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Abstract

Few-shot model compression aims to compress a large
model into a more compact one with only a tiny training
set (even without labels). Block-level pruning has recently
emerged as a leading technique in achieving high accuracy
and low latency in few-shot CNN compression. But, few-
shot compression for Vision Transformers (ViT) remains
largely unexplored, which presents a new challenge. In
particular, the issue of sparse compression exists in tradi-
tional CNN few-shot methods, which can only produce very
few compressed models of different model sizes. This pa-
per proposes a novel framework for few-shot ViT compres-
sion named DC-VIiT. Instead of dropping the entire block,
DC-ViT selectively eliminates the attention module while
retaining and reusing portions of the MLP module. DC-ViT
enables dense compression, which outputs numerous com-
pressed models that densely populate the range of model
complexity. DC-ViT outperforms state-of-the-art few-shot
compression methods by a significant margin of 10 percent-
age points, along with lower latency in the compression of
ViT and its variants.

1. Introduction

Vision Transformers (ViT) have demonstrated outstanding
results on various vision tasks by leveraging the Trans-
former structure initially proposed for natural language
processing (NLP). Unlike Convolutional Neural Networks
(CNN), the self-attention mechanism allows ViT to learn
global representations for images without an obvious in-
ductive bias. However, with millions to billions of parame-
ters, ViTs can only be deployed on high-end devices, even
if we only consider the inference stage. To fit large mod-
els into small devices, network compression techniques are
commonly adopted to reduce computing and memory costs.

Although some methods have been proposed to com-
press ViT through either token pruning or channel prun-
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Figure 1. Top-1 accuracy vs. MACs (G) on ImageNet. Our DC-
ViT was compressed with few training images (50, 100, 500, or
1000), and PRACTISE was compressed with 500 images. How-
ever, other methods were not few-shot, using 1.28 million labeled
training images during compression. It is quite a success that our
DC-VIT uses only less than 0.1% of their training images with-
out labels, but achieves slightly lower or even higher accuracy.

ing [4, 7, 26, 32, 36, 52], they all assume access to the
entire original training set, which is unfortunately not
the case in numerous situations, especially outside of the
academia. When working with datasets containing large
amounts of sensitive data (e.g., medical or commercial),
few-sample compression enables model pruning using few
non-sensitive data and safeguards data privacy and security.

Few-shot compression has been studied for years, but
existing methods focus solely on CNN compression. As
Vision Transformers (ViT) is already a mainstream model,
it is critical to design few-shot ViT compression methods.
As shown in Sec. 4.2, existing few-shot CNN compression
methods do not work well in few-shot ViT compression.
The proposed DC-ViT method not only outperforms previ-
ous state-of-the-art (SOTA) methods in compressing ViTs,
but also in few-shot compression of CNNs (cf. Fig. 1).

Another essential demand is that the method should be
both highly accurate and dense, where dense means many
models can be compressed in the target compression range,
while a sparse method can only output few models (DC-ViT
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Figure 2. The range of compression options attainable by our DC-
ViT and PRACTISE [43] by varying the number of compressed
blocks. The black vertical lines represent the specific compression
rates achieved by [43], highlighted by the red arrows. DC-ViT can
output models densely in a wide range of compression rates for
different numbers of blocks. The gradient color bar indicates the
accuracy of our method at different compression rates.

vs. PRACTISE in Fig. 1). If a sparse compression method
can only emit two compressed models with 80% and 110%
of the target MACs the hardware can afford, we are forced
to choose the 80% one, and 20% of the available computing
power is wasted, which will lead to lower accuracy com-
pared to a model that can use 100% of the compute budget.
A dense compression method will naturally overcome this
drawback.

PRACTISE [43] is a state-of-the-art few-shot CNN com-
pression method, which outperforms other existing methods
significantly in accuracy but only provides sparse compres-
sion options. As shown in Fig. 2, given the target range for
MACSs compression, PRACTISE can only produce 4 mod-
els by dropping different numbers of blocks. While exist-
ing filter-level few-shot CNN pruning methods might attain
dense compression, they exhibit substantial accuracy degra-
dation compared to block-level pruning [43].

In this paper, we propose a novel and effective frame-
work for dense ViT compression under the few-shot setting.
As shown in Fig. 2, our method (denoted by the gradient
color bars) can produce compressed models of various sizes
that densely cover the range of MACs. We also introduce
a new metric to measure the importance of a block, which
matches the actual performance of the finetuned model after
compressing different blocks. To the best of our knowledge,
the proposed Dense Compression of Vision Transformers
(DC-VIT) is the first work in dense few-shot compression
of both ViT and CNN.

As shown in Fig. 1, our DC-ViT offers much denser
compression than other structured pruning methods, which
means that for any target compression ratio within a certain
range, we can always find one compression setting in DC-
ViT that is close enough. It significantly outperforms the
SOTA few-shot compression method PRACTISE by more

than 10 percentage points in top-1 accuracy.

Moreover, Fig. 1 further shows comparison with com-
pressed or neural architecture searched ViT/DeiT [41] and
CNN models. Note they all used 1.28 million labeled
training images for compression, while DC-ViT used only
< 0.1% of their training images, which are even unlabeled.
It is a surprising success that with the same MACs, DC-
ViT achieves higher Top-1 accuracy than Mini-DeiT-B [54],
RegNetY-16GF [35] and VTP [56], and only slightly (2—
4 percentage points) lower than AutoFormer-B [6] and
S2ViTE-B [7].

Overall, our contributions are summarized as follows:

* We propose DC-ViT, an effective framework that pio-
neers few-sample ViT compression.

* We advocate the benefits and necessity of dense compres-
sion in practical applications, which is achieved by drop-
ping the attention and adjusting the MLP drop ratio.

* We propose generating synthetic images as a metric
dataset to address the potential misalignment between the
perceived recovery difficulty (indicated by the training
loss) and the actual performance of finetuned models af-
ter removing different blocks. We also summarize some
suggestions for few-shot ViT compression, which have
shown their advantages in DC-ViT and may be useful for
future work in the area.

2. Related Works

Building upon its success in natural language processing,
researchers have extended the application of Transformers
to the computer vision domain, resulting in the ViT mod-
els [13]. Many variants of ViT have been proposed for a
wide range of other computer vision tasks, including ob-
ject detection [3, 57], semantic segmentation [50, 55], im-
age super-resolution [49], image generation [5], and video
understanding [15, 39]. However, the high computational
cost limits its deployment, prompting further research into
model compression techniques to address this challenge.
Pruning or compression has been extensively studied to
reduce a network’s complexity and to make it possible to
migrate large networks to less powerful devices (e.g., edge
devices). Previous methods of CNN compression can be
broadly grouped into two categories. Unstructured prun-
ing [12, 22, 48] typically removes unimportant weights uti-
lizing importance metrics such as the magnitude-based met-
rics [17] or Hessian-based ones [16, 18, 21]. By setting
unimportant weights to zero, these methods achieve highly
sparse but unstructured patterns for the network parame-
ters. However, general-purpose GPUs do not support un-
structured pruning, and their speed is in fact slow. Struc-
tured pruning solves this difficulty by completely remov-
ing some groups of parameters, such as filters [23, 47] or
blocks [27, 43], where the key is to evaluate the importance
of different modules by certain criteria to determine which
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groups of parameters should be removed [43, 46].

As for ViT pruning, existing methods can be broadly di-
vided into token pruning and channel pruning. Token prun-
ing focuses on dynamically selecting important tokens for
different inputs [26, 32, 36], while channel pruning targets
searching optimal sub-networks by resorting to both struc-
tured and unstructured approaches [4, 7, 52].

Few-shot knowledge distillation considers knowledge
distillation in the context of having only few training sam-
ples. Compression methods for deep neural networks typi-
cally require finetuning to recover the prediction accuracy
when the compression ratio is high. However, conven-
tional finetuning methods are hindered by the need for a
large training set. FSKD [24] added a 1 x 1 convolu-
tion layer at the end of each layer of the student network
and fit the layer-level output features of the student to the
teacher. CD [2] proposed cross distillation to reduce accu-
mulated errors caused by layer-wise knowledge distillation.
In MiR [44], the teacher’s layers before the penultimate
are replaced with well-tuned compact ones. Unlike previ-
ous methods that adopt filter-level pruning, PRACTISE [43]
was built on block-level pruning and can recover the net-
work’s accuracy using only tiny sets of training images.

Since few-shot compression of ViT has not been ex-
plored, while the current SOTA methods for ViT compres-
sion always falter in the few-shot context (as will be shown
by our experiments), in this paper, we mainly compare our
DC-ViT with the SOTA few-shot CNN pruning method.

3. Method

Now we propose Dense Compression of Vision Transform-
ers (DC-ViT). The overall framework is illustrated in Fig. 3.
Our strategy can be divided into three primary stages: 1)
determine the compressed model’s network structure based
on the target compression ratio; 2) a block-trial procedure
to find recoverability scores for different modules, and gen-
erate a synthetic metric set to select blocks with highest re-
coverability; 3) a progressive approach to prune and fine-
tune the model using few-shot and unlabeled training set.

3.1. Determining the Network Structure

For few-shot learning, removing one entire block leads to
a change that can be well approximated by a linear layer
(which can be absorbed) [43]. Furthermore, block pruning
leads to significantly higher throughput than filter pruning,
thus it is beneficial to remove blocks completely. Neverthe-
less, while the removal of a single block can be approxi-
mately compensated by linear adjustments, the cumulative
errors from dropping multiple blocks can escalate to a non-
linear magnitude. Hence, we propose to replace a dropped
block with a small MLP to remedy such errors.

The structure of ViT makes our remedy particularly suit-
able. As pointed out by [45], the attention module takes up

roughly 46% of a Transformer block’s latency. After we re-
move the attention module, the remaining part of a block is
exactly an MLP; by pruning this MLP to a smaller one (as in
the left side of Fig. 3), we can not only achieve dense com-
pression, but also reuse parameters from the original MLP.
Our experiments highlighted the significance of parameter
reusing in few-shot compression (c¢f. Tab. 6). Therefore,
in our dense compression process, we need to determine
two things based on the target MACs: the number of blocks
to remove and the extent to which the MLPs within these
blocks should be reduced.

We calculate the minimum number of blocks that should
be compressed to meet the target, denoted as k, i.e.,

b MACGCs, — MACs,
- | MACs, + MAGs,, | ’

6]

where MACs,, and MACs,, respectively denote MACs of
the origin and pruned models (Mo and M p), MACs, de-
notes MACs of the attention module including the corre-
sponding layer norm, while MACs,, refers to MACs of
the MLP module excluding the corresponding layer norm
of one ViT block, respectively. [-] is the ceiling function.
Minimize the number of compressed blocks. As shown in
Fig. 2, one target MACs can be obtained by removing differ-
ent numbers of blocks. We can choose to prune more blocks
but retain a larger ratio of their corresponding MLPs. Alter-
natively, we can also prune fewer blocks but keep a smaller
part of the MLPs in these blocks. For example, to keep 85%
of the original model’s MACs, we can throw away 2, 3, or 4
blocks, as shown in Fig. 2. However, the color bars, which
represent the accuracy of the compressed models, clearly
indicate that minimizing the number of compressed blocks
is preferable when multiple compression configurations are
feasible.

To further simplify our method, we allocate the same
drop ratio into every MLP module of the k£ compressed
blocks. Hence, the drop ratio of MLP nodes 74 will be

_ MAGCs, — MACs;, — k- MACs,
B k- MACs,, '

The MLP in a ViT block has 2 fully connected (FC) lay-
ers, with the dimension of features changing from d to 4d
and then back to d again. We change the dimensionality of
the intermediate result from 4d to 4d(1 — r4), which final-
izes the compression structure. Our ablation studies show
that randomly picking 4d(1 — r4) nodes out of 4d works
surprisingly well, thus DC-ViT adopts this simple random
strategy.

3.2. Block Selection

2

Td

In order to select which blocks are to be compressed, we
adopt a block-wise trial procedure to obtain candidate mod-
els. Next, we generate synthetic images as a tiny metric set
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Figure 3. The DC-ViT framework. (a) Determining the network structure to achieve the target MACs reduction. (b) Generating a synthetic
metric set from Gaussian noise. (c) Using the synthetic metric set to select the blocks with highest recoverability. (d) Progressive pruning
and finetuning. The original model is at the top, and the pruned model is at the bottom. We drop the whole attention module but reuse part
of the MLP, and use the MSE loss for feature mimicking, but only update the front part of blocks till the next block of the compressed one.

to evaluate the recoverability of different blocks after com-
pression.

3.2.1 Block-wise Trial

Once the structure parameters (k and 74) are determined,
we operate a block-wise trial procedure to obtain candidate
models M p(g,) with block B; compressed, then use the cri-
terion proposed in the following section to calculate the re-
coverability scores of different blocks.

For a few-shot task with C classes, let D7 denote the tiny
subset of the original training set without labels. In some
applications, not only is the complete training set unavail-
able, but also labels for the accessible tiny set. Therefore,
unsupervised few-shot compression is preferred.

In the block-wise trial step, we obtain candidate mod-
els Mpp,) with block B; replaced by a small MLP, as
described in Sec. 3.1. Following MiR [44], to finetune
Mps,;), we use the mean squared error (MSE) loss for
feature mimicking to minimize the feature gap between the
pruned and original models, i.e.,

'C'MSE (MO,MP,DT) = Z ||MO (l‘) - MP (1}) ||%"
x€DT
(3)

where Mp (z) and Mo () denote the union of all output
tokens of the pruned and the original model, respectively.
Even though the CLS token is generally considered suffi-
cient as the representation of an image, conducting feature
mimicking using all output tokens works better than just
focusing on the CLS token, as will be shown in Tab. 6. We

also find that by updating only the first few blocks up to
the last compressed one, instead of all blocks, not only im-
proves the accuracy of finetuned models but also reduces the
time cost of gradient back-propagation. As shown in Fig. 3,
only the blocks in the yellow color are trainable. Our abla-
tion studies in Tab. 6 back up this strategy.

3.2.2 Generate a Synthetic Metric Set

Since the training data is extremely limited in few-shot
compression, various few-shot data augmentation methods
exist in the few-shot learning domain. Their primary ob-
jective is to produce augmented/synthetic images that align
with the true data distribution using limited training sam-
ples to increase the sample richness. Some rely on hand-
crafted rules from experts with specialized domain knowl-
edge [1, 8, 10, 11, 14, 20], while a surge of probabilistic-
based [25] and generative-based [9, 38, 53] approaches have
emerged for automatic synthetic image generation with the
maturity of meta-learning.

Operating under the assumption that a deep neural net-
work can sufficiently train and retain crucial information
from a dataset, we propose to utilize the original pre-trained
model to generate synthetic images as the metric set S for
block selection without using external data. As will be il-
lustrated in Sec. 3.2.3, the metric set is used to reveal the
performance of the finetuned candidate models.

Following DeepDream [30], we leverage the pre-trained
model’s intrinsic knowledge to efficiently generate a com-
pact batch of synthetic images, forming a robust metric
dataset. Given a batch of Gaussian noise as the initial syn-
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FFN  Attn40.5-FFN
Mean | 102.95 107.70 111.12 103.93
Sd. | 044 011 0.8 0.12

Latency (ms) ‘ Block Attn

Table 1. Mean and standard deviation of latency in ViT-Base when
different parts are removed. “Attn”: the attention module, “FFN”:
the feed-forward network (MLP), and “Attn+0.5-FFN”: the atten-
tion module plus half of MLP.

thetic images S = {#&1, 42, -
labels YV = {y1,y1," -
dated by minimizing

,&n} and arbitrary target
,Yn}, the synthetic images are up-

S|
1
i=1

where L(-) is the cross entropy between the predicted prob-
ability and the target label, and R(-) is the regularization
term. We use the image prior regularizer of {5 and total
variation (TV) proposed in [29]:

R(2) = e, Re, (2) + awRrv (2) )
where Ry, = ||Z]|? is utilized to promote image stability

B
and Ry = Zi,j ((i‘i7j+1 — jz‘j)Q =+ (aAZH_Lj — jz’j)2> 2
can control the sharpness of the synthetic data.

Since the metric loss Lo g in Eq. (6) does not require a
class label, the randomly assigned target y in Eq. (4) only
acts as a hint for the pre-trained model to generate synthetic
data. After a few iterations, the synthetic images are able
to capture the distribution of the original dataset (cf. the
appendix).

3.2.3 Choose the Blocks to Compress

Since all ViT blocks in the same model are structurally iden-
tical, there is little latency variance caused by compressing
different blocks in DC-VIiT (cf. Tab. 1). Therefore, the score
we propose for block selection is a simple one that evaluates
the performance of candidates on the synthetic metric set S
generated as in Sec. 3.2.2,

Log (Mo, Mps,),S) =

< ©6)
=Y > pMo ();c)log (p (Mp,) (x):¢)) ,

zeS c=1

where p (M p(g,) () ; ¢) denotes the probability of training
sample x is classified into the c-th class by the i-th candi-
date model, which is calculated using the output CLS to-
ken, followed by linear and softmax transformations, akin
top (Mo (2);0).

Synthetic images bridge the gap between perceived and
actual block recoverability. As illustrated in Fig. 4, the
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Figure 4. The top-1 error of 12 candidate models (by compress-
ing 12 ViT blocks one at a time) on the test dataset and different
criteria for block selection. The top-1 error is calculated using the
original test set. The metric loss is calculated using the synthetic
metric set S. The training loss is calculated using the tiny training
set D7. We scaled them to the same range.

top-1 error of candidate models on the test dataset and the
metric loss on the synthetic metric set S are highly corre-
lated. Conversely, the training loss on the tiny training set
D+ shows no such correlation, even though with different
data augmentation from the finetuning phase, and this dis-
parity becomes more evident with fewer training samples.
We attribute this discrepancy to overfitting on the limited
training set. Hence, the use of synthetic images as a metric
dataset can address the potential misalignment between the
perceived difficulty in model performance recovery (as in-
dicated by the training loss) and the actual performance of
finetuned models after removing different blocks.
Evaluating the recoverability directly using the finetuned
candidates has two advantages. The performance of candi-
dates consistent with the final structure reflects the recover-
ability of removing different blocks more intuitively. Fur-
thermore, these candidate models can be reused in subse-
quent compression without being repeatedly finetuned.

3.3. Progressive Pruning and Finetuning

Our findings indicate that to compress more than one
block, progressive compression—compressing blocks se-
quentially, one after the other—is more effective. Since
few-shot compression is a delicate process, it’s beneficial
to minimize extensive modifications to the model structure
in a single stage. Adopting a gradual approach to compres-
sion not only mitigates potential risks but also demonstrates
superior performance, as will be shown in Tab. 6.

We provide the pseudo-code for DC-ViT in Algorithm 1.
In the beginning, we determine the compressed network’s
structure. Then, we sequentially trial-removed different
blocks in the original model Mg to create candidates
M ps,) and finetune the candidates with the tiny training
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Algorithm 1 DC-ViT

Input: original model M, tiny training set D, synthetic
metric set S, number of blocks to be compressed k,
MLP drop ratio r4

Output: pruned model M p

. M p Mo

2: mList < empty list

3: for each block B; of M p do

4 M p(B;) < drop the attention and (randomly) rg of

MLP nodes from B; © trial-compress single block

Minimize Lysg (./\/lo, Mps,), DT) to update

Mps,) > finetune corresponding model

6: Ly +— Lok (MO,MP(B,L),S)

7. Add pair (L, 1) to mList

8

9

wn

> metric loss

: end for

: Sort mList based on the metric loss of each block
10: C' < first k indices of mList > blocks to compress
11: Progressively compress B¢y, in M p > line 5-6
12: return Mp

set Dy. We generate a synthetic metric set to evaluate
the rank of blocks’ recoverability. Finally, we select the
k blocks with the smallest metric values and progressively
compress the selected blocks in M to obtain the pruned
model M p.

4. Experiments

In this section, we report results across various architec-
tures, followed by ablation studies to validate the efficacy
of our dense compression method. Additionally, we offer
some suggestions for few-shot ViT compression.

4.1. Experimental Settings

Architectures. We used the vanilla ViT models initially
introduced by Dosovitskiy et al. [13], the smaller and the
larger ViT variants proposed by Touvron et al. [41], DeiT-
B [41] and Swin-B [28]. We also tested our method on
CNN architectures, using ResNet-34 and MobileNetV2 as
the backbone. Finally, we demonstrate the transferability of
the compression models on downstream tasks.
Benchmark data. We randomly sampled tiny training sets
from ImageNet-1k [37] and evaluated the top-1 / 5 accu-
racy of the pruned models on the validation set. When we
reported the mean accuracy with the standard deviation, we
ran the experiments 5 times with 5 random seeds (2021 ~
2025); otherwise, we took 2023 as the random seed.
Training procedure. Tab. 2 displays the default hyper-
parameter setting we used at training time for all our exper-
iments. Unless otherwise specified, the experiments were
conducted at 2242 resolution.

Batch size 64 Epochs 2000
Warmup epochs 20 Weight decay le —4
Optimizer AdamW  Learning rate  3e — 5
Learning rate decay =~ cosine  Gradient Clip. 1.0
Drop path rate 0.5 Drop rate 0.0
Rand Augment 9/0.5  Color Jitter 0.3

Table 2. Hyper-parameters of our DC-ViT.

4.2. Baseline Pruning Methods

To the best of our knowledge, the field of few-shot compres-
sion for ViTs is currently unexplored. Previous ViT com-
pression methods always rely on the complete ImageNet-1k
dataset and often falter in the few-shot context. For exam-
ple, S2PViT [7], EVIT [26], are the SOTA ViT compression
methods that achieve excellent performance on DeiT. How-
ever, when we applied them to a few-shot setting and used
1000 training samples (which is already a large training set
in few-shot compression), neither of them converged.
Moreover, most methods for few-shot compression of
CNNs involve specific operations on convolutional lay-
ers, which are not easily transferable to ViT architectures.
Therefore, we adopt the SOTA few-shot CNN pruning
method, PRACTISE [43], which can be directly extended to
ViT as a strong baseline. To further verify the effectiveness
of our DC-VIiT, we also extend DC-ViT to CNN architec-
tures and benchmark its performance against notable few-
shot CNN pruning methods, including FSKD [51], CD [2]
and MiR [44]. When comparing with other few-shot prun-
ing methods, we are mainly concerned about the latency-
accuracy tradeoff of the pruned model. The latency of the
pruned models is measured using a batch size of 64 and
recorded the average inference time over 500 runs.

4.3. DC-ViT Performance

We demonstrate our DC-VIiT performance on various ViT
architectures, including plain ViT [13], DeiT [41] and Swin
[28], as well as on CNN architectures.

4.3.1 Results on ViT-Base

We primarily compared our DC-ViT method with the SOTA
few-shot CNN pruning method PRACTISE [43] on ViT-B.
Implementation details. We set the MACs of the pruned
models in DC-ViT to be equal to the cases where the base-
line drops 1, 2, or 3 entire blocks respectively, and the num-
ber of training samples was set to 50, 100, 500 and 1000.
Moreover, we ran the baseline for 2000 - k£ and 2000 epochs
respectively for a fair comparison, because DC-ViT takes
a progressive compression strategy and the finetuning step
costs 2000 epochs in each iteration.

As shown in Tab. 3, under the same MACs settings,
compared with removing complete blocks, our dense com-
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MACs ‘ Methods ‘ Latency (ms) ‘ 50 sample 100 sample 500 sample 1000 sample

15.5 x 109 PRACTISE* 103.2 (65% l,) 71.28j:0.24 75.69;{:6.77 73.32:&0.14 74.71i0_13
(k=1,83%1) | DC-ViT-B 101.9 (8.3% ) | 82.8840.10 83.3010.17 83.7310.14 83.7840.04
141 % 10° PRACTISE* | 94.7(15.4% ) | 69.70+0.32  73.7545.91  72.5440.31 74.5240.22

(k = 2 Tt‘) 6% 1) PRACTISE! 94.7 (15.4% |) 69.8710.48 74.1116.01 72.7440.12 74.6940.10
T DC-ViT-B 93.5(16.7% ) | 80.5910.17 81.581009 82.7410.06 83.1510.0s8

127 5 109 PRACTISE* | 85.9(23.5% J) | 63.7540.44  67.58414.42  70.03+0.56 72.9140.04

(k = 3 ;4 8% 1) PRACTISE" | 85.9(23.5%)) | 65.074040 69.604406  70.5440.12 73.28+0.03
T DC-ViT-B 84.9(24.5% ) | 74.704081 T77.0340.26 80.184+0.37 81.60+0.10

Table 3. Top-1 validation accuracy (%) on ImageNet-1k for pruning ViT-Base with 50, 100, 500, 1000 samples.

* means the method is

implemented by us, T means the epoch was set to 2000 - k (k is the number of compressed blocks) for a fair comparison. | means the
percentage of reduction. The accuracy and latency of the original ViT-Base are 84.41% and 111.1 ms, respectively.

Methods ‘ Latency (ms) Top-1/5 acc (%)
ResNet-34 \

FSKD [24] 29.0(15.8% 1) 45.3/71.5
CD [2] 29.0(15.8% 1) 56.2/80.8
MiR [44] 29.0(15.8% 1) 64.1/86.3
PRACTISE [43] | 29.0(15.8% |) 70.3/89.6
Ours 28.8(16.5% 1) 72.2/90.7
MobileNetV2 |

FSKD [24] 19.4(16.2% 1) 48.4/73.9
MiR [44] 19.4(16.2% 1) 67.6/87.9
PRACTISE [43] | 18.8(19.1% |) 69.3/88.9
Ours 18.8(19.1% ) 69.8/89.2

Table 4. Top-1 validation accuracy (%) on ImageNet-1k for
pruning Resnet-34 and MobileNetV2. Previous few-shot pruning
methods and our DC-ViT are used to prune Resnet34 and Mo-
bileNetV2 with 50 training samples.

pression method by dropping the attention module and part
of the MLP module always gains lower latency, especially
when the number of compressed blocks and training sam-
ples increases, and our DC-ViT approach outperforms the
baseline by a significant margin, achieving roughly 10 per-
centage points higher top-1 accuracy.

4.3.2 Results on CNN Architectures

Few-shot compression on ViT remains under-explored in
existing literature, thus we sought to further validate the
efficacy of our approach by extending it to CNN architec-
tures and benchmark its performance against few-shot CNN
pruning methods FSKD [51], CD [2], MiR [44]. We used
ResNet-34 and MobileNetV2 as the backbone and use 50
training samples. Since the structure of CNN doesn’t fa-
cilitate the reuse of MLP nodes for dense compression like
DC-ViT, we tested the cases where our method eliminates
entire blocks. As shown in Tab. 4, DC-VIiT still outperforms
previous methods by a significant margin.

Model ‘ Methods ‘ Latency (ms) Top-1/5 acc (%)

Original
ViT-T |PRACTISE'| 17.4 (15.1% |) 54.88/82.43
DC-VIiT-T [17.2(16.5% |) 64.42/86.65

Original
ViT-S |PRACTISE' | 36.5 (14.9% |)  69.18/90.42
DC-ViT-S |36.1(16.7% ) 78.64/94.79

Original
ViT-L |PRACTISE'| 317.0(7.3% |)  83.99/97.12
DC-VIiT-L |314.3 (8.2% |) 85.49/97.63

Original
DeiT-B |PRACTISE' | 94.2 (14.5% )  79.30/94.31
DC-DeiT-B |93.6 (16.7% |) 81.26/95.35

Original
Swin-B |PRACTISE' [135.6 (13.0% |) 82.88/96.76
DC-Swin-B |135.6 (13.0% |) 83.82/97.09

Table 5. Top-1/ 5 validation accuracy (%) on ImageNet-1k for
pruning various ViT architectures with 500 samples. T means the
method is implemented by us. | means percentage of reduction.

4.3.3 Results on Various ViT Variants

We have further adapted our DC-ViT framework to en-
compass variants of ViT models, including DeiT-Base and
Swin-Base. To ensure a fair and meaningful comparison
with PRACTISE [43], we uniformly set the MACs of the
pruned models in DC-VIiT to match those in scenarios where
PRACTISE drops 2 entire blocks. However, due to the com-
plex structure of Swin, we directly select and eliminate two
pairs of successive Swin blocks, i.e., a total of 4 complete
blocks. Tab. 5 demonstrates that DC-ViT consistently out-
performs other methods across all these ViT architectures.

4.4. Ablation for Few-shot ViT Compression

We designed ablation studies to provide further insights into
our framework. The results are shown in Tab. 6, based on
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MACs | 15% L (k =2) 30% | (k=4)
DC-DeiT-B | 8325 79.28
top-k (2000 epochs) ‘ 82.84 67.95
top-k (2000 - k epochs) 83.05 78.50
finetune the entire VIT | 82.66 78.17
compress (k + 1) blocks ‘ 82.84 75.07
re-initialize MLP weights 82.60 77.29
GeLU-based weights reuse 83.07 79.25
metric with MSE loss ‘ 74.02 69.22
mimicking on class token ‘ 82.73 78.33

Table 6. Ablation of alternative settings in DC-ViT. We pruned
ViT-Base with 500 samples to achieve 15% and 30% MACs re-
duction respectively.

which we provide some suggestions for compressing ViT
when sample availability is limited.
Use progressive pruning procedure. As the top-k£ com-
pression strategy, we finetuned for 2000 and 2000 - k£ epochs
respectively for a fair comparison. Either way, the progres-
sive compression strategy achieves higher accuracy, espe-
cially when more blocks are compressed.
Update the front part of blocks. When finetuning the en-
tire ViT, the accuracy decreased in all compression settings,
especially when more blocks are compressed, which means
our partial finetuning approach is not only efficient but also
effective in few-shot contexts.
Reuse MLP weights. If the small MLP’s weights are not
reused but randomly re-initialized for finetuning, we can
find that the more blocks are compressed, the more accu-
racy drops. In addition, we also tried some other ways of
selecting the MLP nodes to be reused. However, they did
not show any obvious advantage over random selection.
Compress as few blocks as possible. Given a specific com-
pression ratio, if various options are available, the accuracy
tends to decrease more drastically when more blocks are
compressed. Therefore, we believe that it is better to com-
press as few blocks as possible so long as the target com-
pression ratio is satisfied, which is also evidenced by Fig. 2.
We also tried some other alternative settings, such as
using MSE loss to choose candidate models and conduct-
ing feature mimicking on the CLS token, but none of them
achieved better performance than our default settings.

4.5. Transfer Learning to Downstream Tasks

Finally, we evaluate the generalizability of our DC-ViT.

Implementation details. We finetuned our DC-ViT-B
model compressed in Sec. 4.3.1 on a collection of com-
monly used recognition datasets: CIFAR-10 and CIFAR-
100 [19], Flowers [31], Oxford-IlIT Pets [33], CUB-

CIFAR-10
CIFAR-100
Flowers
CUB-200
Indoor67

Pets

Model

EfficientNet-B7 [40] | 989 91.7 98.8 - - -
ViT-B [13] 97.4 88.0 98.5 92.9 84.1 83.1
DC-ViT-B 98.0 87.5 99.3 92.2 83.5 82.7

Table 7. Transfer learning tasks’ performance of DC-ViT-B with
24.8% latency reduction after few-shot compression. We report
the top-1 accuracy of finetuning the original ViT-B model and our
DC-ViT-B on downstream classification datasets.

200 [42] and Indoor67 [34]. During the finetuning phase, an
AdamW optimizer was adopted with batch size 256, learn-

: —4 batchsize
ing rate 5 x 107° x >33

Tab. 7 shows the results of the Top-1 accuracy of
the original ViT-B and the pruned DC-ViT-B on down-
stream datasets. Compared to the SOTA ConvNets and
transformer-based models, the pruned model achieved com-
parable or even better performance on all downstream clas-
sification tasks, which shows that the efficiency demon-
strated on ImageNet can be preserved on downstream tasks
by our few-shot compression method.

5. Conclusions

In this paper, we proposed a novel framework, Dense Com-
pression of Vision Transformers (DC-ViT), for few-sample
compression on Vision Transformers, which achieves not
only much denser compression options in terms of MACs
by dropping the attention module and adjusting the MLP
drop ratio but also a better performance of the pruned mod-
els with higher accuracy and lower latency.

Limitations and Future Works. One common limita-
tion of DC-ViT and other few-shot compression methods
is that the ratio of compressed MACs cannot be too large
(e.g., mostly < 30%), otherwise, the compressed model’s
accuracy will drop dramatically. Since DC-ViT introduces
small MLPs into pruned blocks, it has the potential to par-
tially solve this difficulty in the future. Another limitation
is that few-shot compression is mainly restricted to recog-
nition. However, tasks like detection and segmentation are
more intriguing. We plan to test the effect of DC-ViT on
ViT-based detector compression in future works.
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