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Abstract

Understanding the dynamics of generic 3D scenes is fun-
damentally challenging in computer vision, essential in en-
hancing applications related to scene reconstruction, mo-
tion tracking, and avatar creation. In this work, we ad-
dress the task as the problem of inferring dense, long-range
motion of 3D points. By observing a set of point trajec-
tories, we aim to learn an implicit motion field parame-
terized by a neural network to predict the movement of
novel points within the same domain, without relying on
any data-driven or scene-specific priors. To achieve this,
our approach builds upon the recently introduced dynamic
point field model [48] that learns smooth deformation fields
between the canonical frame and individual observation
frames. However, temporal consistency between consecu-
tive frames is neglected, and the number of required pa-
rameters increases linearly with the sequence length due to
per-frame modeling. To address these shortcomings, we ex-
ploit the intrinsic regularization provided by SIREN [53],
and modify the input layer to produce a spatiotemporally
smooth motion field. Additionally, we analyze the motion
field Jacobian matrix, and discover that the motion degrees
of freedom (DOFs) in an infinitesimal area around a point
and the network hidden variables have different behaviors
to affect the model’s representational power. This enables
us to improve the model representation capability while re-
taining the model compactness. Furthermore, to reduce the
risk of overfitting, we introduce a regularization term based
on the assumption of piece-wise motion smoothness. Our
experiments assess the model’s performance in predicting
unseen point trajectories and its application in temporal
mesh alignment with guidance. The results demonstrate its
superiority and effectiveness. The code and data for the
project are publicly available'.

Ihttps://yz-cnsdgz.github.io/eigenmotion/DOMA/
1 This work was done when YZ and QM were at ETH Ziirich.
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Figure 1. We introduce DOMA, a compact implicit motion model
designed to capture generic dynamics of 3D scenes. By process-
ing a 3D point & in the canonical frame alongside a 1D time step
t, DOMA predicts an affine mapping, parameterized by a linear
map Ay and a translation vector ug. By leveraging the inherent
regularity of the utilized SIREN framework [54], DOMA ensures
the generation of a spatiotemporally smooth motion field. The
model’s capacity to represent complex dynamics can be controlled
by adjusting the degrees of freedom of the output affine mapping.

1. Introduction

Motion estimation plays a crucial role in several key ar-
eas of computer vision, such as dynamic scene reconstruc-
tion, autonomous navigation, and avatar creation. Treated
as a distinct task, it emerges in various contexts as non-
rigid tracking [11], point set [39, 57] and mesh registra-
tion [3, 17], shape matching [42], as well as optical and
scene flow estimation [68]. The solutions adopted in these
contexts significantly differ based on the ultimate objective
and the foundational assumptions about the scene. A sub-
stantial amount of research exists concentrating on human-
centric [4, 47] and rigid object motion [2, 63], alongside
efforts in learning generic 2D motion priors in a data-driven
manner [12, 23]. The diversity in applications and ap-
proaches underscores the complexity and significance of
motion estimation within the field of computer vision [34].

In this work, we aim to develop a motion model capable
of reconstructing the dynamics of generic 3D scenes with-
out relying on data-driven motion priors or object-specific
models. Specifically, by analyzing observed point trajec-
tories within dynamic 3D scenes, we seek to learn an im-
plicit motion model capable of predicting the movement of

2018



novel 3D points. This task bears significant relevance to
the process of warping 3D points across frames, a proce-
dure commonly encountered in neural rendering [29, 44],
point cloud alignment [26], object tracking [59], and avatar
creation [43, 50, 61]. Typically, warping methods devel-
oped in these domains are intended to supplement the pri-
mary objectives such as the quality of novel view synthesis.
Consequently, critical features such as the representational
capability of the motion model, along with the consistency
and plausibility of the motion it recovers, have not been the
primary concern in these studies.

In this context, the closest work is the recently proposed
dynamic point field (DPF) model [48], which addresses the
task of recovering the correct implicit deformation function
based on the observed pair of 3D surfaces. It proposes a
lightweight deformation field formulated by a SIREN net-
work [53], an MLP with periodic activation functions. Due
to the regularity introduced by SIREN, its modeled defor-
mation is spatially smooth, enabling various applications
such as robust mesh registration and avatar animation.

Despite its effectiveness, the DPF method is limited to
learning deformation fields between just two frames, the
canonical and the target frames. To extend this to multiple
frames, it proposes creating a set of deformation field mod-
els, where each model transforms points from the canonical
frame to a distinct target frame. Consequently, the num-
ber of models increases with the sequence length, leading
to significant memory and computational overhead. More-
over, the frame-wise approach fails to ensure temporal mo-
tion consistency, potentially resulting in discontinuities be-
tween consecutive frames and jittering artifacts. We con-
duct a thorough analysis of the representational capabili-
ties of DPF and its underlying SIREN network to address
these shortcomings. To achieve temporal smoothness, we
follow the wave equation formulation in [53], and modify
the input layer by incorporating a 1D time step along with
the existing 3D point location input, similar to the strategy
regularly implied in the implicit warping fields for neural
rendering [49].

Compared to the per-frame modeling scheme in DPF,
this operation attempts to compress the entire sequence into
a single network, which raises challenges on the model’s
capacity of motion representation. Rather than increasing
the number of hidden variables in the SIREN network, we
opt to refine its output layer by introducing more motion
degrees of freedom (DOFs). From a mathematical stand-
point of continuum mechanics [55], the advantages of ad-
ditional DOFs are demonstrated in the Jacobian matrix of
the motion field: Two points that are infinitely close to each
other in space gain greater movement flexibility, provided
the same number of network hidden variables. Therefore,
the model representation power is improved, and the model
compactness is retained.

Nevertheless, additional DOFs can increase the risk of
overfitting, in particular when the observed point trajecto-
ries are excessively sparse. To overcome this issue, we
leverage a generic assumption on motion, i.e. piece-wise
smoothness, and propose a motion smoothness term by pe-
nalizing the approximate L1 norm of spatial derivatives of
the predicted transformations. Here, rather than employ-
ing an auto-differentiation framework, we derive analytical
gradients of our employed SIREN network to speed up the
computation.

We undertake comprehensive experiments to validate the
efficacy of our method. To assess its motion representation
capabilities, we extract seven challenging sequences from
the DeformingThings4D dataset [27] and generate four syn-
thetic sequences that exhibit basic 3D motions. Our method
demonstrates consistently superior performance in predict-
ing the motion of novel points, when compared to both
state-of-the-art methods and their variations. Furthermore,
we employ our technique in the task of temporal mesh
alignment with guidance, and evaluate its performance
on complex sequences from the Resynth dataset [31, 32].
Compared to the DPF baseline, our approach achieves
comparable alignment accuracy, better temporal regularity,
and significantly smaller models, occupying approximately
200KB versus 8MB in the saved checkpoint for a 30-frame
sequence.

We refer to our approach as DOMA, an acronym for
Degrees Of freedoM mAtter, contending that additional
degrees-of-freedom is essential to improve the expressiv-
ity of implicit motion models. Technical contributions are
summarized as follows:

* We extend the state-of-the-art implicit model for sur-
face deformation [48] for continuous, multi-frame mo-
tion modeling, leading to an implicit, spatiotemporally
smooth affinity field;

* We leverage the Jacobian matrix to analyze the motion
field complexity, and discover that additional DOFs at the
output layer improve the model representation capability
while retaining the model compactness;

* To enhance the quality of the motion learned, we in-
troduce a regularization term based on the piece-wise
smoothness assumptions of the domain;

* We assess our model, demonstrating the benefits of var-
ious modeling decisions through experiments, on chal-
lenging long-term scene flow estimation and guided mesh
alignment.

2. Related Work

Motion representation with object models. Given the mo-
tion of a set of points, it is a highly unconstrained problem
to infer the motion of other points in their proximity. In
many applications, such an inverse problem is solved based
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on an object model that performs as a strong prior of the
dynamics. Typical examples are marker-based human mo-
tion estimation [30, 33, 70], or 3D pose estimation from
imagery data [21, 46, 51, 69], in which human paramet-
ric body models such as [46, 65] are leveraged. Here, the
bones of a body model serve as an intermediate proxy for
all other points’ motion: the trajectory of a point on the
body surface is generated by the weighted average of the
bone transformations, a technique referred to as linear blend
skinning (LBS). When extending the skinning weights to a
vector field, as in [10, 35, 36, 52, 60, 61, 64], any point
in the space can be animated by the bone transformations.
The same technology can be applied to animals [74], ba-
bies [18], humanoids [67], and other categories.

In cases where the object model is not directly avail-
able, it can be jointly optimized together with the motion
from observations. This provides flexibility on the object
categories to handle more generic dynamics. For example,
BANMO [66] proposes a generic deformable model, where
a set of 3D Gaussians serve as the motion control proxy,
analogous to bones. During optimization, the Gaussian lo-
cations and orientations are optimized together with their
transformations. Likewise, KeyTr [41] proposes a bone ba-
sis to deform a point cloud across frames, in which the basis
coefficients play a similar role as the skinning weights.

Motion representation without object models. Another
line of work models the motion of points without the re-
liance of intermediate proxies like bones. Instead, they rep-
resent the motion of all points in space as a dense field, in
which each location stores a transformation matrix. The
motion of a point will be determined by the transforma-
tions of its infinitesimal neighbourhood. Methods under
this paradigm are frequently employed in neural render-
ing [29, 44, 56], dense tracking [59], surface reconstruc-
tion [40, 43] and non-rigid geometry alignment [26, 48].
Niemeyer et al. [40] employ neural ODE [9] to model the
dynamics, and estimate the implicit occupancy function at
the canonical frame and its evolution as time progresses.
Prokudin et al. [48], Pumarola et al. [49], and Palafox et
al. [43] leverage MLP to model a translation field (or scene
flow field), and warp the point from the canonical frame to
the target frame via addition. Li et al. [25] employ a neu-
ral network to parameterize the flow field for regularization.
The exploited network is a MLP with ReLLU [24] activation
functions. Park et al. [44] design a SE(3) transformation
field, warping the points on the camera ray from the ob-
servation frame to the canonical frame, so as to train the
neural radiance field [38] reliably. Lombardi et al. [29] em-
ploys a mixture of scaled SE(3) warping fields for the pur-
pose of neural rendering dynamic scenes. Likewise, Li and
Harada [26] apply SE(3) or scaled SE(3) transformations
to perform non-rigid point cloud alignment. Compared to
the SE(3) transformation, the scaled-SE(3) transformation

is capable of representing the dilation or shrinking of an
object. Going beyond points’ locations, the spatial transfor-
mations can also be applied to features in neural networks
and potentially improve the performance on e.g. image clas-
sification [20].

Relations to object shape and view recovery from im-
ages. Existing works such as [15, 16, 22] study to learn
neural models from an image collection, and recover the 3D
shape in a canonical frame, the camera pose, and the tex-
ture of an object from a single image. Despite addressing
different tasks, their solutions of composing the instance-
level shape by the mean shape and deformation is relevant
to our manner of motion modeling. Furthermore, we are
encouraged by these works to reconstruct dynamic scenes
from multiview videos as future work.

DOMA in context. Existing motion modeling approaches
are developed together with individual applications, in
which the network architectures, coordinate encodings, and
other properties are diverse. The motion representation ca-
pabilities of their models are seldom investigated. In con-
trast, we start with the basic assumption that the motion
field has spatiotemporal regularity. Therefore, we lever-
age the SIREN [54] network, and extend the start-of-the-
art work DPF [48] to a multi-frame, smooth affinity field
model. We leverage knowledge of continuum mechanics,
exploit the Jacobian matrix to describe the motion field
complexity, and find that DOFs at the output layer and
the network hidden variables affect the model representa-
tion power in different manners. Guided by these insights,
we propose a solution to increase the model capacity while
retaining the model lightweight. Moreover, we introduce
a smoothness regularization term to overcome overfitting,
which does not assume the underlying motion is e.g. rigid
like in [44]. The effectiveness of DOMA is demonstrated
with experiments in Sec. 4.

3. Method
3.1. Preliminaries
3.1.1 SIREN [53]

SIREN proposes an implicit neural representation, which
is a multilayer perceptron (MLP) with periodic activation
functions. Specifically, the MLP with n + 1 layers is given
by

Yy=W, (dn—10¢n_20---0¢0) () + by, (D

with ¢; = sin(W;x; + b;) and i = {0,1,...,n — 1}. The
gradient of the model w.r.t. the input is another phase-
shifted SIREN network, and hence is infinitely differen-
tiable. As reported in [53], the sinusoidal activation func-
tions boost the model performance on the convergence
speed, reconstruction quality, and smoothness, letting the
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MLP outperform baselines consistently and considerably.
However, this network requires special initialization to be
trainable. Given & € R, it is suggested to have the weights
w; in the uniform distribution U(—+/6/d, \/6/d), so that
the model output will converge to a normal distribution.

3.1.2 Dynamic Point Field (DPF) [48]

DPF proposes an implicit deformation field to model point
dynamics, achieving state-of-the-art performance on sur-
face reconstruction, geometry deformation, and avatar an-
imation with challenging clothing. Given a point € R?
in the canonical frame, it learns a field u : R® — R? for-
mulated by a SIREN network [54], and then transforms the
point to a new location y, i.e.

y=g(x) =+ u() 2

To handle complex and rapid motion, an as-isometric-
as-possible (AIAP) loss term [48, Eq.13] is proposed to
minimize changes of pair-wise distances between neighbor
points during deformation. Furthermore, it proposes guided
geometry deformation via corresponding keypoints, which
can avoid sub-optimal matching caused by the Chamfer dis-
tance [14]. Provided a set of keypoint pairs {(v{, vf)} Y,
and a pair of non-corresponding geometries (e.g. meshes
and point clouds) to align (M., M), the guided geometry
deformation can be performed by minimizing

a1Lep (Mt, g(m))JrongV('vc, ’Ut)+063£AIAP (g(a:), a:) ,

3)
in which © € M., as denote the loss weights, and Lo p,
Ly, and £ 41 4p denote the Chamfer loss, the L1 loss, and
the AIAP loss on the corresponding keypoints, respectively.
To align a sequence of geometries, DPF [48] suggests learn-
ing a set of deformation fields that warp points in the canon-
ical frame to individual target frames.

3.2. DOMA: Spatiotemporal Affinity Motion Fields
DOMA is an implicit motion field formulated by
y= Az, t)z +u(z,t), “4)

in whichz € R3is a point in the canonical frame, t € R
is the time step, A : R3 x R = R¥>3 and u : R® x R —
R3 are formulated by a shared SIREN network. Following
Sitzmann et al. [53, Sec.5.4 of supp. mat.] that how the
wave equation is formulated and solved, we incorporate the
1D time into SIREN as input, letting %’t’ be another phase-
shifted SIREN and get regularized.

3.2.1 On The Representation Power

Different from the per-frame modeling mechanism of
DPF [48], incorporating the 1D time domain into the input

layer compresses the entire sequence into a single network,
raising challenges on the model representation power.

Referring to [55], the DPF formula Eq. (2) is generic to
model object deformation in continuum mechanics. How-
ever, it has limitations in empirical studies, motivating us
to investigate the reasons. Rather than studying the entire
domain, we look into an infinitesimal region around an ar-
bitrary 3D point x in the canonical frame, and derive its
Jacobian matrix as

giw/ — I+ Vu(), )
which is the optimal linear approximation of the motion
around x and V denotes the spatial gradient.

This Jacobian matrix is able to reflect the motion com-
plexity. Intuitively, g—g indicates the difference of move-
ments between two points that are infinitely close to each
other. Without any constraints on Vu, the model is capa-
ble of representing highly complex motion. However, w is
formulated by SIREN [53], letting Vu become to

n—1
Vu =W, (H W; o @Z—(w)> 7 (6)
=0

with p; = cos(W;x; + b;). Due to |p;| < 1, we can derive
(see Sec. 6 in supp. mat.)

n
IVaulls <d*- T IIWil2, @)
=0
in which || - ||2 is the L2 norm, ie. the largest singular

value, of the matrix. Consequently, the movement differ-
ence between two neighboring points in the domain is con-
strained by Eq. (5) and Eq. (7). To increase the representa-
tion power, one can straightforwardly increase the number
of hidden layers, or the dimension of hidden variables, be-
cause both can increase the upper-bound of ||Vu||2.

Our DOMA model can improve the model capacity with-
out modifying the hidden layers. Referring to Eq. (4), its
Jacobian matrix is given by

% _ A+ (VA z) + Vu(x), 8)

ox
which replaces the identity matrix in Eq. (5) with two com-
plex terms. Since the identity matrix in Eq. (5) does not
contribute to the motion complexity, our method intrinsi-
cally increases the complexity, while keeping the model
hidden layers unchanged. Consequently, more complex lin-
ear transformations with additional DOFs, such as scaling
and shearing, are introduced to every infinitesimal area in
the entire domain, thereby increasing the motion complex-
ity globally.
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3.2.2 The Variants of DOMA

The motion complexity can be controlled by applying dif-
ferent constraints on A, leading to different versions ac-
cording to the DOFs, inspired by existing works e.g. [26,
29, 44]. We denote the model Eq. (4) as DOMA-Affinity.
In our implementation, the SIREN network outputs a 12-
dimensional variable. The first 9 variables are reshaped to
A and the rests are regarded as u.

DOMA-Trans. When A is an identity matrix, Eq. (4) de-
generates to a translation field, which formulated by

y =z +u(z,t) €))

This model can be regarded as a straightforward extension
of DPF [48] to the spatiotemporal domain.

DOMA-SE(3). With A = Q € SO(3), i.e. a rotation ma-
trix in the 3D space, Eq. (4) becomes to

y = Q(z,t)z + u(z, ). (10)

Besides producing the translation, we let the SIREN net-
work output the 6D continuous rotation representation [72],
and perform orthogonalization to get the rotation matrix.

DOMA-Scaled SE(3). By introducing an additional DOF
for scaling, we can modify Eq. (4) to

y = sz, 1)Q(z, t)x + u(x, 1), (1)

with s(x, t) being the spatiotemporal scalar field. In our im-
plementation, we let the SIREN network to produce an ad-
ditional 1D variable, and apply the softplus activation func-
tion [13, 71] to product s(x, t).

3.2.3 Model Complexity Analysis

By changing DOFs at the SIREN output layer, the hidden
layers remain unchanged, and the model size is not linearly
growing with the sequence length. Provided the motion se-
quence has T frames, DOMA-Affinity has 16d 4+ nd? pa-
rameters, with n and d denoting the number of hidden lay-
ers and the hidden dimensions, respectively. In contrast, the
per-frame modeling of DPF [48] requires 7' — 1 SIRENs
and has (6d + nd?)(T — 1) parameters in total, leading to
O(T') model size. Please see Tab. Al in supp. mat. for
more details.

3.3. Motion Smoothness Regularization

Although introducing extra DOFs can improve the model
representation power, it increases the risk of overfitting.
Without loss of generality, we assume the motion field is
piece-wise smooth in the domain. Referring to variational
methods in optical flow e.g. [5, 73], we introduce the fol-
lowing smoothness regularization loss, i.e.

Ly =Eio [V ([VAIE+[IVulF)], (12

in which ¥(s?) = v/1 + s2 — 1 is the convex Charbonnier
function [8] to approximate the L1 norm, V(-) denotes com-
puting the spatial gradients, and || - ||z denotes the Frobe-
nius norm. Intuitively, the local motion is parameterized
by A and w, and hence the zero value of the above loss
term suggests all points conduct the identical affine trans-
formation. The Charbonnier function plays the role of a ro-
bustifier, with which the difference of motions between two
neighboring points is less penalized compared to L2 norm.
With prior knowledge on the scene dynamics, ¥(s2) can
be changed to other terms, e.g. ¥(s?) = s? to encourage
homogeneous motion.

Instead of employing auto-differentiation tools in e.g.
PyTorch [45], we implement analytical gradients of the
SIREN network, i.e. Eq. (5), to speed up computation. See
Tab. A5 in supp. mat. for an empirical study.

4. Experiment

Without explicit mentioning, we set the first frame in the
sequence as the canonical frame, and normalize the time
steps to [—1, 1]. Please see supp. mat. for more details and
additional experiments.

4.1. Novel Point Motion Prediction

Based on a sparse set of observed point trajectories, we aim
to predict the motion of unseen points during training, in
order to verify the quality of learned dynamics.

Datasets. We select 7 sequences with various object
categories, shapes, and motions from the DeformingTh-
ings4D [27] dataset. For each sequence, we use 100 con-
secutive frames. We randomly select 25% mesh vertices
for training the motion field, and use the remaining ones
for testing. In addition, we create four synthetic sequences
of elemental motions, i.e. translation, rotation, scaling, and
shearing, respectively, in order to investigate the model rep-
resentation power in detail. Each synthetic sequence has 20
frames and contains 3000 points uniformly sampled from
[—1,1]3. Likewise, we randomly select 25% of points for
training, and leave the remaining ones for testing.

Evaluation metrics. For evaluation, we employ the learned
motion field to transform testing points in the canonical
frame to individual target frames. We compute the scene
flow end point error (EPE), i.e. Eyc (1. ry[||ve — v9*)1] and
v; = Yy — «, in which y; denotes the estimated correspond-
ing point of x at time ¢. For DeformingThings4D, we addi-
tionally use the learned motion field to warp the canonical
object mesh to each individual frame, sample 10° points
on both the warped mesh and the ground truth mesh, and
compute the Chamfer distance [14] Lo p and the Chamfer
normal distances £,,, as in [48, Table 2].

Baselines and ours. This task is highly related to learning
the warping fields in various scenarios, such as deformable
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Methods EPEl Lcpl Lnl
MLP-ReLU [38] 2224 3.410 0411
MLP-ReLU PE.6 [38] 237.7 3.747 0.431
DCT-NeRF [58] 215.0 3.766 0.347
BANMO [66] 488.9 13.275 0.451
BoneCloud [41, 66] 136.1 1.993 0.261
Ours-Trans 78.5 1.401 0.215
Ours-SE(3) 76.7 3.706 0.225
Ours-Scaled SE(3) 76.2 2.074 0.220
Ours-Affinity 78.1 1.266 0.218

Table 1. Results on DeformingThings4D sequences. EPE and
Lcp arein x 107, Best results are in boldface.

object modeling [43], scene flow estimation [25], and neu-
ral rendering [44, 49]. The warping field is commonly
parameterized with a neural network with ReLU activa-
tion functions [24] and positional encodings [38]. There-
fore, we leverage such kinds of neural networks as base-
lines. Specifically, we denote MLP-ReLU as an MLP with
ReLU activation functions and 6 hidden layers of 128 di-
mensions. It takes the concatenation of the 3D location and
the 1D time step as input and outputs motion vector. Ad-
ditionally, we introduce positional encoding [38], or output
DCT coefficients [58], to create MLP-ReLU PE.6 and DCT-
NeRF as baselines, respectively. Moreover, we adapt the
BANMO [66] deformation module into our setting, and im-
plement a modified version named BoneCloud, following
the idea of [41]. More details of these baseline methods are
demonstrated in Sec. 8.1 of supp. mat.

We denote the DOMA models with their suffixes, i.e. -
Trans, -SE(3), -Scaled SE(3), and -Affinity, respectively. All
their SIREN networks have 128 hidden dimensions and 2
hidden layers. Moreover, we implement the elastic regular-
ization proposed in [44] to encourage rigid motion, which
is denoted by -E. Likewise, -H denotes our motion smooth-
ness regularization without the Charbonnier function, en-
couraging the motion is homogeneous.

Results. The results on the DeformingThings4D sequences
are presented in Tab. 1. We can see that the SIREN-based
methods achieve comparable performance, and outperform
other baseline methods consistently.

The results on the synthetic sequences are shown in
Tab. A3 and Fig. 2. First, we can see that the incorpo-
rated DOFs lead to different motion representation behav-
iors. Methods with SE(3) transformations are more effec-
tive in representing rotation and translation. By compar-
ing ‘-Scaled SE(3)’ and ‘-SE(3)’, we can see the additional
DOF benefits modeling scaling. The affine transformation
is effective in representing all cases. Second, we can see
appropriate regularization is important. The elasticity reg-
ularization proposed in [44] is effective to encourage rigid
motions, but performs inferior if the motion is non-rigid,

Methods Rotation  Scaling  Shearing  Translation
-Trans 2725.4 1817.8 1619.5 1042.4
-SE(3) 730.6 1991.4 1138.3 899.4
-Scaled SE(3) 801.1 685.8 1524.7 1096.2
-Affinity 1486.0 915.4 622.1 822.4
-Trans-E 38.0 1669.6 753.6 38.8
-SEQ3)-E 20.0 1761.3 832.7 26.4
-scaled SE(3)-E 21.2 1161.8 961.1 24.0
-Affinity-E 19.2 155.7 864.0 15.7
-Trans-H 4919.9 2056.4 2446.8 37.8
-SE(3)-H 52.4 2012.4 1665.0 36.9
-scaled SE(3)-H 29.3 22.1 688.0 30.3
-Affinity-H 54 26.3 8.5 28.8

Table 2. Results on Synthetic sequences w.r.t. EPE (in x10™%).
‘-E’ denotes the elasticity loss proposed in Nerfies [44], and *-H’
denotes our smoothness loss.

Rotation

Source Target (GT) Trans

Affinity

Figure 2. Qualitative results on the Synthetic sequences. The
smoothness regularization is applied. Rows show types of mo-
tions, and columns show the testing points in the canonical frame,
a target frame, and estimated results, respectively. See more de-
scriptions in Sec. 4.1 and Sec. 8.1.3 in supp. mat.

i.e. scaling and shearing. On the other hand, our smooth-
ness regularization significantly boosts the performance, if
the sequence fits the modelled DOFs.

Moreover, we find the structure of the linear matrix A
and the network hidden dimension have different behaviors
to affect the model representation power. Increasing the hid-
den dimension cannot simply introduce new DOFs that the
model can represent. see Sec. 8.1.3 in supp. mat. for details.
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4.2. Guided Mesh Alignment

Aligning a mesh template to a sequence of scans is im-
portant in various applications, such as graphics [31] and
healthcare [18]. We follow the guided geometry deforma-
tion method of DPF [48]. Referring to Eq. 3, we minimize

> {erlLep (M, y())+as Ly (v¢, v ) +asLarap (y(®), @) +asaln}.

t

13)

In this experiment, we set (ay, ) = (103, 1). The reg-

ularization loss weights are (a3, 4) = (1,0.001) if they

are enabled. Training terminates after 2000 iterations for
all cases.

Datasets. We employ the Resynth dataset [31, 32], in which
the human bodies perform articulate motions, while the
clothing, in particular the long skirt, moves accordingly in
a highly complex manner. We use 4 sequences from 4 in-
dividual subjects with different genders, body shapes, and
clothing types. Each sequence is downsampled by every
2 frames, and afterwards the first 30 frames are selected,
leading to 16 sequences with 480 frames in total. We use
the SMPL-X [46] mesh vertices (10,475 points per frame)
as the guidance points, and the low-resolution scans (40,000
points per frame) as the targets to fit. Furthermore, we per-
form Poisson surface reconstruction on the low-res scan at
the canonical frame, and obtain a mesh template with about
60K vertices and 130K faces. During training, we learn the
motion field based on the guidance points and the low-res
scans, and minimize Eq. (13). During testing, we warp the
mesh template vertices to individual frames based on the
learned motion field, and re-compute the vertex normals.
Note these mesh template are unseen during training.

Evaluation metrics. For evaluation, we compute the
Chamfer distance of the vertex locations and normals be-
tween the warped meshes with the target low-res scans, i.e.
Lcp and £,,, as in Tab. 1 as well as DPF [48, Table 2]. To
verify the temporal smoothness, we additionally compute
two metrics: 1) The standard deviation (std) of edge lengths
along the temporal dimension, and report its maximal value.
This metric is able to reflect whether the mesh is signifi-
cantly stretched or not. 2) The averaged std of the velocity
12-norm of the mesh vertices, which measures the temporal
smoothness. These two metrics are denoted as STD(E) and
STD(V), respectively. Their values are the lower the better,
but should not vanish because of the conducted deformation
and motion.

Baselines and ours. We compare the frame-wise DPF
scheme that is suggested by [48]. In addition, we investigate
the effectiveness of the regularization loss terms AIAP [48,
Eq.13] and our proposed motion smoothness term. The
method notations are the same with Sec. 4.1. All SIREN
networks have 3 hidden layers and 128 hidden dimensions.

Lepd  Lnd  STDE)  STD(V))
DPF [48] 1.149 0.122 11.6 24.6
-Trans 1.230 0.128 12.8 22.9
-Affinity 1.142 0.125 11.9 22.8
DPF-A [48] 1.166 0.119 10.3 24.2
-Trans-A 1.195 0.123 10.4 23.0
-Affinity-A 1.151 0.122 10.6 23.0
DPF-H [48] 1.142 0.123 10.3 24.2
-Trans-H 1.207 0.128 10.8 229
-Affinity-H 1.127 0.127 10.1 229
DPF-AH [48] 1.189 0.120 9.3 24.3
-Trans-AH 1.240 0.124 9.3 23.0
-Affinity-AH 1.187 0.124 8.9 23.0

Table 3. Results of guided mesh alignment on our selected
Resynth sequences. L¢op is in X 10~%. STD(E) and STD(V) are
given in millimeters. ‘-A’ and ‘-H’ denote the AIAP regulariza-
tion [48] and our smoothness regularization, respectively. ‘-AH’
denotes both regularization terms are applied. Best results are in
boldface. Please see Tab. A7 for the performance of all models.

#params.  checkpoint size (KB)
DPF [48] 1497600 7800
-Trans 50048 139.6
-SE(3) 50816 209.2
-Scaled SE(3) 50944 209.8
-Affinity 51200 210.8

Table 4. Evaluations on the model size on the Resynth sequence.
Since lightweight models are preferred, the numbers here are the
lower the better.

Results. The results are shown in Tab. 3. Compared
to frame-wise DPF, we can see DOMA-Trans leads to
consistently worse alignment accuracy, but better tempo-
ral smoothness. This indicates the temporal regularity is
obtained by compressing the entire motion into a single
SIREN-based network, whereas the model’s representa-
tional power is not sufficient. When replacing the transla-
tion field by an affinity field, i.e. DOMA-Affinity, the align-
ment accuracy is consistently improved to a similar level
with frame-wise DPF, and the temporal smoothness is re-
tained. This indicates that introduced extra DOFs can effec-
tively improve the model representation power. In addition,
the AIAP loss and the smoothness regularization can indi-
vidually improve the performances, but their combination
does not lead to obvious advantages, except for the edge
length variations. Fig. 3 ? illustrates some pairs of consec-
utive frames. We can see that the frame-wise DPF scheme
causes visible discontinuities and artifacts in some regions,

2Quantitatively, ie. (Lcp, Ln, STD-E, STD-V) as in Tab. 3,
DPF gives (3.962,0.229,16.0, 35.7) and (2.557,0.175, 13.8, 18.5) for
the top and bottom rows, respectively, whereas DOMA-Affinity gives
(3.208,0.216,19.8,29.3) and (2.532,0.169, 10.5, 15.6).
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Source

Target

Figure 3. Illustration of results on two Resynth sequences. From left to right: The source mesh in the canonical frame, two consecutive
frames of the target scans, the results from frame-wise DPF and DOMA-Affinity, respectively. Both ATAP [48] and smoothness regular-

ization are applied. The bounding boxes highlight significant changes.

whereas the results of the affinity field have better temporal
regularity.

Furthermore, the advantage of DOMA can be reflected
by the model compactness. As shown in Tab. 4, DOMA
models are significantly more lightweight. Adding addi-
tional DOFs at the network output layer only increases the
number of parameters marginally.

5. Conclusion

In this work, we have advanced the DPF framework [48]
into a continuous, multi-frame affinity field model, which
inherently exhibits spatiotemporal regularity and improves
representational capabilities without compromising com-
pactness. Incorporating the 1D time domain to the net-
work input layer ensures temporal regularity, and the DOFs
at the output layer can manipulate the model representa-
tion power without modifying the network hidden variables.
The experimental results on novel point motion prediction
and guided mesh alignment show its effectiveness and su-
periority to baselines.

Limitations and future works. First, we have 4 loss terms
to minimize in the task of guided mesh alignment, and in-
appropriate loss weights can degrade the performance con-

siderably. How to balance their weights is still not trans-
parent, which is worthy exploring in the future. Second,
our method can be employed to model warping fields for
dynamic scene reconstruction and rendering, which is not
covered in this paper and will be studied as future work.
Note that our method requires corresponding points be-
tween frames. Additional DOFs are effective to represent
fine-grained movements, but might behave as a disadvan-
tage to extract corresponding points due to less constraints.
Third, our advanced model representation power is potential
to model highly complex dynamics, e.g. fluid fields, which
can benefit specific applications of medicine, aerodynam-
ics, physics, efc. Furthermore, our model is deterministic
and does not consider the motion uncertainty. Thus, a fu-
ture direction is to develop a generative model on dynamics,
which synthesizes diverse dynamics based on the same set
of point trajectories.
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