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Abstract

We delve into pseudo-labeling for semi-supervised
monocular 3D object detection (SSM3OD) and discover
two primary issues: a misalignment between the predic-
tion quality of 3D and 2D attributes and the tendency of
depth supervision derived from pseudo-labels to be noisy,
leading to significant optimization conflicts with other re-
liable forms of supervision. To tackle these issues, we
introduce a novel decoupled pseudo-labeling (DPL) ap-
proach for SSM3OD. Our approach features a Decou-
pled Pseudo-label Generation (DPG) module, designed
to efficiently generate pseudo-labels by separately process-
ing 2D and 3D attributes. This module incorporates a
unique homography-based method for identifying depend-
able pseudo-labels in Bird’s Eye View (BEV) space, specif-
ically for 3D attributes. Additionally, we present a Depth
Gradient Projection (DGP) module to mitigate optimiza-
tion conflicts caused by noisy depth supervision of pseudo-
labels, effectively decoupling the depth gradient and re-
moving conflicting gradients. This dual decoupling strat-
egy—at both the pseudo-label generation and gradient lev-
els—significantly improves the utilization of pseudo-labels
in SSM3OD. Our comprehensive experiments on the KITTI
benchmark demonstrate the superiority of our method over
existing approaches.

1. Introduction

Monocular 3D Object Detection (M3OD) is designed to
detect objects in 3D space using a single 2D RGB image
as input, playing a pivotal role in contemporary 3D per-
ception systems across applications like autonomous driv-
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Figure 1. (a) Visualization of Pseudo-Labels and Ground Truth
in Image Plane and Bird’s Eye View (BEV) Plane. Red: Ground
Truth. Yellow: Detected Bounding Boxes. (b) Statistical analysis
of classification scores and depth errors (PCC: Pearson Correla-
tion Coefficient). (c) The proportion of different types of gradi-
ent conflicts occurring. gsd: Gradient of ground truth depth loss.
gud: Gradient of pseudo-label depth loss. go: Gradient of other
attribute supervision loss. Gradient conflicts between gi, gj when
cos(gi, gj) < 0.

ing and robotic navigation. The major challenge in current
M3OD methods lies in their dependence on precise anno-
tations, a labor-intensive and costly process. To overcome
this obstacle, Semi-Supervised Monocular 3D Object De-
tection (SSM3OD) has emerged as a promising solution.
It capitalizes on the abundance of readily available unla-
beled images to enhance the performance of M3OD de-
tectors. In line with prevalent semi-supervised learning
techniques [1, 30, 31, 39], pseudo-labeling and consistency
regularization are two kinds of widely used technology in
SSM3OD [16, 37]. This paper specifically explores the
pseudo-labeling technique within the realm of SSM3OD.

M3OD is inherently a multi-task challenge, encom-
passing a range of both 2D (e.g. classification) and
3D (e.g. depth) attribute predictions. We observe that there
is a significant disparity between the 2D and 3D attributes.
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As illustrated in Fig. 1 (a), the detection with high confi-
dence scores has subpar depth and orientation predictions in
considerable cases. Taking the depth attribute as an exam-
ple, our analysis reveals a weak correlation (PCC: -0.196)
between the quality of depth prediction and the associated
classification confidence, as depicted in Fig. 1 (b). This is-
sue stems from the perspective projection, which compli-
cates the distinction of 3D attribute quality on the 2D image
plane, as illustrated in Fig. 1 (a). However, most existing
SSM3OD methods [16, 37] overlook this disparity and only
rely on the accuracy of 2D attributes(e.g. confidence score)
to achieve pseudo-label generation, which leads to unreli-
able supervision for the 3D attributes.

To address this issue, we introduce a decoupled pseudo-
label generation (DPG) module to generate more effective
pseudo-labels for both 2D and 3D attributes. Specifically,
given the disparity between 2D and 3D attributes, we pro-
pose to separate the pseudo-label generation for these two
types and develop a Homography-based Pseudo-label Min-
ing (HPM) module to generate pseudo-labels specifically
for 3D attributes. Leveraging the estimated 2D-3D homog-
raphy transformation, HPM transforms predictions from the
2D image plane to the 3D Bird’s Eye View (BEV) plane,
in which the pseudo-labels with reliable 3D attributes are
iteratively identified based on the localization error. How-
ever, due to the noisy nature of the depth estimation, we
observe a frequent conflict between the depth supervision
derived from pseudo-labels and other reliable supervision
sources (ground truth of depth, ground truth & pseudo-label
of the attributes except depth). As illustrated in Fig. 1 (c),
the gradient conflicts between the pseudo-label depth loss
and other reliable supervision loss (represented as gud vs
gsd and gud vs go) is more prevalent compared to conflicts
within the reliable supervision (gsd vs go). Such gradient
conflicts potentially undermine the utilization of reliable su-
pervision.

To mitigate this issue, we further develop a depth gra-
dient projection (DGP) module. This module effectively
projects the conflicting depth gradient towards the principal
reliable gradient, eliminating the harmful component. This
adjustment ensures that the depth supervision derived from
pseudo-labels is always in harmony with reliable supervi-
sion. By incorporating both the DPG and DGP modules, our
Decoupling Pseudo-Labeling (DPL) approach significantly
enhances the generation and utilization of pseudo-labels for
SSM3OD. We have conducted comprehensive experiments
to validate the efficacy of our method on the KITTI [9]
benchmark and achieved state-of-the-art results. Our con-
tributions can be summarized as follows:

• We identify and address the quality misalignment be-
tween the predictions of 2D and 3D attributes, an is-
sue previously overlooked in existing pseudo-labeling
SSM3OD methods.

• We introduce a decoupled pseudo-label generation mod-
ule featuring a homography-based depth label mining
module to generate reliable pseudo-labels for both 2D and
3D attributes.

• We develop a depth gradient projection module to miti-
gate the adverse effects potentially caused by noisy depth
pseudo-labels.

• Our extensive experimental results on the KITTI bench-
mark demonstrate that our approach significantly sur-
passes all previous state-of-the-art methods.

2. Related Work
Monocular 3D Object Detection. Monocular 3D object
detection (M3OD) aims to detect objects within a three-
dimensional space utilizing solely a single camera. Exist-
ing methods in M3OD can be broadly categorized into two
streams: one that relies exclusively on monocular images,
and another that incorporates supplementary data sources,
such as CAD models [19], dense depth map [7, 21, 33,
36, 38], and LiDAR [3, 4, 11, 11, 15, 25]. Owing to their
cost-effectiveness and ease of deployment, we focus on the
methods that rely solely on monocular images as input.
Initial efforts in the field [2, 18, 34] adapted conventional
2D object detection frameworks [26, 32, 43] to incorporate
3D object detection capabilities. Studies such as Mono-
DLE [22] and PGD [35] have highlighted the critical chal-
lenge in M3OD: precise depth prediction. In response, nu-
merous studies have sought to harness the synergy between
2D-3D geometric relationships [12, 14, 20, 28, 29] or ex-
ploit spatial context [6, 10, 13, 14, 17] to enhance depth es-
timation accuracy. MonoFlex [41] introduces a novel depth
ensemble approach, synthesizing various depth estimation
techniques to elevate detection performance significantly.
However, these advancements are largely contingent upon
annotations with precise depth, which are labor-intensive
and costly to obtain. Consequently, this research explores
the potential of semi-supervised learning methodologies to
alleviate the annotation burden.
Semi-Supervised Monocular 3D Object Detec-
tion. Semi-supervised monocular 3D object detec-
tion (SSM3OD) harnesses a wealth of unlabeled monocular
imagery alongside a limited corpus of precisely annotated
labeled monocular images to enhance monocular 3D
object detection efficacy. Mix-Teaching [37] introduces
a database-oriented pseudo-labeling strategy that pastes
pseudo-instances onto the background unlabeled images,
thereby generating additional training samples. It further
includes a model prediction ensemble-based pseudo-label
filter to isolate high-quality pseudo-labels. However, this
method does not fully address the distinct characteristics
between 2D and 3D attributes, resulting in sub-optimal
exploitation of 3D information in pseudo-label generation,
and consequently, less effective pseudo-labels. MVC-
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MonoDet [16] focuses on the consistency regularization
technique and designs a multi-view consistency strategy
to exploit the depth clue in the unlabeled multi-view
monocular images (video, stereo images). Our method
is orthogonal with [16] and focuses specifically on the
relatively underexplored pseudo-labeling strategies within
SSM3OD. It is noteworthy that [23, 24] also propose
pseudo-labeling methods for monocular 3D object detec-
tion. However, these methods derive pseudo-labels using
LiDAR point clouds, which inherently provide accurate
depth information for objects. In contrast, our method gen-
erates pseudo-labels exclusively from monocular images,
without relying on supplementary LiDAR data, presenting
a more challenging yet practical scenario.

3. Preliminary

Problem Definition. Given the labeled dataset as Dl =
(I l

i ,y
l
i)}

Nl
i=1, and unlabeled dataset Du = {(Iu

i )}
Nu
i=1,

where I l
i and Iu

i denote an RGB image of labeled dataset
and the unlabeled dataset respectively, and Nl and Nu is the
corresponding data amounts. yl

i = {(clj ,ol
j)}

Ni
j=1 is a list

of Ni 3D bounding box annotations for i-th labeled image,
where clj is the category label and ol

j is the 3D box label in-
cluding the orientation, dimension, and location. The target
of SSM3OD is to achieve monocular 3D object detection by
leveraging limited labeled images with additional abundant
unlabeled images. The optimization of the SSM3OD can be
formulated as:

L = Lsup + αLunsup, (1)

where Lsup and Lunsup are the supervised loss and unsu-
pervised loss and α is the loss weight and set to 1 by default.

4. Method

Fig. 2 presents an overview of our Decoupled Pseudo-
Labeling (DPL) approach for Semi-Supervised Monocu-
lar 3D Object Detection (SSM3OD). It employs the classic
teacher-student framework [31], where a teacher and stu-
dent network are involved, both of which are initialized by
a supervised pre-trained model. The teacher model gen-
erates pseudo boxes on unlabeled images, while the stu-
dent model is trained with labeled images with ground
truth annotation and unlabeled images with pseudo labels.
The teacher model is iteratively updated from the student
model using the exponential moving average (EMA) strat-
egy. Our DPL method integrates two key modules: Decou-
pled Pseudo-label Generation (DPG) and Depth Gradient
Projection (DGP), to enhance the effectiveness of pseudo-
label utilization in SSM3OD.

4.1. Decoupled Pseudo-label Generation

Given the fact that the prediction quality of 2D and 3D
attributes in SSM3OD is not aligned, we propose to decou-
ple the pseudo-label generation process for these two types
of attributes. We classify object category, 2D size, and the
projected 3D center as 2D attributes, and depth, 3D size,
and orientation as 3D attributes. For 2D attributes, the clas-
sification confidence threshold θc is used to filter pseudo-
labels, following [16]. For the 3D attributes, we introduce
a novel approach that leverages the homography geometric
relationship for 3D attribute pseudo-label generation. This
forms the basis of our Decoupled Pseudo-label Generation
(DPG), the unsupervised loss can be formulated as:

Lunsup = L2D(x2D, y2D) + αL3D(x3D, y3D), (2)

where x2D, x3D are 2D and 3D attributes prediction of
model output, and y2D, y3D are the two groups of pseudo-
labels for 2D and 3D attributes, respectively. The loss func-
tions L2D and L3D are consistent with MonoFlex [41].
With the decoupled design, both 2D and 3D attributes can
be supervised with more effective pseudo-labels.
Homography-based Pseudo-Label Mining Due to the
perspective projection, accurately gauging the quality of
3D attribute predictions for bounding boxes on the image
plane poses a challenge. In response, we have crafted a
unique homography-based depth pseudo-label mining mod-
ule. This module’s pivotal feature is the transposition of
predictions from the 2D image plane to the Bird’s Eye
View (BEV) plane using homography transformation. This
shift significantly improves the precision of assessing 3D
attribute predictions, such as depth and orientation.
Homography Transformation: Generally, let the coordi-
nates of a point on the ground surface as I = (u, v) in
the 2D Image plane and B = (xb, yb) in the BEV plane
as shown in Fig. 3. The transformation between homoge-
neous coordinates (u, v, 1) and (xb, yb, 1) can be describe
by a homography matrix M ∈ R3×3:

[xb, yb, 1]T = M [u, v, 1]T . (3)

The homography transformation [8, 42] is a geometric re-
lationship between two coordinate systems of 2D and 3D
plane. Therefore, with the flat ground assumption [10], dif-
ferent objects within an image will share the same homog-
raphy matrix.
Iteratively Pseudo-Label Mining: We develop an iterative
pseudo-label mining algorithm to acquire reliable 3D at-
tribute pseudo-labels, as detailed in 4.1. This algorithm uses
the deviation from a consistent homography transformation
as a measure of 3D attribute prediction quality.

Specifically, it initially selects pseudo-labels with rela-
tively accurate 3D attribute predictions to estimate the ini-
tial homography matrix reliably. To assist in this initial
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Figure 2. The overview of the Decoupled Pseudo-Labeling (DPL) method for SSM3OD. We conduct semi-supervised learning based on
the teacher-student framework after the supervised training stage. DPL consists of Decoupled Pseudo-label Generation (DPG) module
and Depth Gradient Projection (DGP) module. DPG decouple the 2D and 3D attribute and generate pseudo-labels independently, with
a Homography-based Label Mining (HLM) algorithm designed to generate pseudo-labels 3D attributes by harnessing the homography
transformation. DGP module utilizes a gradient projection operation to mitigate the potential negative impact of noisy depth supervision.

Point in Image Plane Point in LiDAR Space Point in BEV Plane

Input Image

ℋ!

ℋ"

ℋ#

T = 0

T = 1

T = 2

Figure 3. Illustration of HPM module. The homography transfor-
mation describes the coordinate mapping between the image plane
and the BEV plane. Starting with the initial pseudo-labels, we iter-
atively estimate the homography matrix Hi and search the reliable
pseudo-labels in BEV space. Green Box: The selected Pseudo-
Labels. Cyan Box: Model Prediction. Purple Box: Ground Truth.

generation of pseudo-labels, we employ the depth predic-
tion uncertainty σ from the Laplacian aleatoric uncertainty
loss [6], as defined in Eq. 4:

Ldepth =

√
2

σ
∥dgt − dpred ∥1 + log(σ), (4)

where dgt is the ground truth depth and dpred is the predicted
depth of an object, σ is known as the predicted depth uncer-
tainty to weight the prediction. We select the pseudo-labels
with σ < θu as the initial pseudo-labels.

Then, we select the bottom corner points and bottom
center points (5 points) of each initial 3D pseudo-bounding
box as candidate points to estimate the homography ma-
trix. The coordinates of these points in the image plane Ĩ =
(ũ, ṽ) are directly predicted by the teacher model [22, 41].

We then estimate the coordinates of these points in the BEV
plane. Specifically, we first get the positions of these points
in the camera coordinate system (x̃, ỹ, z̃) by the local trans-
formations [15] which is estimated from the dimensions,
orientations, and positions of the centers of the 3D boxes.

Then the coordinate in the lidar coordinate system can be
obtained by projecting with the inverse of extrinsic matrices
[R|T],

[x̃b, ỹb, z̃b]T = [R|T]
′
[x̃, ỹ, z̃]T . (5)

Therefore, the coordinates of these points in the BEV plane
are B̃ = (x̃b, ỹb). Denote the candidate points coordinates
in the image plane and the BEV plane of N objects, as
C̃I ∈ R2×5N and C̃B ∈ R2×5N , the homography trans-
formation M̃ can be derived by solving Eq.3 with Direct
Linear Transform (DLT) [27].

Finally, we apply the estimated homography matrix M̃
to the candidate points of the predicted bounding boxes that
have not been chosen as pseudo-labels yet to get their de-
sired coordinates in BEV space:

B̂ = [x̂b, ŷb, 1]T = M̃ [ũ, ṽ, 1]T . (6)

Ideally, the BEV coordinated obtained by the homogra-
phy transformation ĉb = (x̂b, ŷb) should be the same as
c̃bt = (x̃b, ỹb) estimated from the model prediction via Eq.5.
However, the poorly predicted 3D attributes (e.g. depth,
orientation) would result in the deviation. Therefore, this
deviation can serve as the proxy for the prediction quality
of these attributes, and we select the prediction satisfying
||ĉb − c̃bt ||2 < θh as the eligible pseudo-labels, where θh
is the pre-defined threshold. The newly obtained pseudo-
labels are then appended to the previously acquired pseudo-
labels to start a new iteration of homography matrix esti-
mation and pseudo-label filtering as shown in Fig. 3. The
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iterative process continues until either no new pseudo-labels
are obtained or the predefined maximum iteration limit, de-
noted as tmax, is reached. Please refer to the Appendix for
the complete algorithm.

4.2. Depth Gradient Projection

Due to the inherent limitations of depth estimation from
monocular images, the depth supervision from pseudo-
labels will be inevitably noisy and can cause optimization
conflict (i.e. conflicted gradient direction) with reliable su-
pervision. Concretely, we split the total loss into pseudo-
label depth loss Lud, ground truth depth loss Lsd and other
attributes loss Lo (including both labeled and unlabeled
loss). Their gradient are denoted as gud(θ), gsd(θ) go(θ),
respectively. Generally, since the pseudo-labels of the at-
tributes except for depth can be estimated with reasonable
accuracy than depth [35], Lsd and Lo can be regarded more
reliable than Lud. We check the optimization conflicts be-
tween different supervision as presented in Fig. 1. It clearly
shows that the gradient from depth pseudo-labels conflicts
with reliable supervision more frequently.

To address this issue, we develop a simple depth gradient
projection module to eliminate the possible negative impact
of noisy depth supervision from the gradient perspective.

Concretely, given that gsd and go conflict less frequently,
we combine them together and treat them as the optimiza-
tion principle gradient gp = go+gsd, which stands for opti-
mization direction of reliable supervision. Then, we project
the gud(θ) to the normal vector of gradient gp(θ) when the
conflict occurs:

g
′
ud(θ) =

gud(θ)−
gud(θ)gp(θ)

||gp(θ)||22
.gp(θ), if cos(gud, gp) < 0,

gud, otherwise
(7)

The obtained gradient g
′

ud(θ) thus has no conflicted gra-
dient component with gp(θ). Equipped with this module,
the noisy unsupervised depth loss is always guaranteed to
share common interests with reliable supervision and de-
liver an equilibrium optimization target.

5. Experiments
5.1. Experimental Setup

Dataset and Metrics. KITTI dataset [9] is the standard
dataset for M3OD, providing 7,481 images for training and
7,518 images for testing. Following the common prac-
tice [5], the training set is further split into 3,712 training
samples and 3,769 validation samples. For the unlabeled
data, we select the completely unlabeled video sequence in
the KITTI raw data that does not overlap with the video se-
quence of the training and validation split. This results in
approximately 35K unlabeled images, which are utilized as
our unlabeled dataset. We report the evaluation results on
the validation and test set based on AP |R40

.

Implementation Details. We choose MonoFlex [41], a rep-
resentative M3OD detector, to evaluate the effectiveness of
our method. All experiments are conducted using the of-
ficial code provided by the author. We first pre-train the
model using labeled data and then perform end-to-end semi-
supervised learning using both labeled and unlabeled data.
Each unlabeled image has weak and strong augmented ver-
sions, which are sent to the teacher and student network re-
spectively. The strong augmentation includes random hor-
izontal flips, photometric distortion, random gray, and ran-
dom Gaussian blur, while the weak augmentation only in-
volves random horizontal flips. During pseudo-label gener-
ation with the outputs of the teacher network, we first fil-
ter out predictions that are background with a classification
score threshold of 0.2. The θc, θu, and θh in the DPG mod-
ule are set to 0.4, 0.1, and 2.0 respectively, and tmax is set
to 10. More implementation details are in the Appendix.

5.2. Main Results

Tab. 1 presents the results on the KITTI test set. It shows
that by incorporating the proposed DPL for SSM3OD, our
method significantly boosts the performance of the base de-
tector. In particular, our method boosts the performance of
MonoFlex with +4.10 and +4.18 on AP3D and APBEV , re-
spectively. Moreover, based on MonoFlex, our method sur-
passes all existing SSM3OD methods by a large margin and
achieves a new state-of-the-art performance across all fully
supervised and semi-supervised methods. Specifically, inte-
grating our method into the MonoFlex, our method outper-
forms Mix-Teaching by +2.33 AP3D and +2.61 APBEV ,
and exceeds the performance of MVC-MonoDet by +2.11
and +2.01 on AP3D and APBEV .

5.3. Ablation Study

Components Effectiveness. We ablate the effects of de-
coupled pseudo-label generation (DPG) and depth gradi-
ent projection (DGP) module. The results are presented
in Tab.5. We start from the SSM3OD Baseline that uti-
lizes the classification confidence threshold 0.6 to filter the
pseudo-labels for both 2D and 3D attributes. It clearly
shows that integrating the decoupled pseudo-label genera-
tion(DPG) module improves the performance by 1.21 on
Car AP3D(Mod.) without bells and whistles. It demon-
strates the importance of decoupling the pseudo-labels gen-
eration process for 2D and 3D attributes. Further applying
the depth gradient projection (DGP) module to eliminate
potential gradient conflict leads to a 0.62 Car AP3D(Mod.)
improvement and reaches 19.85 AP3D (Mod.), which is
1.83 AP3D higher than the baseline.
Performance on More Base Detectors. Beyond the
MonoFlex, we conducted experiments on the KITTI val-
idation dataset with other monocular 3D object detec-
tors, including MonoDLE[22], PGD[35], GUPNet[20], and
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Table 1. Comparision with state-of-the-art (SOTA) Methods. We present the evaluation results of ‘Car’ category in the KITTI test set. †
denotes our reproduction results. For fair comparisons, we train Mix-Teaching with the same data volume as our method.

Method Extra Data Test AP3D|R40 Test APBEV |R40

Easy Mod. Hard Easy Mod. Hard
PatchNet

Depth
15.68 11.12 10.17 22.97 16.86 14.97

D4LCN 16.65 11.72 9.51 22.51 16.02 12.55
DDMP-3D 19.71 12.78 9.80 28.08 17.89 13.44

Kinematic3D Multi-frames 19.07 12.72 9.17 26.69 17.52 13.10
MonoRUn

LiDAR
19.65 12.30 10.58 27.94 17.34 15.24

CaDDN 19.17 13.41 11.46 27.94 18.91 17.19
MonoDTR 21.99 15.39 12.73 28.59 20.38 17.14
AutoShape CAD 22.47 14.17 11.36 30.66 20.08 15.59
SMOKE

None

14.03 9.76 7.84 20.83 14.49 12.75
MonoPair 13.04 9.99 8.65 19.28 14.83 12.89
RTM3D 13.61 10.09 8.18 - - -

PGD 19.05 11.76 9.39 26.89 16.51 13.49
MonoRCNN 18.36 12.65 10.03 25.48 18.11 14.10

Zhang et al. DLE 20.25 14.14 12.42 28.85 17.72 17.81
GUPNet 20.11 14.20 11.77 - - -

HomoLoss 21.75 14.94 13.07 29.60 20.68 17.81
Mix-Teaching Unlabeled 21.88 14.34 11.86 30.52 19.51 16.45

MVC-MonoDet Unlabeled 22.13 14.56 12.09 31.62 20.11 17.21
MonoFlex† None 19.23 12.57 10.73 26.83 17.94 15.16
DPLFLEX Unlabeled 24.19 16.67 13.83 33.16 22.12 18.74

Improvement v.s. Baseline +4.96 +4.10 +3.10 +6.33 +4.18 +3.58

Table 2. Performance of ‘Car’ category in the KITTI validation set based on MonoFlex under different amounts of unlabeled data. We
randomly chose 5K, 15K, and 25K data from the whole 35K KITTI unlabeled set as the unlabeled data.

Methods
Val, AP3D|R40

5K unlabel 15K unlabel 25K unlabel 35k unlabel
Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

MonoFlex † 22.80 17.51 14.90 22.80 17.51 14.90 22.80 17.51 14.90 22.80 17.51 14.90
DPLFLEX 24.61 18.76 16.39 25.23 18.86 16.47 26.05 19.22 16.84 26.51 19.84 17.13

Improvement +1.81 +1.25 +1.49 +2.43 +1.35 +1.57 +3.25 +1.71 +1.94 +3.71 +2.33 +2.23

MonoDETR[40]. We specifically omitted FCOS3D from
this study, as its performance on the KITTI dataset is subop-
timal as acknowledged by the authors. The results of these
experiments are detailed in Tab.4, showing consistent and
substantial performance improvements across the various
base detectors. These findings underscore the strong adapt-
ability to different monocular detectors of our method.
Effect of Labeled and Unlabeled Data Volume. We
present the impact of labeled and unlabeled data volume on
the performance of DPL in Tab.3 and Tab.2. Our approach
consistently enhances the performance of MonoFlex across
various volumes of labeled data. Particularly, our method
showcases significant benefits in scenarios where labeled
data is scarce. For instance, we observe a substantial per-
formance boost of +4.29 in AP3D|40 when only 10% of the
labeled training images are available. These results high-

light the superiority of our method in effectively leveraging
limited labeled data. Furthermore, as the volume of unla-
beled data increases, DPL showcases a more pronounced
improvement in performance. This underscores the scal-
ability of our method, highlighting its ability to leverage
larger amounts of unlabeled data effectively.
Analysis of Decoupled Pseudo-label Generation. We ab-
late different ways for pseudo-label generation in Tab.6. It
clearly shows that utilization of the classification confidence
threshold(thr=0.6) for pseudo-label generation only brings
limited improvement (+0.51 AP3D). This is attributed to
its poor ability to reflect the prediction quality of 3D at-
tributes, especially depth, leading to noisy depth pseudo-
labels with large depth prediction errors as presented in
Fig.5. As reported by [22], the model exhibits reasonable
performance in predicting objects at close range but has
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Table 3. Performance of ‘Car’ category in the KITTI validation set based on MonoFle under different labeled ratios. We randomly
chose 10%, 50%, and 100% of KITTI train split as the labeled data.

Methods
Val, AP3D|R40

10% 50% 100%
Easy Mod Hard Easy Mod Hard Easy Mod Hard

MonoFlex † 4.77 3.90 3.29 18.85 14.81 12.48 22.80 17.51 14.90
DPLFLEX 10.25 8.19 7.09 21.33 16.42 14.57 26.51 19.84 17.13

Improvement +5.48 +4.29 +3.8 +2.48 +1.61 +2.09 +3.71 +2.33 +2.23

Table 4. Performance of ‘Car’ category in the KITTI validation set under different base detectors. * Note that the provided code of
MonoDETR is only an intermediate version (not complete) which is confirmed officially by the authors. We also do not reproduce the
results reported in their paper.

Methods
Val, AP3D|R40

MonoDLE PGD GUPNet MonoDETR*
Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

Sup Baseline 17.25 13.87 11.83 19.27 13.22 10.64 22.76 16.46 13.72 26.95 18.87 15.52
DPL 19.31 15.67 13.72 21.34 15.34 12.49 24.48 18.51 14.89 28.12 20.81 17.37

Improvement +2.06 +1.80 +1.50 +2.07 +2.12 +1.85 +1.72 +2.05 +1.17 +1.17 +1.94 +1.85

Table 5. Ablation of the effectiveness of proposed components.
The experiments were conducted on the KITTI validation set with
MonoFlex. Car category’s performance AP3D/APBEV |R40 of
IoU = 0.7 is reported

DPG DGP Easy Mod. Hard
- - 23.13/30.14 18.02/23.83 15.24/20.18√

- 26.24/34.91 19.23/25.64 17.04/22.60√ √
26.51/35.02 19.85/26.37 17.13/23.08

limitations in predicting objects at a distance. Therefore,
we generate the pseudo-labels by only retaining the pre-
diction with a detection distance of less than 45m as sug-
gested by [22]. As presented in the third row of Tab.6, a
notable performance boost (+1.01 AP3D for moderate) is
observed. Nevertheless, completely disregarding pseudo-
labels beyond a certain distance can impede the model’s
ability to detect objects that are located far away from the
ego-car. This limitation is supported by the marginal im-
provement of 0.36 in the detection of hard category objects,
compared to the use of confidence thresholding. In contrast,
our DPG leverages the geometric relationship between the
2D and 3D space through homography transformation, en-
abling us to derive more effective pseudo-labels with more
accurate depth from the more distinguishable BEV plane as
proved in Fig.5. By incorporating these pseudo-labels for
the supervision of both 2D and 3D attributes, we ultimately
achieve significantly improved performance. By further de-
coupling the supervision of 2D and 3D attributes and gener-
ating pseudo-labels for 2D attributes via confidence thresh-
olding, we are able to harness the potential of pseudo-labels
with accurate 2D attribute prediction but poor 3D attribute
prediction. This further enhances the performance of our

Table 6. Effectiveness of different strategies to generate the
pseudo-labels for SSM3OD with MonoFlex. cls confidence: Fil-
ter the pseudo-labels with a classification confidence threshold 0.6.
det distance: Generate the pseudo-labels by retaining the predic-
tion with a detection distance of no more than 45m. DPG w.o
decouple: Take the pseudo-labels generated by homography label
mining for both 2D and 3D attributes supervision.

Strategy Val, AP3D|R40

Easy Mod Hard
sup baseline 22.80 17.51 14.90

cls confidence 23.13 18.02 15.24
det distance 23.47 18.52 15.60

DPG w.o decouple 25.66 19.04 16.24
DPG 26.24 19.23 17.04

approach. These results clearly highlight the significance of
separately processing the 2D and 3D attributes during the
pseudo-labeling process.
Visualization of Decoupled Pseudo-labeling. We visual-
ize the pseudo-labels generated by the classification con-
fidence thresholding and DPG in Fig.4. Our DPG first
selects the pseudo-labels via depth prediction uncertainty,
which leads to the initial pseudo-labels with accurate depth.
Subsequently, the homography-based pseudo-label mining
further identifies additional pseudo-labels with reasonable
depth and orientation predictions. In contrast, the pseudo-
labels generated solely by confidence thresholding tend to
be noisy, as they often include pseudo-labels with high con-
fidence but inaccurate depth estimations.
Analysis of Depth Gradient Projection We conducted an
analysis to examine the connection between the gradient
similarity of gud and gp, and the quality of depth prediction.
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(a) (b) (c)

Ground Truth

Pseudo-Labels

Figure 4. Visual comparison of pseudo-labels generated among different pseudo-label generation strategies. (a) Pseudo labels generated
with classification confidence threshold 0.6. (b) Pseudo labels generated by initial depth prediction uncertainty filtering in HPM. (c) Pseudo
labels after HPM algorithm. Red Box: Ground truth. Yellow Box: Pseudo-Labels. Cyan dashed circles: The confident yet depth-deviated
pseudo-labels. Cyan arrows: The pseudo-labels discovered through homography-based mining.

Our findings indicate a clear correlation between the depth
error and the gradient similarity between the unsupervised
depth gradient and the principal gradient. As presented in
the left of Fig.5, it is evident that samples with larger de-
viations result in a more pronounced gradient conflict with
reliable supervision. This further emphasizes the signifi-
cance of our depth gradient projection module in mitigating
the adverse effects of noisy pseudo-labels.

Figure 5. Left: The correlation between the gradient similarity
cos(gud, gp) and the depth error. Right: The average depth error
of the pseudo-labels obtained in different ways.

6. Conclusion
In this work, we introduced a decoupled pseudo-labeling
approach for Semi-Supervised Monocular 3D Object De-

tection (SSM3OD), designed to optimize the use of pseudo-
labels more effectively. This approach features a de-
coupled pseudo-label generation module, incorporating a
homography-based pseudo-label mining algorithm to ef-
ficiently provide reliable pseudo-labels for both 2D and
3D attributes. Additionally, we developed a depth gradi-
ent projection module to mitigate the adverse effects of
noisy depth supervision. Comprehensive evaluations on
the KITTI benchmark validate the effectiveness of our pro-
posed method, demonstrating its superior performance in
SSM3OD.
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