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Abstract

Vision-Language Models (VLMs), such as CLIP, exhibit
strong image-text comprehension abilities, facilitating ad-
vances in several downstream tasks such as zero-shot image
classification, image-text retrieval, and text-to-image gen-
eration. However, the compositional reasoning abilities of
existing VLMs remains subpar. The root of this limitation
lies in the inadequate alignment between the images and cap-
tions in the pretraining datasets. Additionally, the current
contrastive learning objective fails to focus on fine-grained
grounding components like relations, actions, and attributes,
resulting in "bag-of-words" representations. We introduce a
simple and effective method to improve compositional rea-
soning in VLMs. Our method better leverages available
datasets by refining and expanding the standard image-text
contrastive learning framework. Our approach does not
require specific annotations and does not incur extra pa-
rameters. When integrated with CLIP, our technique yields
notable improvement over state-of-the-art baselines across
five vision-language compositional benchmarks. 1

1. Introduction
The field of vision-language research has experienced re-
markable progress over recent years, thanks to the intro-
duction of vast datasets [14, 56], the adaptation of atten-
tion mechanism, and the pioneering objectives such as con-
trastive learning. Impressively, these models demonstrate
a notable capability in zero-shot generalization, as seen in
areas like Visual Question Answering (VQA) [18], caption-
ing [1, 33, 42], and image-text retrieval [52, 62, 71]. Strong
Vision-Language Models (VLMs), such as CLIP [52], are
even pushing the boundaries in text-to-image generation
(CLIP is used to guide image generation given the input
prompt) [50, 53, 55]. However, despite these advances, a no-

1We open-source our code at https://github.com/lezhang7/
Enhance-FineGrained.
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Figure 1. Models trained with standard image-text contrastive
learning lack sufficient compositional reasoning abilities. Our
method teaches the model to better differentiate between similar
captions and learn fine-grained alignment between images and text
to improve compositional reasoning.

table limitation persists: these models often miss the intricate
compositional nuances of relationships, attributes, objects,
and actions [63, 70]. A clear manifestation of this shortcom-
ing is their difficulty in distinguishing between captions with
the same set of words but composed differently like “Horse
is eating the grass” and “Grass is eating the horse” [70] when
paired with relevant images. Such compositional understand-
ing remains a critical frontier for continued advancement in
vision-language integration.

A primary factor impeding compositional understanding
in current VLMs stems from their learning methodology and
training dataset. These models are usually trained on huge
image-text pairs crawled from the web using contrastive
learning [52]. The caption is short and noisy; the image-
text contrastive objective optimizes the model to distinguish
between correct image-text pairs and a vast array of incor-
rect ones. However, because the incorrect pairs are often
markedly distinct, the model primarily distinguishes them
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through simple object recognition, without needing to com-
prehend fine-grained details such as attributes and relations.
Fig. 1 depicts a scenario where CLIP struggles with the
compositional reasoning of “left” and “right” concepts.

Earlier studies, including NegCLIP [70], have employed
phrase swapping to produce additional captions for train-
ing. This underscores the importance of incorporating hard
negatives in vision-language contrastive learning. However,
simply incorporating additional samples into standard image-
text contrastive learning does not fully leverage hard neg-
atives. In this work, we refine and expand the contrastive
learning objective for hard negative captions (see Fig. 1),
which vary in semantics like relations, attributes, actions,
and objects. We focus on two dimensions. First, we advo-
cate for a clearer distinction in the representations of positive
and hard-negative captions, aiming to boost the model’s
ability to recognize nuanced semantic variations. Second,
we maintain a minimum similarity gap between authentic
image-text pairs and their challenging hard-negative coun-
terparts to encourage the learning of fine-grained image-text
alignment. Consequently, we propose two objectives: i)
intra-modal contrast, and ii) cross-modal rank, built on the
hinge loss [9] approach. The latter incorporates an adaptive
threshold during the fine-tuning phase. This means as the
model becomes more adept, the threshold increases, reflect-
ing both the growing difficulty of the task and the model’s
increasing competency. This approach not only resonates
with curriculum learning principles but also ensures a more
stable training process.

To validate the effectiveness, we conduct experiments
on two models: the versatile CLIP and the strong X-VLM
[71]. Our evaluation across various compositional datasets
consistently reveals performance enhancements, establish-
ing our method as a new state-of-the-art across all assessed
benchmarks. Specifically, training CLIP with our method on
the COCO dataset leads to an improvement of 23.7% and
13.5% respectively on the Relation and Attribution splits
of the ARO benchmark [70], 7.2% on the VALSE bench-
mark [49], 5.9% on the VL-CheckList benchmark [74], and
a significant improvement of 12.1% on the recently devel-
oped SugarCrepe benchmark [24]. We also achieve modest
improvements of 0.5%, 2.5% respectively on the ARO Re-
lation and Attribution splits, 1.3% on VALSE and 2.1% on
VL-CheckList on top of the already strong X-VLM model
upon application of our method. Finally we also evaluate our
method on the conventional image-text retrieval and image
classification benchmarks, resulting in 7.5% improvement
in image-text retrieval and a small 1.6% decrease in image
classification.

To summarize, we present three key contributions: (1)
We propose a simple yet effective solution to better leverage
available image-text datasets to improve VLMs’ compo-
sitional understanding without introducing any additional

parameters. This is achieved by extending the contrastive
learning framework: introducing intra-modal contrast and
cross-modal rank objectives. (2) Our adaptive threshold strat-
egy induces curriculum learning during fine-tuning, leading
to improved results and stable training without the need for
labour-some and time-consuming parameter tuning. (3) We
demonstrate the effectiveness of our approach through its
state-of-the-art performance on five benchmarks. Further-
more, we conduct a thorough analysis of each component
of our model, providing insights for future research and a
deeper understanding of our methodology through extensive
experiments.

2. Related Work
Contrastive Vision-Language Models Vision-language
models have garnered remarkable success in both the vi-
sion and multimodal domains. Modern VLMs are pre-
trained on large and noisy multi-modal datasets [56, 57]
and then applied to downstream tasks in a zero-shot man-
ner. Among them, CLIP [52] stands out, employing a con-
trastive learning method for pretraining. Our reasons to
focus on CLIP are twofold: firstly, image-text contrastive
learning has become a prevalent strategy for VLM pretrain-
ing [25, 59, 61, 69, 71, 72]; secondly, CLIP boasts extensive
applicability, spanning various domains. This includes zero-
shot image classification [15, 44, 47, 77], object detection
[45], semantic segmentation [64, 68, 76, 78], text-image
retrieval, evaluation of text-image alignment [8, 22], and
text-to-image generation [50, 53, 55]. Furthermore, the vi-
sion encoder from CLIP can serve as a strong backbone for
generative vision-language models [2, 33, 37, 80]. Therefore,
enhancements on CLIP can effectively radiate to a broader
range of vision-language applications.

Vision-Language Compositionality While Vision-
Language Models exhibit remarkable strength in handling
multimodal data, recent investigations suggest that these
models tend to learn a “bag of words” representation,
which hampers their compositional understanding [12, 70].
A number of benchmarks have emerged to evaluate the
performance of VLMs, focusing on various dimensions like
relations, attributes, objects, among others. For instance,
ARO [70] emphasizes the understanding of attributes
and relations, while VL-checklist [74] drills down into
finer subcategories such as size, color, action, and spatial
relations. VALSE [49] targets linguistic phenomena like
existence, counting, plurality, and coreference, whereas
Winoground [63] delves into complex reasoning, encom-
passing commonsense and external knowledge. SugarCrepe
[24] aims to address the hackability issue where pure-text
models without image information can outshine robust
VLMs on several compositional benchmarks, attributing
to a significant distribution gap between positive and hard
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Figure 2. (Top) An overview of our method’s pipeline and hard negative generation examples. Losses are applied on the shaded boxes.

negative captions. All these benchmarks are structured as
cross-modal retrieval tasks – discern between correct and
incorrect captions given an image, and evaluations are based
on accuracy metrics.

The quest to augment VLMs’ compositional understand-
ing has ignited substantial interest within the community.
The DAC approach [13] proposes to enhance caption den-
sity and quality by utilizing an off-the-shelf caption model
[33] and a segmentation model [28]. Conversely, SGVL
[21] and MosaiCLIP [60] employ additional scene graph
annotations to guide model learning on compositional rela-
tions. Although these methods demonstrate effectiveness,
they necessitate either a specific model (like a segmentation
model) or additional annotations (such as a scene graph).
A distinct line of research explores hard negative mining
methodology [27], where SLVC [12], Paiss et al. [48] and
NegCLIP [70] enrich samples with negative text via random
word-swapping. We perceive negative augmentation as a
refined method since it does not hinge on extra resources
(model or data) and postulate that the current methodologies
do not entirely harness the potential of hard negative min-
ing, and thus, we introduce two additional losses atop our
featured hard negatives to further bolster the compositional
understanding capability.

3. Method
In the proposed method, we expand upon image-text con-
trastive learning and introduce two loss functions specifically
applied to the automatically generated hard negatives. In
this section, we first discuss the process of hard negative
generation, followed by a detailed description of our loss
functions. Fig. 2 illustrates the overview of pipeline and
Fig. 3 illustrates proposed losses.

3.1. Featured Hard Negative Generation
In contrastive learning, hard negatives refer to instances that
exhibit high similarity to positive samples, yet do not qualify
as positive themselves. Consider the following caption as
an example: “A gray cat sits on top of a wooden chair near
a plant.” A potential hard negative could be: “A gray cat

sits on top of a plastic chair near a plant.” [12] While the
hard negative correctly identifies the majority of elements in
the image, it diverges from the positive sample with regards
to the chair’s material. Incorporating hard negatives into
the training process can enable models to discern subtle
distinctions, thereby enhancing their overall accuracy and
performance [16, 20, 26, 41, 51, 54].

To bolster the compositional understanding of our model,
we deliberately create hard negatives that embody various
alterations to the original captions. These adjustments en-
compass changes in the relationship, attributes, and action of
the image’s objects. Furthermore, we produce hard negatives
where we replace an object name with another, encourag-
ing the model to distinguish between different objects. To
generate these hard negatives, we employ Part-Of-Speech
(POS) parsing and Language Models. Utilizing Spacy [23],
we parse the captions and assign POS tags to each word. For
relational hard negative, we interchange the positions of two
noun words. For attribution, action, and object name alter-
ations, we randomly mask an adjective, verb, or noun word,
and subsequently fill in the masked area using the RoBERTa
[39], examples are shown in Fig 2. For each caption, we gen-
erate all four types of hard negatives, replacing any examples
in which the requisite words or two objects are absent from
the caption with a placeholder string. This approach ensures
a comprehensive and robust training dataset for enhancing
our model’s performance.

3.2. Expanded Losses

Preliminaries Contrastive VLMs consist of a image en-
coder fi : Ximage �! Rd and a text encoder ft :
Xtext �! Rd. The cosine similarity between two inputs I,
T using their encoders fi, ft are computed as: S(I, T ) =

fi(I)·ft(T )
||fi(I)||·||ft(T )||/⌧ where · represents inner product and ⌧ is a
trainable temperature parameter. The image-text contrastive
loss is applied on the computed similarity. Considering
image-text pairs (I, T ) within a batch B, the computation
of the Image-Text Contrastive (ITC) loss is formulated as
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generated hard negative texts and (c) cross-modal rank applied on positive and hard negative pairs with adaptive threshold.

follows:

Litc =
X

(I,T )2B

�

0

B@log
expS(I,T )

P
Ti2B

expS(I,Ti)
+ log

expS(I,T )

P
Ij2B

expS(Ij ,T )

1

CA

(1)
For each image-text pair (I, T ), prior research method-

ologies generate a single hard negative caption Thn through
the random swapping of a word. This generated caption
is subsequently treated as an additional random negative
[12, 48, 70]. Thus, the formulation of the Image-Text Con-
trastive loss with the inclusion of a hard negative can be
described as follows:

Litc(hn) =
X

(I,T )2B

� log
expS(I,T )

P
Ij2B

expS(Ij ,T )

+
X

(I,T )2B

� log
expS(I,T )

P
Ti2B

expS(I,Ti) +
P

Tk2Thn

expS(I,Tk)

(2)

Intra-Modal Contrastive Adhering to the aforementioned
notations and given an image-text pair (I, T ) within batch B,
our method, as outlined in Section 3.1, generates four distinct
hard negatives Thn = {Trel, Tatt, Tact, Tobj} corresponding
to changes in relation, attribute, action and object entity.
The primary motivation behind employing intra-modal con-
trastive (IMC) loss is to promote the model’s ability to dif-
ferentiate between hard negative captions to the maximum
extent and contrastive loss is well-suited for this purpose.
Consequently, the formulation is:

Limc =
X

(I,T )2B

� log
1P

Tk2Thn

expS(T,Tk)
(3)

Cross-Modal Rank with Adaptive Threshold Hard neg-
ative captions retain some elements of truth about the image,
indicating a partial correctness in the image-text alignment.
The model is designed to discern the similarity between a
true image-text pair and a hard negative pair to a certain
extent; i.e. it stops further optimization using hard negative
pairs once the similarity difference exceeds a predefined

threshold. To achieve this, we employ a ranking loss with
a threshold. This threshold ensures that the similarity score
for an image-text pair, S(I, T ), is greater than the similarity
score for that image and any hard negative caption, S(I, Tk),
by at least a threshold value Thk corresponding to the type
of hard negative. This concept is formally represented as
follows:

S(I, T ) > {S(I, Tk) + Thk|Tk 2 Thn}

Inspired by the hinge loss concept [9], we employ this
threshold in the loss function, which we call Cross-modal
Rank (CMR) loss, defined as follows:

Lcmr =
X

(I,T )2B

X

Tk2Thn

max(0, S(I, Tk)�S(I, T )+Thk) (4)

Determining an appropriate threshold for hinge loss is
challenging [65]. Inspired by existing research on adaptive
thresholds [6, 36, 73, 75] that posit that an effective thresh-
old should evolve in accordance with the training progress,
we adapt this principle to the multi-modal learning domain.
Our approach models the threshold using the difference in
the model’s similarity scores between the true and hard
negatives pairs, serving as a indicator of the model’s com-
positional understanding capability. Especially during the
initial training phase, when differentiating between the hard
negatives and true pairs is tough, a lower threshold is ap-
propriate. As training advances, and the model refines its
understanding, this score disparity grows. This progressive
threshold adaptation, aligning with curriculum learning prin-
ciples, aims for smoother optimization, avoidance of local
minima, and improved generalization [67]. Consequently,
the threshold encapsulates both task intricacy and model
proficiency. Thus, at training step t, the threshold for each
type {k|k 2 (rel, att, act, obj)} is computed as:

Tht
k =

1
|B|

X

(I,T )2B

(St�1(I, T )� St�1(I, Tk)) (5)

Another unique aspect of our approach is that we imple-
ment distinct thresholds for different types of hard negatives,
each tailored to a specific “curriculum”, while most existing
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approaches utilizing adaptive thresholds in non-multimodal
domains [6, 36, 73, 75] employ just one threshold. The
adaptive Cross-modal Rank loss at step t is defined as:

Lcmr =
X

(I,T )2B

X

Tk2Thn

max(0, S(I, Tk)�S(I, T )+Tht
k) (6)

Empirically, we find that adding the term �S(T, Trel)
to CMR offers benefits and without threshold constraints,
the value of relation hard negatives escalates rapidly, hinder-
ing training. This is because these negatives, unlike others,
are not formed by substituting words with feasible alter-
natives, leading to easily distinguishable, implausible sen-
tences. Consequently, there is a marked difference in simi-
larity scores. For stable training, an upper bound u on the
threshold is crucial:

Tht
k = min

0

@u,
1
N

X

(I,T )2B

(St�1(I, T )� St�1(I, Tk)))

1

A

(7)
Subsequently, incorporating the loss weight hyper-

parameters ↵ and �, the final loss function can be expressed
as follows:

L = Litc(hn) + ↵ · Limc + � · Lcmr (8)

4. Experiments
We assess the performance of our method using two models.
Firstly, we employ CLIP [52], a foundational model in the
vision-language domain. Additionally, we experiment with
X-VLM [71], a resilient model trained on multi-grained ob-
jectives, known for its notable performance in compositional
understanding [4].

4.1. Setup

Training We refer to the CLIP finetuned with our proposed
losses as the Compositional Enhanced CLIP (CE-CLIP). We
train in two configurations: (1) CE-CLIP, using only the
COCO dataset [34], for direct comparison with NegCLIP
[70], and (2) CE-CLIP+, which leverages a combined dataset
of COCO, CC3M [58], and Visual Genome [29] aiming for
heightened performance.

We employ the CLIP-VIT/32-B from the Open-CLIP im-
plementation and the X-VLM-16M from its primary code
repository for evaluation purposes.2 Both models undergo
fine-tuning over 5 epochs following previous works [12, 70]
using 2 A100 GPUs. We allocate batch sizes of 256 for CLIP
and 64 for X-VLM fine-tuning. All training parameters, like
learning rate, decay rate, etc., remain at default values. We
conducted a hyper-parameter search for ↵,� with optimal
values of ↵ = 0.2 and � = 0.4.

2https://github.com/mlfoundations/open_clip

Evaluation We evaluate our method on several vision-
language(vl)-compositional benchmarks: ARO[70], VL-
CheckList[74], VALSE[49], and SugarCrepe[24] (bias-
mitigated version of CREPE[40]). Although Winoground
was designed to test compositional reasoning, Diwan et al.
[11] highlights other challenges posed by this dataset, like
commonsense reasoning and unique image/text understand-
ing. As these are not focus of our work, we excluded
Winoground from our evaluations. We evaluate our methods
in zero-shot settings. Each evaluation involves classifying
positive and negative captions for a given image, with a
random success probability of 50%.

For a comprehensive evaluation, we selected robust base-
lines: (1) Cutting-edge generative vision-language mod-
els such as BLIP [32], BLIP2 [33], and MiniGPT-4 [80];
(2) High-performing vision-language understanding models
like BEIT3 [66], ALBEF [31], UNITER [7], CyCLIP [17],
and X-VLM [71]; (3) Compositional improvement methods
such as syn-CLIP [5] and CLIP-SGVL [21] (both leveraging
scene graph annotations), DAC [13] (utilizing segmentation
models and LLMs), and NegCLIP [70] and CLIP-SVLC
[12] that employ hard negative.

4.2. Compositional reasoning enhancement

We present results for ARO and VALSE in Tab. 1, VL-
CheckList in Tab. 2, and SugarCrepe in Tab. 3. Our CE-CLIP
model, which is trained on the same dataset as NegCLIP, sur-
passes all methods utilizing hard negatives across all bench-
marks. It demonstrates significant improvements over the
baseline CLIP model: 23.7% on ARO-Relation, 13.5% on
ARO-Attribute, 7.2% on VALSE, 5.2% on VL-CheckList,
and 12.1% on SugarCrepe. This indicates that our approach
more effectively utilizes hard negatives through intra-modal
contrasting and cross-modal ranking. Notably, the small-
est absolute improvement was observed on VL-CheckList,
likely because this benchmark presents an out-of-distribution
challenge for our CE-CLIP, given that it is only fine-tuned
on COCO, while VL-CheckList integrates several diverse
datasets. Conversely, we note a substantial improvement
on the ARO benchmark, which could be attributed to the
hard negative types in our model that are specifically tai-
lored to enhance the understanding of objects and attributes.
Additionally, the significant gains observed on SugarCrepe,
a benchmark designed to mitigate language bias in other
benchmarks and provide a more accurate reflection of a
model’s compositional understanding, are particularly note-
worthy.

The CE-CLIP+, trained on a more comprehensive dataset,
achieves superior performance, with an average improve-
ment of 24.3% and 14.2% on ARO Relation and Attribu-
tion splits, 11.4% on VALSE, 9.2% on VL-CheckList, and
14.4% on SugarCrepe which translates to an impressive av-
erage accuracy of 87.5%. Similar to CE-CLIP, the greatest
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Model #Params
ARO VALSE

Relation Attribute Existence Plurality Counting Sp.rel. Actions Coreference Foil-it! Avg.quantifiers number relations repl. actant swap standard clean

Random Chance 50

BLIP[32] 583M 59.0 88.0 86.3 73.2 68.1 71.5 77.2 61.1 53.8 48.2 93.8 70.0
BEIT3[66] 1.9B 60.6 74.6 77.4 74.6 68.8 74.0 86.7 65.2 50.0 44.2 96.0 70.4
BLIP2[33] 3.4B 41.2† 71.3† 55.5 71.5 66.0 62.4 83.6 51.6 48.6 51.9 95.9 65.4
MiniGPT-4[33] >9B 46.9† 55.7† 65.5 72.5 67.4 68.4 83.2 58.8 52.6 51.0 95.8 68.4

Scene Graph relied method
syn-CLIP[5]† 151M 71.4 66.9 - - - – - - - - -

Segmentation & LLM relied method
DAC-LLM[13]† 151M 81.3 73.9 - - - - - - - - - -
DAC-SAM[13]† 151M 77.2 70.5 - - - - - - - - - -

Hard Negative based method
XVLM-coco[71] 216M 73.4 86.8 83.0 75.6 67.5 70.2 73.8 68.6 46.4 49.6 94.8 69.5
CE-XVLM 216M 73.9+0.5 89.3+2.5 83.5 72.8 72.1 68.7 71.8 69.1 51.0 46.8 93.8 70.8+1.3

CLIP[52] 151M 59.3 62.9 68.7 57.1 61.0 65.4 77.8 71.8 54.1 51.0 89.8 65.3
CyCLIP[17]† 151M 59.1 65.4 69.3 58.3 61.0 66.4 78.1 72.0 53.2 51.6 88.8 65.5
SDS-CLIP[3] † 151M 53.0 62.0 - - - - - - - - - -
NegCLIP[70] 151M 80.2 70.5 76.8 71.7 65.0 72.9 81.6 84.7 58.6 53.8 91.9 71.6
CLIP-SVLC[12] † 151M 80.61 73.03 - - - - - - - - - -
CE-CLIP 151M 83.0+23.7 76.4+13.5 78.6 77.7 64.4 74.4 81.2 88.6 54.7 54.8 93.7 72.5+7.2

CE-CLIP+ 151M 83.6+24.3 77.1+14.2 84.5 79.2 67.8 76.4 83.4 89.4 56.7 57.8 94.7 76.7+11.4

Table 1. Results (%) on ARO and VALSE. The best scores for each section are highlighted in bold. † represents scores are extracted from
papers. Empty scores suggest that the model’s codebase has not been released.

Model #Params Attribute Object Relation Avg
Action Color Material Size State Avg Location Size Avg Action Spatial Avg

Random Chance 50

ALBEF[31] † 210M 81.7 84.2 87.3 69.5 72.08 79.3 81.7 80.5 81.1 70.5 64.6 66.5 75.6
UNITER[7]† 300M 72.6 76.2 75.8 63.5 68.1 71.3 82.4 81.5 81.9 69.2 61.5 64.7 72.6
BLIP[32]† 583M 79.5 83.2 84.7 59.8 68.8 75.2 83.0 81.3 82.2 59.5 75.7 70.5 75.7
BEIT3[66] 1.9B 79.6 78.5 80.1 63 68.4 73.9 85.2 83.8 84.5 76.6 62.3 69.4 75.3
BLIP2[33]† 3.4B 81.0 86.2 90.3 61.7 70.1 77.8 85.4 84.3 84.9 84.9 56.2 70.6 77.8
MiniGPT-4[79] † >9B - - - - - 71.3 - - 84.2 84.1 - - -

Scene Graph relied method
CLIP-SGVL[21]† >151M 76.6 78.0 80.6 59.7 61.2 71.2 83.0 81.3 82.6 79.0 - - -
syn-CLIP[5] † 151M - - - - - 70.4 - - - - - 69.4 -

Segmentation & LLM relied method
DAC-LLM[13]† 151M - - - - - 77.3 - - 87.3 86.4 - - -
DAC-SAM[13]† 151M - - - - - 75.8 - - 88.5 89.8 - - -

Hard Negative based method
XVLM-coco[71] 216M 80.4 81.1 83.1 60.3 70.8 75.1 86.3 85.3 85.8 79.0 61.8 70.4 76.5
CE-XVLM 216M 80.5 76.0 80.6 67.2 69.8 74.8�0.3 87.3 86.6 86.9+1.1 80.8 78.6 79.7+9.3 78.6+2.1

CLIP[52] 151M 70.5 69.4 69.5 60.7 67 67.4 80.2 79.7 80.0 72.2 53.8 63.0 69.2
CLIP-SVLC[12]† 151M 69.4 77.5 77.4 73.4 62.3 72.0 - - 85.0 74.7 63.2 68.95 74.2
NegCLIP[70] 151M 72.1 75.7 78.1 61.3 67.3 70.9 84.4 83.8 84.1 80.7 57.1 68.9 73.4
CE-CLIP 151M 75.6 72.7 79.7 65.3 69.8 72.6+5.2 84.8 84.5 84.6+4.6 78.5 65.0 71.8+8.8 75.1+5.9

CE-CLIP+ 151M 78.5 83.5 85.2 65.8 70.8 76.7+9.3 86.7 85.9 86.3+6.3 81.0 68.4 74.7+11.7 78.4+9.2

Table 2. Results (%) on VL-CheckList. The best scores for each section are highlighted in bold. † represents scores are extracted from
papers. Empty scores suggest that the model’s codebase has not been released.

and smallest improvements were observed in ARO and VL-
CheckList, respectively, reinforcing our initial hypothesis.
The out-of-distribution challenge observed in CE-CLIP has
been substantially mitigated in CE-CLIP+ through training
on a varied range of data distributions. For example, in
the Attribute evaluation split, CE-CLIP showed a modest
5.2% improvement on VL-CheckList and a significant 13.5%
increase on ARO. Impressively, CE-CLIP+ outperforms CE-
CLIP by 0.7% (76.4!77.1) on ARO-Attribute and an ex-
ceptional 4.1% (72.6!76.7) on the VL-CheckList Attribute

split. This underscores the challenges of out-of-distribution
evaluation encountered by CE-CLIP and illustrates the ef-
fectiveness of augmenting dataset size as a remedy. Over-
all, CE-CLIP+ demonstrates robust performance, surpassing
models with significantly larger parameters or those trained
with extra resources and annotations across the majority of
benchmarks. This strengthens the potential scalability of our
method within extensive pre-training frameworks, although
we acknowledge the necessity for further investigation.

X-VLM shows a modest improvement compared with
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Model REPLACE SWAP ADD
Object Attribute Relation Avg Object Attribute Avg Object Attribute Avg

Human 100 99 97 98.7 99 100 99.5 99 99 99

Vera[38] 49.4 49.6 49.1 49.4 49.4 49.2 49.3 49.4 49.6 49.5
Grammar[46] 50 50 50 50 50 50 50 50 50 50
BLIP2[33] † - - - 86.7 - - 69.8 - - 86.5

CLIP 90.9 80 69.2 80.2 61.4 64 62.7 77.2 68.2 72.7
NegCLIP 92.7 85.9 76.5 85.0 75.2 75.4 75.3 88.8 82.8 85.8
CE-CLIP 93.1 88.8 79 87.0+6.8 72.8 77 74.9+12.2 92.4 93.4 92.9+20.2

CE-CLIP+ 93.8 90.8 83.2 89.3+9.1 76.8 79.3 78.0+15.3 93.8 94.9 94.4+21.7

Table 3. Results(%) on SugarCrepe. Vera and Grammar are text-only models. Figure 4. Ablations on hard-negative types

large improvement gained on CE-CLIP, primarily due to
differences in pretraining approaches. X-VLM is pretrained
on multiple fine-grained tasks that necessitate specific object
bounding box annotations, whereas CLIP is trained directly
on automatically crawled, noisy image-text pairs. Our simple
annotation-free method can bolster the already strong X-
VLM, further emphasizing its distinctive characteristics in
learning compositionality. However, our method is most
beneficial for CLIP like models that do not already benefit
from object annotations during pre-training.

4.3. Emergence of curriculum learning
In this section, we illustrate how the adaptive threshold in the
cross-modal loss facilitates curriculum learning during fine-
tuning. We analyze the evolution of the threshold values and
losses over time, with the curve in Fig. 5d showing a sharp
increase in the Threshold Relation value. This rise is mainly
due to the semantic and grammatical errors in relation-swap
hard negatives (e.g., sentences in Fig. 2), simplifying the
model’s task of differentiating authentic captions from hard
negatives. Consequently, the elevated threshold counters this
by increasing the task difficulty, providing a stronger super-
visory signal and compelling the model to discern greater
differences between these captions.

The threshold, calculated as the average gap between
true and hard negative similarity scores, mirrors the task’s
complexity and the model’s discernment capability. CE-
CLIP+’s training loss curve (Fig. 5b) indicates that CMR loss
stabilizes after initial fluctuations, striking a balance between
escalating task difficulty and the model’s adaptive capacity,
thereby highlighting the inherent curriculum learning.

The emergence of curriculum learning achieves satisfac-
tory outcomes without needing extensive hyper-parameter
tuning. In contrast, a fixed threshold strategy would require
impractical n4 trials for exploring n different values across
four thresholds. Fig. 5a compares CE-CLIP+ results across
5 benchmarks using various thresholds, showing adaptive
approach outperforms the fixed ones and converges faster.
Initially, the adaptive strategy provides a smaller supervision
signal compared to the fixed approach but as the training
progresses, it adjusts the threshold according to the task
complexity and model capacity. This adjustment enhances
learning efficiency and generalization.

Model itc(hn) IMC CMR ARO-R ARO-A VALSE VLCheckList Avg
CLIP 59.3 62.9 67.0 69.2 64.6

X 81.6 72.0 74.2 73.6 75.4
X X 82.6 75.8 75.9 76.6 77.7
X X 82.3 72.6 75.5 77.8 77.1

CE-CLIP+ X X X 83.6 77.1 76.7 78.4 79.0

Table 4. Ablation of losses. itc(hn) represents image-text con-
trastive with additional hard negatives.

(a) (b)

(d)

(c)

Figure 5. Ablation studies. (a) Adaptive vs Fixed threshold with
values 2, 5, 10; (b) Evolution of threshold over time ; (c) Perfor-
mance with different upper bounds on threshold. (d) Loss curves
showing stabilization of the CMR loss after initial training steps.

4.4. Ablation studies

We present ablation studies to understand the effectiveness
of different components of our method. We conduct these
ablations using our best model CE-CLIP+.

Losses. The impact of each proposed loss is detailed in
Tab 4. Notably, the introduction of hard negatives led to
tremendous performance gains, highlighting their pivotal
role in contrastive learning. Each individual loss we intro-
duced showed significant improvements as well across all
benchmarks. The best performance is achieved when all
losses are combined, thus demonstrating the effectiveness of
our approach.
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Figure 6. Ablations of ↵,�.

Task CLIP CLIP-FT CE-CLIP CE-CLIP+

compositional tasks

ARO-R[70] 59.3 61.7 83 83.6(+24.3)
ARO-A[70] 62.9 66.1 76.4 77.1(+14.2)
VALSE[49] 65.3 71.8 72.5 76.7(+11.4)
VLChecklist[74] 69.2 68.6 75.1 78.4(+9.2)
SugarCrepe[24] 73.1 77.2 85.2 87.5(+14.4)

standard tasks

T2I R@5[35] 56.0 66.2 69.4 72.3(+13.4)
I2T R@5[35] 75.0 78.3 74.3 76.1(+1.1)
ImageNet1K 93.2 92.8 92.6 92.7(-0.5)
CIFAR10 94.2 94.2 93.8 93.8(-0.4)
CIFAR100 79.0 79.1 78.0 78.1(-0.9)

Table 5. Performance on standard image-text
retrieval and image classification. Improve-
ments in green are calculated w.r.t CLIP.

Figure 7. Impact of scaling-up the model on VL-
CheckList performance.

Hard Negative Types As shown in Fig. 4, each type of
hard-negative uniquely benefits the model, the object hard
negatives benefitting the most. Combining all types yields
the best results. The success of our flexible approach indi-
cates that incorporating additional types, such as numerical
negatives [48], may further boost performance.

Upper Bound on Threshold. Setting a threshold upper
bound prevents training collapse. Our ablation study, as
detailed in Fig. 5c, demonstrates that an upper bound of 10
yields optimal performance by effectively constraining the
maximum value of the Threshold Relation (Fig. 5b), thereby
ensuring stability during the training process.

Loss Weight. Fig. 5d shows the divergence of CMR loss
scale from IMC loss, highlighting the importance of proper
loss weight selection for training. Fig. 6 reveals that our
method is robust across 5 benchmarks with varying ↵ and �
values, though larger ↵ and � decrease performance. Opti-
mal outcomes occur at ↵ = 0.2 and � = 0.4.

4.5. Performance on standard benchmarks
Previous studies [12, 70], suggest that advancements in
compositional understanding might negatively affect per-
formance on standard image-text retrieval and image classifi-
cation tasks. To investigate this, we evaluate our method on
zero-shot image-text retrieval on COCO and linear probing
on ImageNet-1k [10] and CIFAR [30]. As shown in Tab. 5,
our results demonstrate improvements in text-to-image re-
trieval with minimal impact on image classification accuracy.
By prioritizing compositional understanding, our CE-CLIP
and CE-CLIP+ enhance performance across all evaluated
benchmarks. Furthermore, to demonstrate that our enhance-
ments in COCO image-text retrieval are not merely a result
of fine-tuning on COCO, we include comparative results
from CLIP-FT, a COCO fine-tuned variant of CLIP. Our
findings indicate that both CE-CLIP and CE-CLIP+ outper-
form CLIP-FT in text-to-image retrieval, albeit with a slight
underperformance in image-to-text retrieval. We hypothe-
size this could be due to our method’s exclusive reliance on

textual hard negatives.
We investigated the impact of integrating CE-CLIP into

MAPL [43] on the Visual Question Answering (VQA) task
by training on the COCO dataset and conducting a zero-shot
evaluation on VQAv2 [19]. The findings indicate that CE-
CLIP, achieving an accuracy of 39.82, closely matches the
original CLIP’s performance of 39.78. This demonstrates
that CE-CLIP preserves the visual strengths of CLIP.

4.6. Can scaling-up alone solve compositionality

To substantiate our assertion in Fig. 1 that standard con-
trastive learning as implemented in CLIP fails to grasp com-
positionality, we tested several scaled-up versions of CLIP
models including the largest ViT-G/14 trained on LAION-
2B from Open-CLIP, on the VLChecklist benchmark. As
Fig. 7 shows, none of these scaled-up models surpass our
base-sized CE-CLIP model. This shows that scaling-up the
model alone is not enough for comprehending composition-
ality, underscoring the significance of our work and the need
for more research in this field.

5. Conclusion

Our study addresses the challenge of compositional under-
standing in VLMs , we expand image-text contrastive loss
and introduce two losses that infuse compositional supervi-
sion into pretrained VLMs using a featured hard negative
generation strategy. Our intra-modal contrastive loss miti-
gates high intra-modal similarity while our cross-modal rank
loss ensures a minimum semantic distance between true and
hard negative image-text pairs, with the adaptive threshold
functioning as curriculum learning to enhance performance.
Empirically, our method achieves superior performance in
5 compositional benchmarks, surpassing previous methods
without requiring additional annotations or resources. Scal-
ing the dataset size further boosts performance, highlighting
our method’s potential for VLMs and its promise for broader
applications and capabilities.

13781



References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Men-
sch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza
Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina
Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Shar-
ifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. Flamingo: a visual
language model for few-shot learning, 2022. 1

[2] Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf
Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan Bitton,
Samir Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith,
Pang Wei Koh, Gabriel Ilharco, Mitchell Wortsman, and Lud-
wig Schmidt. Openflamingo: An open-source framework for
training large autoregressive vision-language models, 2023. 2

[3] Samyadeep Basu, Maziar Sanjabi, Daniela Massiceti,
Shell Xu Hu, and Soheil Feizi. Augmenting clip with im-
proved visio-linguistic reasoning. ArXiv, abs/2307.09233,
2023. 6

[4] Emanuele Bugliarello, Laurent Sartran, Aishwarya Agrawal,
Lisa Anne Hendricks, and Aida Nematzadeh. Measuring
progress in fine-grained vision-and-language understanding,
2023. 5

[5] Paola Cascante-Bonilla, Khaled Shehada, James Smith, Sivan
Doveh, Donghyun Kim, Rameswar Panda, Gül Varol, Aude
Oliva, Vicente Ordonez, Rogério Schmidt Feris, and Leonid
Karlinsky. Going beyond nouns with vision & language
models using synthetic data. ArXiv, abs/2303.17590, 2023. 5,
6

[6] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi
Huang. Beyond triplet loss: a deep quadruplet network for
person re-identification, 2017. 4, 5

[7] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Universal image-text representation learning, 2020. 5, 6

[8] Jaemin Cho, Seunghyun Yoon, Ajinkya Kale, Franck Der-
noncourt, Trung Bui, and Mohit Bansal. Fine-grained image
captioning with clip reward. ArXiv, abs/2205.13115, 2022. 2

[9] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine learning, 20:273–297, 1995. 2, 4

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. 8

[11] Anuj Diwan, Layne Berry, Eunsol Choi, David Harwath, and
Kyle Mahowald. Why is winoground hard? investigating
failures in visuolinguistic compositionality, 2022. 5

[12] Sivan Doveh, Assaf Arbelle, Sivan Harary, Rameswar Panda,
Roei Herzig, Eli Schwartz, Donghyun Kim, Raja Giryes,
Rogerio Feris, Shimon Ullman, and Leonid Karlinsky. Teach-
ing structured vision language concepts to vision language
models, 2022. 2, 3, 4, 5, 6, 8

[13] Sivan Doveh, Assaf Arbelle, Sivan Harary, Roei Herzig,
Donghyun Kim, Paola Cascante-bonilla, Amit Alfassy,
Rameswar Panda, Raja Giryes, Rogerio Feris, Shimon Ull-

man, and Leonid Karlinsky. Dense and aligned captions (dac)
promote compositional reasoning in vl models, 2023. 3, 5, 6

[14] Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan
Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten,
Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad,
Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanu-
jan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann,
Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh,
Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Ha-
jishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex
Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, and
Ludwig Schmidt. Datacomp: In search of the next generation
of multimodal datasets, 2023. 1

[15] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao
Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao. Clip-
adapter: Better vision-language models with feature adapters.
International Journal of Computer Vision, pages 1–15, 2023.
2

[16] Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R.
Scott. Deep metric learning with hierarchical triplet loss. In
European Conference on Computer Vision, 2018. 3

[17] Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan A. Rossi,
Vishwa Vinay, and Aditya Grover. Cyclip: Cyclic contrastive
language-image pretraining, 2022. 5, 6

[18] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the v in vqa matter: Elevating
the role of image understanding in visual question answering,
2017. 1

[19] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the v in vqa matter: Elevating
the role of image understanding in visual question answering,
2017. 8

[20] Ben Harwood, B. V. Kumar, G. Carneiro, Ian D. Reid, and
Tom Drummond. Smart mining for deep metric learning.
2017 IEEE International Conference on Computer Vision
(ICCV), pages 2840–2848, 2017. 3

[21] Roei Herzig, Alon Mendelson, Leonid Karlinsky, Assaf Ar-
belle, Rogerio Feris, Trevor Darrell, and Amir Globerson.
Incorporating structured representations into pretrained vi-
sion - language models using scene graphs, 2023. 3, 5, 6

[22] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. Clipscore: A reference-free evaluation metric
for image captioning, 2022. 2

[23] Matthew Honnibal and Ines Montani. spaCy 2: Natural lan-
guage understanding with Bloom embeddings, convolutional
neural networks and incremental parsing. To appear, 2017. 3

[24] Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kem-
bhavi, and Ranjay Krishna. Sugarcrepe: Fixing hackable
benchmarks for vision-language compositionality, 2023. 2, 5,
8

[25] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision, 2021. 2

[26] Yannis Kalantidis, Mert Bulent Sariyildiz, No’e Pion,
Philippe Weinzaepfel, and Diane Larlus. Hard negative mix-
ing for contrastive learning. ArXiv, abs/2010.01028, 2020.
3

13782



[27] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe
Weinzaepfel, and Diane Larlus. Hard negative mixing for con-
trastive learning. Advances in Neural Information Processing
Systems, 33:21798–21809, 2020. 3

[28] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 3

[29] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and
Fei-Fei Li. Visual genome: Connecting language and vision
using crowdsourced dense image annotations, 2016. 5

[30] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10
(canadian institute for advanced research). 8

[31] Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Got-
mare, Shafiq Joty, Caiming Xiong, and Steven Hoi. Align
before fuse: Vision and language representation learning with
momentum distillation, 2021. 5, 6

[32] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip:
Bootstrapping language-image pre-training for unified vision-
language understanding and generation, 2022. 5, 6

[33] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-
2: Bootstrapping language-image pre-training with frozen
image encoders and large language models, 2023. 1, 2, 3, 5,
6, 7

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
V 13, pages 740–755. Springer, 2014. 5

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bour-
dev, Ross Girshick, James Hays, Pietro Perona, Deva Ra-
manan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2015. 8

[36] Hao Liu, Xiangyu Zhu, Zhen Lei, and Stan Z. Li. Adap-
tiveface: Adaptive margin and sampling for face recognition.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 4, 5

[37] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning, 2023. 2

[38] Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A. Smith,
Yejin Choi, and Hannaneh Hajishirzi. Vera: A general-
purpose plausibility estimation model for commonsense state-
ments, 2023. 7

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach, 2019. 3

[40] Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi,
Irena Gao, and Ranjay Krishna. Crepe: Can vision-language
foundation models reason compositionally? arXiv preprint
arXiv:2212.07796, 2022. 5

[41] R. Manmatha, Chaoxia Wu, Alex Smola, and Philipp Krähen-
bühl. Sampling matters in deep embedding learning. 2017
IEEE International Conference on Computer Vision (ICCV),
pages 2859–2867, 2017. 3

[42] Oscar Mañas, Pau Rodriguez, Saba Ahmadi, Aida Ne-
matzadeh, Yash Goyal, and Aishwarya Agrawal. Mapl:
Parameter-efficient adaptation of unimodal pre-trained mod-
els for vision-language few-shot prompting, 2023. 1

[43] Oscar Mañas, Pau Rodriguez, Saba Ahmadi, Aida Ne-
matzadeh, Yash Goyal, and Aishwarya Agrawal. Mapl:
Parameter-efficient adaptation of unimodal pre-trained mod-
els for vision-language few-shot prompting, 2023. 8

[44] Jan Hendrik Metzen, Piyapat Saranrittichai, and
Chaithanya Kumar Mummadi. Autoclip: Auto-tuning
zero-shot classifiers for vision-language models. ArXiv,
abs/2309.16414, 2023. 2

[45] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim
Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh
Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran
Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil
Houlsby. Simple open-vocabulary object detection with vi-
sion transformers, 2022. 2

[46] John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di
Jin, and Yanjun Qi. Textattack: A framework for adversarial
attacks, data augmentation, and adversarial training in nlp,
2020. 7

[47] Zachary Novack, S. Garg, Julian McAuley, and
Zachary Chase Lipton. Chils: Zero-shot image classi-
fication with hierarchical label sets. ArXiv, abs/2302.02551,
2023. 2

[48] Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar
Mosseri, Michal Irani, and Tali Dekel. Teaching clip to count
to ten, 2023. 3, 4, 8

[49] Letitia Parcalabescu, Michele Cafagna, Lilitta Muradjan,
Anette Frank, Iacer Calixto, and Albert Gatt. VALSE: A
task-independent benchmark for vision and language models
centered on linguistic phenomena. In Proceedings of the 60th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 8253–8280, Dublin,
Ireland, 2022. Association for Computational Linguistics. 2,
5, 8

[50] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall.
Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint
arXiv:2209.14988, 2022. 1, 2

[51] Yao Qin, Chiyuan Zhang, Ting Chen, Balaji Lakshmi-
narayanan, Alex Beutel, and Xuezhi Wang. Understand-
ing and improving robustness of vision transformers through
patch-based negative augmentation. ArXiv, abs/2110.07858,
2021. 3

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 1, 2, 4, 5, 6

[53] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image genera-
tion with clip latents, 2022. 1, 2

[54] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Ste-
fanie Jegelka. Contrastive learning with hard negative sam-
ples. ArXiv, abs/2010.04592, 2020. 3

13783



[55] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 2

[56] Christoph Schuhmann, Richard Vencu, Romain Beaumont,
Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo
Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m:
Open dataset of clip-filtered 400 million image-text pairs,
2021. 1, 2

[57] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes,
Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa Kundurthy, Katherine Crowson, Lud-
wig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. Laion-
5b: An open large-scale dataset for training next generation
image-text models, 2022. 2

[58] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, image
alt-text dataset for automatic image captioning. In Annual
Meeting of the Association for Computational Linguistics,
2018. 5

[59] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guil-
laume Couairon, Wojciech Galuba, Marcus Rohrbach, and
Douwe Kiela. Flava: A foundational language and vision
alignment model, 2022. 2

[60] Harman Singh, Pengchuan Zhang, Qifan Wang, Mengjiao
Wang, Wenhan Xiong, Jingfei Du, and Yu Chen. Coarse-to-
fine contrastive learning in image-text-graph space for im-
proved vision-language compositionality. 2023. 3

[61] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue
Cao. Eva-clip: Improved training techniques for clip at scale,
2023. 2

[62] Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality
encoder representations from transformers, 2019. 1

[63] Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet
Singh, Adina Williams, Douwe Kiela, and Candace Ross.
Winoground: Probing vision and language models for visio-
linguistic compositionality. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5238–5248, 2022. 1, 2

[64] Haoxiang Wang, Pavan Kumar Anasosalu Vasu, Fartash
Faghri, Raviteja Vemulapalli, Mehrdad Farajtabar, Sachin
Mehta, Mohammad Rastegari, Oncel Tuzel, and Hadi
Pouransari. Sam-clip: Merging vision foundation models
towards semantic and spatial understanding, 2023. 2

[65] Jiang Wang, Yang song, Thomas Leung, Chuck Rosenberg,
Jinbin Wang, James Philbin, Bo Chen, and Ying Wu. Learning
fine-grained image similarity with deep ranking, 2014. 4

[66] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang
Peng, Qiang Liu, Kriti Aggarwal, Owais Khan Mohammed,
Saksham Singhal, Subhojit Som, and Furu Wei. Image as a
foreign language: Beit pretraining for all vision and vision-
language tasks, 2022. 5, 6

[67] Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on
curriculum learning, 2021. 4

[68] Mengde Xu, Zheng Zhang, Fangyun Wei, Yutong Lin, Yue
Cao, Han Hu, and Xiang Bai. A simple baseline for zero-
shot semantic segmentation with pre-trained vision-language
model. ArXiv, abs/2112.14757, 2021. 2

[69] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mo-
jtaba Seyedhosseini, and Yonghui Wu. Coca: Contrastive
captioners are image-text foundation models, 2022. 2

[70] Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan
Jurafsky, and James Zou. When and why vision-language
models behave like bags-of-words, and what to do about it?
arXiv e-prints, pages arXiv–2210, 2022. 1, 2, 3, 4, 5, 6, 8

[71] Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision
language pre-training: Aligning texts with visual concepts,
2022. 1, 2, 5, 6

[72] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training,
2023. 2

[73] Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu. Col-
laborative and adversarial network for unsupervised domain
adaptation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3801–3809, 2018.
4, 5

[74] Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen,
Kyusong Lee, Xiaopeng Lu, and Jianwei Yin. Vl-checklist:
Evaluating pre-trained vision-language models with objects,
attributes and relations, 2022. 2, 5, 8

[75] Xiaonan Zhao, Huan Qi, Rui Luo, and Larry Davis. A weakly
supervised adaptive triplet loss for deep metric learning, 2019.
4, 5

[76] Chong Zhou, Chen Change Loy, and Bo Dai. Extract free
dense labels from clip, 2022. 2

[77] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to prompt for vision-language models. Interna-
tional Journal of Computer Vision, 130(9):2337–2348, 2022.
2

[78] Ziqin Zhou, Bowen Zhang, Yinjie Lei, Lingqiao Liu, and
Yifan Liu. Zegclip: Towards adapting clip for zero-shot
semantic segmentation, 2023. 2

[79] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mo-
hamed Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. arXiv
preprint arXiv:2304.10592, 2023. 6

[80] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mo-
hamed Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models, 2023. 2,
5

13784


