62.57
+ PD [60] 0.65 3.4 54.5 64.20 61.69
+ SparseKD [50] 0.65 3.4 54.5 66.04 63.46
+ CaKDP 0.50 2.8 556 67.85 65.48

Tea ‘ Voxel-RCNN [41]  1.00 18.7 117.6  69.70 67.46
Stu | + VanillaKD [16]  0.65 3.4 54.5 64.91 62.38

+ GID [9] 0.65 34 545 65.12 62.59
+PD [60] 0.65 34 545 64.10 61.56
+ SparseKD [50] 0.65 34 545 66.29 63.71
+ CaKDP 0.50 2.8 55.6 67.67 65.32

Table 4. Comparison between CaKDP and previous KD methods
on CenterPoint (trained on WOD-mini).

surpasses its competitors by a large margin. Regarding
the combination of “PV-RCNN & SECOND”, our method
yields an impressive mAP improvement exceeding 5% with
less memory footprint. In summary, in contrast to other ap-
proaches, our method exhibits a more prominent enhance-
ment in the performance of the student models.

4.3. Results on Waymo Open Dataset

Results and Comparisons on WOD-mini. We further
deploy experiments on large-scale WOD. Firstly, WOD-
mini is applied for fast verification, the results in Table 3
demonstrate that CaKDP can gain the high performance
student detectors. Moreover, we compare CaKDP with
other KD methods. As shown in Table 4, our proposed
method still outperforms its opponents. For example, when
PV-RCNN++ is used as teacher, CenterPoint obtained by
CaKDP demonstrates higher mAP and mAPH with similar
computational consumption and fewer parameters.

Results and Comparisons on WOD. Additionally, sim-
ilar to [50], we conduct compression on full WOD, and
compare the obtained compact model with other detec-
tors. The results are shown in Table 5. For example, our
CenterPoint*! outperforms original CenterPoint by 1.61%
with around 2.8x fewer parameters, 2.1x fewer FLOPs.
Hence, our method can obtain efficient and accurate detec-
tors on complicated dataset.

Table 5. Results and comparison on full WOD. CenterPoint',
CenterPoint*, CenterPoint'’ and CenterPoint™* represent the
pruned CenterPoint with retaining ratio equal to 1.00, 0.70, 0.50
and 0.35, respectively. PV-RCNN++ is used as teacher.

5. Ablation Study
5.1. Comparison of Different Modes of CaKD

This subsection conducts various ablations to demonstrate
the influence of different modes in CaKD, including SKD,
TKD, and TKD-SKD joint mode (TSKD). When train-
ing with TKD and TSKD, we only modify the distillation
module while keeping other configurations unchanged. As
shown in Fig. 6, compared with vanilla training strategy
(red and blue lines), all three modes can significantly im-
prove the mAP of student detectors. Besides, among the
three schemes, SKD consistently provides the best com-
pression results. Hence, CaKD proves effective in trans-
ferring knowledge between heterogeneous distillation pairs,
and SKD can transfer the student-customized knowledge in
each iteration to get the higher performance detectors.

5.2. Effectiveness of CaPr

To demonstrate the effectiveness of category-aware pruning
(CaPr), we compare it with its various variants, including,
(1) Proportional pruning (ProPr): This approach removes
filters in each layer of the network with the same proportion;
(2) Reverse CaPr (RV-CaPr): This mode uses Eq. (4) to
evaluate the importance of each filter. Subsequently, it re-
moves filters corresponding to the larger metric values; (3)
Random CaPr (RD-CaPr): Similar to CaPr, this scheme
also removes the filters corresponding to smaller metric val-
ues, but it requires random initialization of the parameter in
the compact model after pruning. It should be mentioned
that all the pruning schemes are followed by a retraining
step to restore the accuracy. As shown in Table 6, RV-CaPr
yields the worst and CaPr the best detectors in different dis-
tillation pairs. Hence, the presented metric is useful to il-
lustrate the importance of network architectures, and CaPr
enables flexible generation of lightweight student detectors
with appropriate architectures and initialization parameters.
5.3. Comparison of IOU-aware Refinement Modes
In this subsection, to demonstrate the effectiveness of our
modified IOU-aware refinement approach, we compare it
with previous schemes [19, 48, 64], in which the predicted
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(a) mAP of SECOND-x0.5. (b) mAPH of CenterPoint-x0.5.
Figure 6. Comparison of different modes in CaKD. The red and
blue lines represent the metric of original models (without pruning
and KD loss) and pruned models (without KD loss), respectively.

Model ‘ Scheme Config. Para. FLOPs  Eva.
SECOND ‘ - 1.00 53 80.7 66.72
on KITTI ProPr 0.62 2.0 31.1 65.38
RV-CaPr 0.50 1.5 30.1 56.62
RD-CaPr 0.50 1.5 30.1 64.97
CaPr (ours) 0.50 1.5 30.1 66.24
CenterPoint ‘ - 1.00 7.8 114.8 63.88
on WOD-mini | ProPr 0.65 34 54.5 61.77
RV-CaPr 0.50 2.8 54.2 57.09
RD-CaPr 0.50 2.8 54.2 62.14
CaPr (ours) 0.50 2.8 54.2 63.61

Table 6. Comparison of different pruning schemes. ‘Eva.’ indi-
cates mAP@R40 for KITTI and L2 mAPH for WOD-mini.

KD Pair ‘ w/o IOU head Previous Ours
Voxel-RCNN & SECOND on KITTI 71.06 67.31 71.77
PV-RCNN++ & CenterPoint on WOD-mini 64.78 62.43  65.48

Table 7. Comparison of different IOU-aware refinement modes.
The retaining ratios are set to 0.5 for experiments on both KITTI
and WOD-mini, with moderate mAP@R40 reported for KITTI and
L2 mAPH reported for WOD-mini.

IOU is used to rescore the category predictions (confidence
scores). We only modify the training strategy for IOU
head and the IOU-aware refinement approach, while keep-
ing other configurations unchanged. As demonstrated in Ta-
ble 7, when compared with non-IOU head detector, the pre-
vious scheme significantly degrades network performance.
This occurs because the KD module has introduced knowl-
edge from the teacher to achieve more accurate Cate-Preds,
and further refinement by relatively inaccurate predicted
10U can disrupt the revised Cate-Preds, resulting in poorer
detection capabilities. Our approach improves the network
performance, since it only filters out the redundant samples
with infinitesimal IOU values while preserving the accu-
rate Cate-Preds provided by KD. To sum up, we empha-
size that our approach is orthogonal to the previous scheme
[19, 48, 64], and it can further enhance the ability of com-
pact detectors in our framework.

5.4. Influence of Each Component in CaKDP

CaKDP framework consists of three modules aimed at en-
hancing the accuracy of student detectors: CaKD, IOU-
aware refinement, and CaPr. In this subsection, we provide
examples to assess the influence of different modules. The

KD Pair ‘ CaKD IOU CaPr Para. FLOPs Eva.
“Voxel-RCNN X X X 2.0 31.1 65.38
& SECOND” (%4 X X 2.0 31.1 69.18
on KITTI X (4 b 4 2.0 31.2 66.02
X b 4 v 1.5 30.1 66.24
(%4 v X 2.0 31.2 69.82
v X v 1.5 30.1 71.06
X (4 v 1.5 30.2 66.85
v v (4 1.5 30.2 71.77
“PV-RCNN++ X X X 34 54.5 61.77
& CenterPoint” (%4 b 4 X 34 54.5 63.06
on WOD-mini X v b 4 35 55.9 62.01
X X v 2.8 54.2 63.61
v v X 35 55.9 64.03
(4 X v 2.8 54.2 64.78
X (4 v 2.8 55.6 63.87
v v (4 2.8 55.6 65.48

Table 8. Influence of Each Component. When distilling without
CaPr, ProPr (stated in Section 5.2) is conducted. The retaining
ratios are same as those in Table 6.

results of individual module and their combinations are pre-
sented in Table 8. Compared with the raw training strategy
(the 1-st row), the inclusion of any module can effectively
improve the detector performance (the 2-nd to 4-th rows).
Moreover, combining different modules in pairs (the 5-th
to 7-th rows) results in more accurate compact detectors.
Furthermore, when we aggregate all three modules together
(the 8-th row), the best results are obtained.

6. Conclusion
We propose category-aware knowledge distillation and
pruning (CaKDP) framework for compressing point cloud-
based 3D detectors. In our framework, we first present
category-aware knowledge distillation (CaKD), which en-
hances the compact detector performance by narrowing the
category predictions (Cate-Preds) between heterogeneous
distillation pairs. Additionally, to flexibly select optimal ar-
chitectures and parameters for the compact student detec-
tor in KD, we introduce category-aware pruning (CaPr) to
evaluate filters’ importance by calculating Cate-Pred gaps
and remove unimportant filters. Furthermore, a modified
IOU-aware refinement module is employed to eliminate re-
dundant predicted FP samples. Extensive experiments on
various datasets demonstrate the effectiveness of CaKDP.
In our framework, CaKD is limited to conduct KD be-
tween detectors belonging to the same model family (e.g.,
CNN-based models). It does not generalize well to distill
knowledge between transformer-based and CNN-based ar-
chitectures. We plan to explore this issue in the future.
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