
DeMatch: Deep Decomposition of Motion Field for
Two-View Correspondence Learning

Shihua Zhang, Zizhuo Li, Yuan Gao, Jiayi Ma*

Electronic Information School, Wuhan University, Wuhan 430072, China
suhzhang001@gmail.com, zizhuo li@whu.edu.cn, {ethan.y.gao, jyma2010}@gmail.com

Abstract

Two-view correspondence learning has recently focused
on considering the coherence and smoothness of the motion
field between an image pair. Dominant schemes include
controlling the complexity of the field function with regu-
larization or smoothing the field with local filters, but the
former suffers from heavy computational burden, and the
latter fails to accommodate discontinuities in the case of
large scene disparities. In this paper, inspired by Fourier
expansion, we propose a novel network called DeMatch,
which decomposes the motion field to retain its main “low-
frequency” and smooth part. This achieves implicit regular-
ization with lower computational cost and generates piece-
wise smoothness naturally. Specifically, we first decom-
pose the rough motion field that is contaminated by false
matches into several different sub-fields, which are highly
smooth and contain the main energy of the original field.
Then, with these smooth sub-fields, we recover a cleaner
motion field from which correct motion vectors are subse-
quently derived. We also design a special masked decom-
position strategy to further mitigate the negative influence
of false matches. All the mentioned processes are finally
implemented in a discrete and learnable manner, avoid-
ing the difficulty of calculating real dense fields. Exten-
sive experiments reveal that DeMatch outperforms state-
of-the-art methods in multiple tasks and shows promising
low computational usage and piecewise smoothness prop-
erty. The code and trained models are publicly available at
https://github.com/SuhZhang/DeMatch.

1. Introduction
Finding two-view correspondences that indicate the same
scene points from different perspectives is a fundamental
problem in computer vision [21]. The geometry relation-
ship between two-view images is estimated after establish-
ing sparse correspondences, serving as a critical prerequi-
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Figure 1. Deep decomposition framework. Lines colored blue are
inliers, red are outliers, green are corrected outliers, except for the
motion clusters with different colors. The solid lines indicate the
workflow of DeMatch, dashed lines correspond to the changes of
the motion field, bidirectional arrows represent the conversions be-
tween sparse motion vectors and the dense motion field. F means
the original rough motion field, Fk means the k-th sub-field, and
F̃ means the recovered cleaner motion field.

site for many problems such as panoramic stitching [4],
structure from motion [30], and simultaneous location and
mapping [23]. A typical matching pipeline starts with iden-
tifying keypoints and constructing local descriptions, this
allows the generation of a putative match set by assessing
the similarity of descriptions [22]. While SIFT [18] is one
of the most widely used handcrafted descriptors, learning-
based ones have been investigated [7, 24, 34]. However,
due to the limited discriminative ability of descriptors, nu-
merous false matches (outliers) are found in the putative set
because of wide variations in viewpoint or excessive repet-
itive patterns. Thus outlier rejection is applied to determine
the true matches (inliers), which is the focus of this paper.

Outlier rejection that builds reliable two-view correspon-
dences has been studied at an early age. Most of the clas-
sical methods try seeking deformation consistency, i.e. mo-
tion field consensus and smoothness, to identify inliers.
Some of them apply global consensus directly [9, 19],
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while others relax the global constraint to local consis-
tency [3, 20]. However, traditional methods often fail in
real scenes where the potential motion field is heavily con-
taminated by heavy outliers, so learning-based approaches
are emerging. PointCN [41] marks correspondences with
inliers and outliers, modeling outlier rejection as a classi-
fication problem. Then, powerful information embedding
modules are designed to retrieve and aggregate global and
local context [6, 16, 42, 44]. Although these directly classi-
fying methods have shown competent ability, the prior co-
herence and smoothness of the motion field are ignored. To
this end, LMCNet [17] considers global coherence by solv-
ing a Laplacian regularization term with deep features, and
ConvMatch [43] smooths motion field with convolutional
neural network (CNN) as local filters to achieve local con-
sistency. By means of the inherent coherence attribute, the
performance boosts, but there are still flaws in such motion
coherence-based approaches. Tackling the regularization
term is arithmetic intensive in LMCNet. And the disconti-
nuities in the motion field caused by large scene disparities
are easily over-smoothed by CNN blocks in ConvMatch.
Hence, it is imperative to find a method based on motion co-
herence that addresses the mentioned issues: (i) Eliminate
explicitly using of regularization term to avert high compu-
tational usage. (ii) Consider the discontinuities in the mo-
tion field and handle the problem of piecewise smoothness.

1.1. Motivation

It is well-known that any complex function or field with lim-
ited energy can be decomposed into simpler sub-functions
according to a basis1. For example, in Fourier expan-
sion [11], a function can be decomposed into an infi-
nite series of trigonometric functions, while the standard
sine functions with different frequencies act as the ba-
sis. By selecting the sub-functions on merely a finite low-
frequency basis, we can control the complexity of the origi-
nal function. And the new function recovered by these sub-
functions is smoother while retaining the main energy of
the original one. This constrains the function to a low-rank
subspace, acting as an implicit regularization [9]. Similarly,
if we can decompose the rough motion field contaminated
by outliers into several highly smooth sub-fields just like
decomposing the complex function, a cleaner motion field
can be recovered from these sub-fields, which have simple
functional representations and can be deemed as the “low-
frequency” part relying on a low-frequency basis or a few
low-frequency factors2 [9, 14]. With the decomposition, the
potential motion field can be constrained in a low-rank sub-
space analogously so that the smoothness property is guar-

1In mathematics, a set B of vectors {bi} in a vector space V is a basis.
2Strictly, a basis must satisfy linear independence condition. However,

the redundant factors do not affect the representation of the smoothness
subspace. Therefore, we refer to these factors as “basis” in the following.

anteed and implicit regularization is achieved [38, 39].
However, decomposing the potential dense motion field

with only sparse motion vectors as input is hard. Luck-
ily, as shown in Figure 1, motion vectors can be regarded
as a discretized representation of motion field [43]. More-
over, the motion vectors that are close in position or be-
long to the same object or plane often exhibit strong con-
sistency, they share the same motion pattern and are more
likely to yield a smooth sub-field [14]. Thus, grouping mo-
tion vectors that belong to a particular pattern into the same
cluster is equivalent to decomposing the original contam-
inated motion field F into several extremely smooth sub-
fields {Fk|k = 1, . . . ,K}, and the motion patterns acting
as the clustering rules can be regarded as the basis.

1.2. Consideration and Contribution

Based on the above analysis, we propose DeMatch for
two-view correspondence learning that incorporates prior
knowledge of smoothness and coherence. It conducts a
deep decomposition of the motion field as Figure 1. Specif-
ically, to decompose the potential dense motion field F in a
discrete manner, we identify a set of learnable motion pat-
terns as a basis and cluster the putative motion vectors by
these patterns. Hence, a few highly smooth sub-fields are
generated, {Fk|k = 1, . . . ,K}, and they contain the main
energy of F . These sub-fields are almost entirely supported
by inliers, allowing us to recover a cleaner motion field F̃
that regularizes F implicitly. By comparing the motion vec-
tors in F and F̃ , we can distinguish inliers and outliers.
Because these extremely smooth sub-fields, from which
the purer motion field F̃ is estimated, respectively corre-
spond to unique motion patterns, DeMatch spontaneously
achieves piecewise smoothness. In this way, DeMatch ef-
fectively addresses both of the issues mentioned above. Ad-
ditionally, in order to further mitigate the influence of out-
liers in the decomposition process, we design a masked de-
composition strategy that removes known distinct outliers.

In summary, our main contributions are as follows: (i)
Rather than explicit regularization that suffers from high
computational usage or direct smoothing that ignores the
discontinuities caused by multiple motion flows, we decom-
pose the field into finite highly smooth sub-fields which
belong to different motion patterns. Then the regulariza-
tion is implicitly achieved and the piecewise smoothness
is naturally fulfilled. (ii) We implement the decomposition
of the motion field in a discrete and learnable manner. It
is the first time learning two-view correspondences with a
deep decomposition of the motion field. We also devise a
masked decomposition strategy to further mitigate the influ-
ence of outliers. (iii) We design a network DeMatch lever-
aging deep decomposition of the motion field. We evaluate
its effectiveness on multiple tasks, which outperforms the
state-of-the-arts. We also further demonstrate the effect of
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Figure 2. Architecture of DeMatch. Coherence Constraint Layer includes Decomposition and Recovery blocks. After mapping motion
vectors into deep space, { ℓf i} that describe motion field ℓF are clustered by several motion patterns {bk}, thus ℓF is decomposed into
finite sub-fields { ℓFk}, which are represented by { ℓzk}. The masked strategy is applied during the decomposition with inlier probability
{ ℓpi} from the former layer. Then global enhancement is conducted, and a cleaner motion field ℓ+1F described by { ℓ+1f i} is recovered
with enhanced representations { ℓz̃k}. Finally, the output logits { ℓω̂i} are used to calculate loss and probability { ℓ+1pi}.

all the components and DeMatch’s promising properties.

2. Method
The crucial innovation of DeMatch lies in the deep decom-
position of the motion field to incorporate the prior knowl-
edge of smoothness and coherence, where complex ex-
plicit regularization can be realized implicitly and piecewise
smoothness property can be achieved naturally. We first de-
fine several learnable tokens as motion patterns and assign
putative motion vectors into different clusters by these pat-
terns. Each cluster can generate a highly smooth sub-field
so that the original motion field is decomposed, and the mo-
tion patterns are regarded as a basis. The architecture of
DeMatch is shown in Figure 2. Specifically, after the ini-
tial module that upgrades motion vectors into high dimen-
sional space, we decompose the original motion field into
several sub-fields depending on the learnable motion pat-
terns as the basis, where the masked decomposition strat-
egy is executed and global information is enhanced. Then
we recover a cleaner motion field with these highly smooth
sub-fields so that we derive correct motion vectors. Finally,
the inlier/outlier classification results are predicted accord-
ing to the ultimate motion vectors. DeMatch is stacked L
times totally with the operations of Decomposition and Re-
covery. Next, we present the new approach in detail.

2.1. Initialization of Motion Vector

The sparse motion vectors are often used as the input of
motion coherence-based outlier rejection methods [17, 19].
Once given N putative correspondences {(xi,yi)|i =
1, . . . , N, xi ∈ R2, yi ∈ R2}, the putative motion vec-
tors are calculated by {mi = (xi,di)|i = 1, . . . , N, mi ∈
R4}, where xi and yi are the coordinates of two corre-
sponding keypoints, and di = yi − xi is the displacement.
Furthermore, for learning-based methods particularly, high
dimensional motion vectors are needed to learn better deep
features [17, 43]. Hence we represent the motion vectors in
a high dimensional space at the very beginning of DeMatch

(i.e. layer 0) as an initialization:

0f i = E(mi), i = 1, . . . , N. (1)

E(·) tries to upgrade the dimension of mi ∈ R4 to 0f i ∈
RC by conducting positional embedding [35] (C = 128
as default). Details of the initial module are shown in the
Supplementary Material (S.M.).

2.2. Decomposition of Motion Field

As the main component of DeMatch, the decomposition
block starts with defining a few learnable tokens of mo-
tion patterns as the basis. Motion vectors can be clus-
tered according to different patterns, then the original mo-
tion field is decomposed to several highly smooth sub-fields
formed by these clusters, where motion coherence is guar-
anteed. Additionally, we also introduce masked decompo-
sition strategy and global information enhancement which
contribute a lot to the performance.
Main Process of Decomposition. A dense motion field
F : X → D,F ∈ F,xi ∈ X,di ∈ D is objectively ex-
istent in two-view images, which describes the correspon-
dence of every point in the image space, where F is the
functional space, X ⊆ R2 is the image space and D ⊆ R2

is the displacement space. However, F is heavily contami-
nated by a large number of outliers, whose effects are mod-
eled as additive high-frequency noise Fn due to their ran-
dom distribution property [14, 19], i.e., F = F̃ + Fn,
where the clean field F̃ is estimated almost completely
by inliers. Furthermore, due to the consistency of inliers,
the motion vectors can be divided into finite clusters as
{Mk|k = 1, . . . ,K} [9], where K is the total number of
clusters. Correspondences in each cluster share the same
motion pattern [14], thus each cluster can form a highly
smooth sub-field, together they recover the clean field F̃ .
Hence, the original motion field can be decomposed as:

F = F̃ + Fn =
∑K

k=1 Fk + Fn, (2)
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where the summation term can also be deemed as the “low-
frequency” part of F . Fk means the highly smooth sub-
field formed by motion vectors {mk

i |i = 1, . . . , |Mk|} that
belong to the k-th cluster Mk, and {mk

i } share the same
motion pattern bk. In other words, to generate Fk, the mo-
tion vector mi that subordinates to the same motion pattern
bk should be grouped into the same cluster:{

mi ∈ Mk, if sim(bk,mi) ≥ τ ,

mi /∈ Mk, otherwise.
(3)

The function sim(bk,mi) attempts to measure the similar-
ity between motion vector mi and motion pattern bk, and τ
is a threshold. Eq. (3) illustrates that, if a motion vector mi

is more similar to a motion pattern bk, it will more likely
belong to the cluster Mk represented by that motion pat-
tern. After such clustering, the highly smooth sub-field Fk

can be obtained with cluster Mk:

Fk = ϕ(Mk) = ϕ({mk
i |i = 1, . . . , |Mk|}). (4)

The interpolating function ϕ(·) approximates the dense mo-
tion field with sparse motion vectors [2, 19]. With Eqs. (3)
and (4), all smooth sub-fields can be expressed theoretically.

However, the hard assignment of motion vectors in
Eq. (3) is not differentiable, leading to the gradient disap-
pearance in the deep network. Hence, we treat the similarity
sim(bk,mi) ∈ [0, 1] as the weight for each motion vector
to achieve soft assignment, thus rewriting Eq. (4) as:

Fk = ϕ({sim(bk,mi) ·mi|i = 1, . . . , N}). (5)

Therefore, the sub-field Fk can be calculated in a differen-
tiable way. Furthermore, due to the highly smooth Fk is
derived from the motion vectors of merely one motion pat-
tern, we can assume that it depends on the motion vector zk

only, i.e., Fk = ϕ({zk}). Comparing it with Eq. (5):

zk =
∑N

i=1 sim(bk,mi) ·mi, sim(bk,mi) ∈ [0, 1]. (6)

From Eq. (6), the motion vector zk which supports the sub-
field Fk actually describes the projection of all motion vec-
tors (i.e. the projection of motion field F) on a particu-
lar motion pattern bk, thus bk can be regarded as the basis
vector and zk is the coefficient of F on bk. In this way,
original motion field F in Eq. (2) is decomposed into finite
highly smooth sub-fields {Fk} while Fn caused by outliers
is ignored naturally, and {zk} are both the support motion
vectors and the representations of {Fk} on the basis {bk}.

To implement Eq. (6) in a learnable pipeline, we convert
mi into high dimensional space with Eq. (1), and set {bk}
as learnable tokens with bk ∈ RC . Moreover, we add some
learnable weights for every element in Eq. (6) and choose
Softmax operation as the similarity function sim(·, ·), then

Eq. (6) exhibits a strong resemblance to the attention mech-
anism [35], and we rewrite it with matrix form:

Z=A(B,F )=Softmax
(
(WQB)(WKF )

T

√
C

)
WVF , (7)

where WQ, WK , WV are learnable weights, and B ∈
RK×C , F ∈ RN×C , Z ∈ RK×C are the matrix forms of
{bk}, {f i}, {zk} with complementary columns of all-one
vectors as bases. A(B,F ) calculates the similarity scores
between motion features and learnable basis, aggregating
information from the motion field to pre-defined motion
patterns. Practically, Eq. (7) is implemented by a stronger
graph attention network (GAT) [36]. It realizes information
aggregation among unordered data with standard attention
including feed-forward network and shortcut connection:

Z = G(B,F ) = B + FFN(B∥A(B,F )), (8)

where G(·, ·) indicates the GAT, ∥ denotes concatenating by
channels, and FFN(·) means feed-forward network (FFN)
that compacts the result of concatenation to the same chan-
nels as B. With Eq. (8), original motion vectors are clus-
tered and the motion field is decomposed with the finite ba-
sis. Furthermore, referring to existent learning-based meth-
ods, we adopt the consistently used multi-layer progressive
structure [17, 42, 43] to gradually filter out the outliers and
improve the network performance. Hence, the decomposi-
tion of the motion field in layer ℓ is represented as:

ℓZ = G(B, ℓF ), ℓ = 0, . . . , L− 1, (9)

where L denotes the number of layers, B = {bk}, ℓF =
{ ℓf i},

ℓZ = { ℓzk} are the learnable basis, the motion
vector features, and the sub-field representations in layer
ℓ. Note that the basis {bk} does not change from different
layers to ensure the stable decomposition of ℓF , and the
structure details of the GAT can be seen in the S.M.
Global Information Enhancement. Global information
has been proven to play an important role in learning-based
outlier rejection methods [41, 44]. Although the global in-
formation is extracted implicitly in Eq. (9), we still expect
to further emphasize it. Thus, we update the representations
of sub-fields by global self-attention with GAT in layer ℓ:

ℓ
Z̃ = G( ℓZ, ℓZ), ℓ = 0, . . . , L− 1. (10)

Then global context is embedded into the representations of

sub-fields as
ℓ
Z̃ = { ℓz̃k}.

Masked Decomposition Strategy. As mentioned above,
even though the negative influence of outliers seems to
be eliminated during decomposing and clustering (i.e.,
Eqs. (2)-(4)), the soft assignment scheme used in Eq. (5)
is inevitably disturbed by outliers. So we try to remove the
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known distinct outliers before the decomposition to miti-
gate the adverse influence. Specifically, once we obtain the
inlier probability of all correspondences as ℓp = { ℓpi |i =
1, . . . , N} where ℓp ∈ [0, 1]

N is a probability vector pre-
dicted by the inlier predictor of layer ℓ − 1 (the inlier pre-
dictor is described in Section 2.4), we expand the vector ℓp
to a matrix ℓP ∈ [0, 1]

N×C by repeating along the column
so that the masked decomposition in Eq. (9) of layer ℓ is:

ℓZ = G(B, ℓP ⊙ ℓF ), ℓ = 0, . . . , L− 1, (11)

where ⊙ is Hadamard product. The probability ℓpi of out-
lier is 0, so that false matches contribute nothing to sub-
fields and their representations. Note that for the first layer
of DeMatch, there is no upper layer that provides the prob-
ability of matches, so we assume 0p = 1.

By now, with Eqs. (7)-(11), the original motion field ℓF
has been decomposed into several highly smooth sub-fields,
and the representations of sub-fields embedded by global
context on the pre-defined basis are { ℓz̃k}. Subsequently,
a cleaner motion field should be recovered with these “low-
frequency” sub-fields, so that motion vectors of outliers are
corrected and the piecewise smoothness can be guaranteed.

2.3. Recovery of A Cleaner Motion Field

Acting as the respectively unique support motion vectors of
sub-fields, motion representations { ℓz̃k} can be obtained
from motion vector features { ℓf i} with Eqs. (6)-(8). Thus
new motion vector features ℓ+1F = { ℓ+1f i} can be also
derived from the support motion vectors in turn:

ℓ+1F = G( ℓF ,
ℓ
Z̃), ℓ = 0, . . . , L− 1. (12)

Note that 0F is obtained from Eq. (1). The new high di-
mensional motion vectors ℓ+1F are the input of the next
layer and can be easily utilized to describe a recovered mo-
tion field. So with Eq. (12), a smooth field ℓ+1F is recov-
ered implicitly with the representations of “low-frequency”
highly smooth sub-fields, and the new motion vector ℓ+1f i

derived from ℓ+1F is corrected relative to ℓf i.

2.4. Prediction of Inliers

The corrected motion vector ℓ+1f i can substitute ℓf i af-
ter the decomposition and recovery. By the rule that motion
vectors of inliers should not change a lot after correcting
but outliers change prominently, we can compare the dif-
ference between them to classify inliers and outliers with
a threshold. Refer to [42, 43], an inlier predictor is also
used in each layer of DeMatch. The input of predictor is
{ ℓ+1f − ℓf} while output is predicted logits ℓω̂ = { ℓω̂i}
and inlier probability ℓ+1p = max (0, tanh ℓω̂). Details
of the inlier predictor are shown in the S.M.

2.5. Loss Functions

We choose a widely used loss function [17, 41–43] as:

L =
∑L−1

ℓ=0 Lcls(ω, ℓω̂) + λLreg(E,
ℓ
Ê), (13)

where L includes classification loss Lcls and regression loss
Lreg , λ is a hyper-parameter to balance them. Lcls is a
binary cross entropy loss, ω is the weakly supervised la-
bels judged by a threshold (e.g. 10−4) with Sampson dis-
tance [12]. Lreg is also obtained with the Sampson distance:

Lreg(E, Ê) =

N∑
i=1

(yT
i Êxi)

2

∥Exi∥2[1]+∥Exi∥2[2]+∥ETyi∥2[1]+∥ETyi∥2[2]
,

(14)

where Ê is the essential matrix calculated by the weighted
eight-point algorithm [41] with inlier probability p, E is
ground truth, and ∥ν∥[i] is the i-th element of vector ν.

2.6. Implementation Details

For implementation, we normalize the coordinates of key-
points to [−1, 1] with image size or camera intrinsic. We
stack the Coherence Constraint Layer 5 times (i.e., L = 5),
and conduct Eq. (9) 2 times and Eq. (10) 4 times in a layer
to enhance the representations of sub-fields and the embed-
ding of global information. We use Adam [13] for training
with a learning rate of 10−4 during the first 80k iterations
then decaying with factor 0.999996 every step. We stop the
training at 500k iterations for outdoor scenes and 700k iter-
ations for indoor scenes. The batch size is set as 32. λ is 0
during the first 20k iterations and then 0.5 [42]. All training
and testing are performed with a single RTX3090 GPU.

3. Experiments
3.1. Relative Pose Estimation

Many vision applications include the estimation of posi-
tional relationships (rotation and translation) between the
cameras that capture image pairs in the same scene. The ac-
curacy of estimation heavily depends on the quality of pre-
dicted inliers. We evaluate DeMatch on this task with both
outdoor and indoor scenes. Refer to the settings in [42],
we use outdoor YFCC100M [32] and indoor SUN3D [37]
datasets, and detect up to 2k keypoints with SIFT [18],
building the putative set with the nearest neighbor (NN)
method. To evaluate estimation accuracy, we report the
area under the cumulative error curve (AUC) of the max-
ima pose error of rotation and translation at multiple thresh-
olds (5◦, 10◦, 20◦) [41, 42]. We choose the NN method as
a baseline which retains all putative correspondences. Then
we compare DeMatch with several classical outlier rejec-
tion methods [3, 9, 19, 20], together with a few learning-
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Table 1. Relative pose estimation results with the weighted eight-point algorithm / RANSAC. AUC at 5◦, 10◦, 20◦ is reported respectively.

Method
YFCC100M [32] SUN3D [37]

@5◦ @10◦ @20◦ @5◦ @10◦ @20◦

NN – / 3.47 – / 9.10 – / 18.60 – / 1.04 – / 3.43 – / 8.75
GMS [3] – / 13.29 – / 24.38 – / 37.83 – / 4.12 – / 10.53 – / 20.82
LPM [20] – / 15.99 – / 28.25 – / 41.76 – / 4.80 – / 12.28 – / 23.77
CRC [9] – / 16.51 – / 28.01 – / 41.38 – / 4.07 – / 10.44 – / 20.87
VFC [19] – / 17.43 – / 29.98 – / 43.00 – / 5.26 – / 13.05 – / 24.84

PointCN [41] 10.16 / 26.73 24.43 / 44.01 43.31 / 60.49 3.05 / 6.09 10.00 / 15.43 24.06 / 29.74
OANet [42] 15.92 / 27.26 35.93 / 45.93 57.11 / 63.17 5.93 / 6.78 16.91 / 17.10 34.32 / 32.41
CLNet [44] 24.34 / 31.45 44.69 / 51.06 63.61 / 68.40 1.55 / 6.67 5.11 / 16.81 13.61 / 31.45

MS2DGNet [6] 20.61 / 31.55 42.90 / 50.94 64.26 / 68.34 5.88 / 7.13 16.83 / 17.80 34.28 / 33.47
NCMNet [16] 26.89 / 32.30 46.19 / 52.29 64.21 / 69.65 6.31 / 7.10 16.84 / 18.56 33.11 / 35.58
LMCNet [17] 22.35 / 30.48 43.57 / 49.84 63.34 / 66.94 7.08 / 6.84 19.09 / 17.62 37.15 / 33.43

ConvMatch [43] 26.83 / 31.69 49.14 / 51.41 67.91 / 68.45 8.76 / 7.32 22.23 / 18.45 40.49 / 34.41
DeMatch (Ours) 30.89 / 32.98 52.67 / 52.37 70.33 / 69.01 9.31 / 7.44 23.10 / 18.66 41.55 / 34.78

OANet LMCNet ConvMatch DeMatch (Ours)
Figure 3. Qualitative illustration of outlier rejection. Mark false
matches with red while correct matches with blue. The relative
pose estimation results (error of rotation and translation) are pro-
vided in the top left corner. Zoom in for better visualization.

based methods [6, 16, 41, 42, 44] that classify correspon-
dences directly, and [17, 43] that consider coherence and
smoothness property. During the evaluation, we try to use
different robust model estimators including the weighted
eight-point algorithm [41] and RANSAC [10] to calculate
the positional relationship from predicted inliers. Note that
the weighted eight-point algorithm requires the inlier prob-
ability of each correspondence thereby being unsuitable for
classical methods. All the results are shown in Table 1, De-
Match outperforms all other methods. We further illustrate
the qualitative results of outlier rejection and relative pose
estimation in Figure 3. The excellent performance reveals
that the motion coherence-based methods determine inliers
more inherently than the directly classifying methods, and
that decomposing the motion field on a finite basis is a bet-
ter approach to exploit the prior knowledge of coherence
and smoothness, especially in the case of large scene dis-
parities. More visualization results are shown in the S.M.

3.2. Visual Localization

Advances in correspondence learning also benefit practi-
cal issues such as visual localization [25, 28], which aims
to estimate a 6-DOF position of a query image with re-

Table 2. Visual localization results.

Method
Day Night

(0.25m,2◦) / (0.5m, 5◦) / (5.0m, 10◦)
PointCN [41] 83.1 / 92.2 / 96.2 69.4 / 79.6 / 89.8
OANet [42] 83.1 / 92.5 / 96.6 72.4 / 80.6 / 90.8
CLNet [44] 83.3 / 92.4 / 97.0 71.4 / 80.6 / 93.9

MS2DGNet [6] 83.4 / 92.7 / 97.2 72.4 / 82.7 / 92.9
LMCNet [17] 84.1 / 92.8 / 97.1 71.4 / 81.6 / 93.9

ConvMatch [43] 84.5 / 92.7 / 96.8 73.5 / 83.7 / 91.8
DeMatch (Ours) 85.2 / 92.8 / 97.1 73.5 / 84.7 / 94.9

spect to a 3D model. This task is strongly challenged by
complicated conditions such as viewpoint and illumination
changes, thus accurate outlier rejection is required. Follow-
ing [5], we integrate our method into the official HLoc [25]
pipeline for visual localization on the Aachen Day-Night
benchmark [27, 28]. Particularly, we extract up to 4k key-
points per image with SIFT [18], match them with the mu-
tual nearest neighbor (MNN) method and remove outliers
with correspondence learning methods, triangulate an SfM
model from day-time images with known pose, and register
both day-time and night-time query images from the pre-
dicted inliers with COLMAP [29]. We select almost the
same compared methods as relative pose estimation. All
models are trained with SIFT features on YFCC100M [32]
dataset. Table 2 reports the pose estimation accuracy of dif-
ferent methods on the visual localization task. DeMatch
performs better, especially in the difficult night-time scenes.

3.3. Analysis

We further analyze DeMatch in this section. First, we cal-
culate the computational usage to show that the decompo-
sition in DeMatch is more efficient than explicit regular-
ization, and display the natural piecewise smoothness prop-
erty through appropriate visualization. Both of them testify
that DeMatch does solve the problems in existing methods.
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Table 3. Computational usage from four different aspects.

Method Time (ms) Flops (G) Param (M) Mem (MB)
PointCN [41] 8.52 1.181 0.595 7.54
OANet [42] 13.91 1.841 2.473 20.64
CLNet [44] 20.55 1.921 0.953 87.78

MS2DGNet [6] 16.63 5.044 2.613 95.88
LMCNet [17] 227.15 – 0.925 25.08

ConvMatch [43] 24.65 3.783 7.494 51.49
DeMatch (Ours) 26.36 2.346 5.853 41.97

Figure 4. Illustration of piecewise smoothness.

Then we prove its compatibility with matchers, evaluate the
generalization ability on different datasets and descriptors,
determine the parameters of the network structure, test the
effect of different initializations of the learnable basis, and
perform ablation studies to reveal the effectiveness of sev-
eral components and strategies in DeMatch.
Computational Usage. We calculate the computational us-
age, including average running time (Time), floating point
operations (Flops), model parameter size (Param), and peak
memory usage (Mem). Note that the average running
time is the running time of the algorithm per image on
YFCC100M [32]. Table 3 shows the results. In particu-
lar, LMCNet costs a lot due to its graph construction and
matrix decomposition for solving the explicit regularization
term [17], while DeMatch runs much faster with implicit
regularization during the decomposition of the motion field.
Compared to other methods, DeMatch is able to perform
better with comparable computational usage.
Piecewise Smoothness Property. To demonstrate that the
piecewise smoothness property of DeMatch is generated
naturally with the decomposition of the motion field, we
illustrate the correspondence and motion clusters during the
assignment process of Eq. (3) with the similarity scores in
Eq. (7). As illustrated in Figure 4, the correspondences (the
left column) and the motion vectors (the middle column) are
grouped in different colors, each cluster is highly consistent
and subordinates to a particular motion pattern. The formed
sub-fields are highly smooth (the right column) although
different sub-fields follow different motion flows, hence
the motion field recovered by these sub-fields that respec-
tively belong to unique motion flows is obviously piecewise
smooth, maintaining discontinuities at the edge of different
sub-fields correctly. Note that we range all the clusters by

Table 4. Apply DeMatch after different matchers. The metric is
AUC with different geometric model estimators.

Matcher Filter Estimator @5◦ @10◦ @20◦

SP+SG [7, 26]

–
DLT

18.87 32.92 48.87
DeMatch 30.71 51.38 70.11

–
RANSAC [10]

38.06 58.38 74.67
DeMatch 39.90 60.65 76.51

SP+LG [7, 15]

–
DLT

26.65 42.62 58.89
DeMatch 31.60 52.38 71.04

–
RANSAC

39.42 59.69 75.89
DeMatch 40.53 60.72 76.68

LoFTR [31]

–
DLT

5.24 13.24 26.40
DeMatch 20.97 40.38 60.69

–
RANSAC

39.80 60.03 76.07
DeMatch 40.84 61.11 76.71

DKM [8]

–
DLT

29.02 44.90 59.75
DeMatch 32.14 49.00 66.56

–
RANSAC

44.10 63.75 78.42
DeMatch 45.14 64.99 79.45

the number of correspondences, and draw the top-4 clusters
for better visualization. More results are shown in the S.M.
Compatibility with Matchers. We evaluate the perfor-
mance of relative pose estimation task with or without
DeMatch on the YFCC100M [32] dataset using differ-
ent widely used matchers, including SuperPoint [7] paired
with SuperGlue [26] (noted as SP+SG), SuperPoint paired
with LightGlue [15] (noted as SP+LG), LoFTR [31], and
DKM [8], while the pose estimator is Direct Linear Trans-
form (DLT) or RANSAC [10]. For SP+SG and SP+LG, we
follow the settings of SuperGlue, detecting up to 1k key-
points. For LoFTR and DKM, the evaluation pipeline is
almost as the same as [33]. Note that with the suggestions
of the same experiment in [17], we do not adopt the fil-
tering strategy in each method itself and retain all putative
correspondences as input. Results in Table 4 reveal that, as
a general method for outlier filtering, DeMatch can further
bring improvement over the state-of-the-art matchers and
can serve as a complementary module for practical usage.
Generalization Ability. Generalization means applying the
same model to different descriptors and scenes. It is com-
mon that the model learned from SIFT [18] performs poorly
on other descriptors, or the model that performs well in out-
door scenes almost fails in indoor scenes. In general, mo-
tion coherence-based methods display better generalization
ability than the directly classifying methods for solving out-
lier rejection more naturally [43], including DeMatch in our
paper. To demonstrate it, we repeat the relative pose estima-
tion on YFCC100M [32] with RootSIFT [1], LIFT [40] and
SuperPoint [7], and on SUN3D [37] with SIFT, RootSIFT,
LIFT and SuperPoint, employing the same model trained on
YFCC100M with SIFT. We detect up to 2k keypoints, and
use an NN method to generate the putative set. Results are
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Table 5. Generalization ability test. AUC@5◦ with the weighted eight-point algorithm is reported.

Method
YFCC100M [32] SUN3D [37]

RootSIFT [1] LIFT [40] SuperPoint [7] SIFT [18] RootSIFT LIFT SuperPoint
PointCN [41] 10.45 5.05 8.33 0.35 0.42 0.49 1.08
OANet [42] 16.09 11.38 13.49 0.89 0.98 0.86 1.00
CLNet [44] 24.62 15.47 22.39 0.75 0.80 0.66 1.01

MS2DGNet [6] 21.16 14.97 16.44 1.60 1.74 1.21 1.50
LMCNet [17] 22.90 15.71 18.36 1.64 1.69 1.17 1.59

ConvMatch [43] 27.53 17.75 23.74 2.19 2.37 2.03 2.17
DeMatch (Ours) 31.34 21.92 27.91 2.21 2.48 2.09 2.12

Table 6. Parameter settings. Report AUC@10◦ with the weighted
eight-point algorithm. One parameter is fixed while another varies.

Metric L=3 L=5 L=7 K=32 K=48 K=64
AUC@10◦ 45.38 52.67 53.05 49.85 52.67 51.79
Flops (G) 1.425 2.346 3.268 2.270 2.346 2.423
Param (M) 3.520 5.853 8.185 5.853 5.853 5.853

Table 7. Different initialization methods for B. Results of AUC
on relative pose estimation with RANSAC are reported.

Initialization @5◦ @10◦ @20◦

All-zeros 30.83 49.96 66.86
All-ones 30.94 50.16 67.14

Normal (default) 32.98 52.37 69.01
Uniform 33.73 53.16 69.70

Kaiming-normal 33.15 52.58 69.36
Kaiming-uniform 33.48 53.06 69.68

shown in Table 5. DeMatch displays the consistently excel-
lent generalization of motion coherence-based methods.
Parameter Settings. It is important to determine the num-
ber of Coherence Constraint Layers L and of motion pat-
terns K. Theoretically, a larger L is conducive to filtering
out more outliers while leading to higher computational us-
age, but a suitable value of K should be chosen because too
few base vectors may result in an over-smooth motion field
and too many base vectors are just redundant where outliers
may be involved. We finally choose L = 5,K = 48 to
achieve performance and consumption balance. The results
of outdoor relative pose estimation in Table 6 with different
L and K can support our choice. We further analyze why
it is a good choice in the S.M. We also examine the effect
of the number of times Eqs. (9) and (10) are reused in each
layer on the performance of DeMatch in the S.M.
Initialization of Basis. We try different initializing dis-
tributions for the learnable basis B, including all-zeros,
all-ones, uniform, normal (the default method), kaiming-
uniform, and kaiming-normal. We repeat the relative pose
estimation and results are shown in Table 7. Expect the all-
zeros and all-ones, the results are not that different. Thus,
any reasonable initialization of B can give a good result.
Ablation Studies. We conduct ablation studies by repeat-

Table 8. Ablation studies. “Att.” means the attention type, in-
cluding standard type “S.” and vanilla type “V.”. “De.” means
the decomposition process, “Mask” means the masked decomposi-
tion strategy, “Global” means the global information enhancement
module. AUC with the weighted eight-point algorithm is reported.

Num. Att. De. Mask Global @5◦ @10◦ @20◦

(i) S. ✓ ✓ ✓ 30.89 52.67 70.33
(ii)

S.

✓ ✓ 29.60 51.10 69.19
(iii) ✓ ✓ 25.29 46.55 65.48
(iv) ✓ 22.39 43.64 63.47
(v) 18.23 38.48 59.15
(vi) V. ✓ ✓ ✓ 28.97 50.93 69.30

ing relative pose estimation. Results are shown in Table 8.
(i) is the full Dematch with standard attention in Eq. (8)
and the decomposition process, including its masked de-
composition strategy and global information enhancement
module. From (ii) to (v), we eliminate the components of
the decomposition process and even itself, the performance
drops progressively. And (vi) chooses vanilla attention in
Eq. (7), performing worse than (i). Table 8 reveals that De-
Match benefits from all the ingredients mentioned above.

4. Conclusion
We design a novel network called DeMatch for two-view
correspondence learning. Inspired by Fourier expansion,
DeMatch tries to constrain the coherence of the motion field
by retaining the main “low-frequency” and smooth part, de-
composing the contaminated motion field in deep space. By
choosing a finite basis that describes a few motion patterns,
motion vectors are clustered while outliers are removed, and
the potential field is accordingly decomposed into several
highly smooth sub-fields. The finite decomposition can be
regarded as an implicit regularization term, achieving lower
computational usage, and the recovery of the cleaner field
with these sub-fields generates piecewise smoothness natu-
rally. Extensive experiments demonstrate the superiority of
our method and the promising properties mentioned above.
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