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Abstract

Recovering a clear image from a single hazy image is
an open inverse problem. Although significant research
progress has been made, most existing methods ignore the
effect that downstream tasks play in promoting upstream de-
hazing. From the perspective of the haze generation mech-
anism, there is a potential relationship between the depth
information of the scene and the hazy image. Based on
this, we propose a dual-task collaborative mutual promo-
tion framework to achieve the dehazing of a single im-
age. This framework integrates depth estimation and de-
hazing by a dual-task interaction mechanism and achieves
mutual enhancement of their performance. To realize the
joint optimization of the two tasks, an alternative imple-
mentation mechanism with the difference perception is de-
veloped. On the one hand, the difference perception be-
tween the depth maps of the dehazing result and the ideal
image is proposed to promote the dehazing network to pay
attention to the non-ideal areas of the dehazing. On the
other hand, by improving the depth estimation performance
in the difficult-to-recover areas of the hazy image, the de-
hazing network can explicitly use the depth information
of the hazy image to assist the clear image recovery. To
promote the depth estimation, we propose to use the dif-
ference between the dehazed image and the ground truth
to guide the depth estimation network to focus on the de-
hazed unideal areas. It allows dehazing and depth esti-
mation to leverage their strengths in a mutually reinforc-
ing manner. Experimental results show that the proposed
method can achieve better performance than that of the
state-of-the-art approaches. The source code is released at
https://github.com/zhoushen1/DCMPNet.

1. Introduction

Single image dehazing refers to restoring a clear image
from a given hazy image. This technology has attracted
wide attention due to its critical role in downstream com-
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Figure 1. Idea of dual task collaboration and mutual promotion.
HI denotes the hazy image. DM-HI, DM-GT and DM-DI denote
the depth maps of hazy image, ground truth and dehazed image,
respectively.

puter vision tasks [12, 14, 19, 38, 46]. Mathematically, the
atomization process is commonly simulated by employing
the atmospheric scattering model [25, 27, 28]:

I(x) = J(x)T (x) + (1− T (x))A(x) (1)

where x represents the pixel position, I(x) denotes the
hazy image, J(x) denotes the clear image, T (x) indicates
the transmission map, and A(x) represents the atmospheric
light. The transmission map T (x) can also be expressed as:

T (x) = e−βd(x) (2)

where β is the scattering coefficient, and d(x) is the scene
depth.

From Eq.(1), we can see that image dehazing methods
based on the atmospheric scattering model necessitate the
estimation of both T (x) and A(x). However, most stud-
ies claim that T (x) primarily contributes to generating haze
within images. Consequently, the most existing Eq.(1)-
based methods focus on estimating the transmission map
T (x). For A(x), the maximum pixel value is taken as its
value [39]. In practice, the maximum pixel value in an im-
age may originate from the brightest object rather than rep-
resenting atmospheric light. To address this issue, the meth-
ods in [2, 17, 37] consider the estimation of both T (x) and
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A(x), achieving an improvement in dehazing performance.
However, such atmospheric scattering model-based meth-
ods significantly depend on T (x) and A(x). In reality, the
uneven distribution of haze poses a challenge in accurately
estimating T (x) in each local region of the image, which
limits the improvement of dehazing performance.

End-to-end image dehazing methods recover clear im-
ages directly from hazy images without the aid of atmo-
spheric scattering models [6, 8, 22, 30, 44], thereby get-
ting rid of the dependence on T (x) and A(x). However,
the absence of guidance from the atmospheric scattering
model also poses challenges for restoring clear images. To
solve this problem, image dehazing based on prior infor-
mation was proposed [1, 4, 24, 45]. Specifically, PSD
[4] establishes a loss committee consisting of dark channel
prior [10], bright channel prior [50] and histogram equal-
ization to guide the restoration of clear images. NHFormer
[24] uses dark channel priors and bright channel priors to
guide the generalization of the dehazing model from syn-
thetic domains to real-world applications. RIDCP [45] ob-
tains high-quality codebook priors through pre-trained VQ-
GAN. These priors are used to facilitate controllable high-
quality priors matching, thereby achieving feature recovery
for hazy images. In addition, through the two-stage network
structure design, MITNet [34] simultaneously realizes the
joint recovery of features in both the time and frequency
domains and achieves the restoration of both amplitude and
phase spectrum, ensuring the quality of dehazed images.

Although the above methods are effective, they ignore
the correlation between the depth information of the hazy
image and itself. According to Eq.(2), the depth informa-
tion d(x) of the scene is directly related to T (x), while
T (x) is one of the key factors that lead to the appearance of
haze in image. Suppose d(x) can be accurately estimated
from its hazy image, and the calculated result can be used
to reconstruct the hazy-free image. In that case, it will help
improve the performance of the dehazing model. Based on
this idea, this paper proposes a dual-task collaborative mu-
tual promotion network for single image dehazing within
the framework of end-to-end deep learning. In the proposed
method, we embed depth estimation and image dehazing
within a unified framework. To effectively use the depth in-
formation of the hazy image for the dehazing model, a dif-
ference perception-based dual-task interaction mechanism
is designed to serve as a bridge between the two tasks. This
mechanism seamlessly integrates depth estimation and im-
age dehazing to form a dual-task-driven dehazing method.

The main idea of the proposed approach is shown in Fig-
ure 1. The proposed method improves the depth estimation
on hazy images by perceiving the difference between the
output results of the dehazing network and the expected re-
sults so that the dehazing network can receive high-quality
depth estimation information as guidance in the dehazing

process. Moreover, the design of the dual-task collabora-
tive mutual promotion framework will be conducive to the
dehazing network to learn optimal network parameters. In
terms of depth estimation improving the dehazing perfor-
mance, it makes the dehazing network pay attention to ar-
eas where the dehazing effect could be unsatisfactory by
perceiving the depth information difference between the de-
hazing result and the ideal image. In terms of the dehazing
network promoting depth estimation, the robustness of the
depth estimation is improved by making the depth estima-
tion network pay attention to the non-ideal dehazing areas
and obtaining more accurate prediction results on the hazy
image. We have verified the effectiveness of the proposed
method on three dehazing benchmarks and achieved com-
patible results of the state-of-the-art.

2. Related Work

2.1. Model-based Image Dehazing

Single image dehazing based on the atmospheric scat-
tering model is a popular method. In this kind of method,
the accuracy of the transmission map and atmospheric light
estimation are pivotal factors affecting the quality of the
dehazing results. To this end, a large number of dehaz-
ing methods based on transmission map estimation have
emerged [3, 29, 32, 42]. These methods ignore the influ-
ence of atmospheric light on the dehazing results. To solve
this problem, a joint estimation model for transmission map
and atmospheric light is proposed. Particularly, Zhang et
al. [49] proposed a joint discriminator based on GAN to as-
sess the accuracy of the dehazed image and the estimated
transmission map. Additionally, they employed a U-Net
to predict the atmospheric light. Li et al. [18] proposed
a multi-stage progressive learning approach to estimate the
transmission map. Additionally, they used a global aver-
age pooling layer to normalize the features from different
layers and superimpose them together, and thus achieved
estimating of the atmospheric light. Guo et al. [9] used a
shared DensetNet encoder and two non-shared DensetNet
decoders to estimate the transmission map and atmospheric
light jointly. Lee et al. [15] proposed a feature extraction
network with a joint constraint of transmission map, atmo-
spheric light and dehazing result. The network was used
to predict more comprehensive information in the transmis-
sion map and atmospheric light to improve the quality of
dehazing results.

Due to the absence of prior information, the dehazing re-
sults from the above methods still need improvement. To
this end, prior knowledge was introduced to estimate trans-
mission maps and atmospheric light [7, 21, 23, 51, 53].
Commonly used prior knowledge includes dark channel
prior [10], bright channel prior [50] and color attenuation
prior [54], etc. Although the above methods have proven ef-
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fective, their performance depends on the estimation accu-
racy of the transmission map and atmospheric light. Com-
pared with the physical model-driven approaches, end-to-
end dehazing methods based on deep learning have attracted
researchers’ attention because they eliminate the constraints
of transmission maps and atmospheric light.

2.2. End-to-End Image Dehazing

End-to-end dehazing methods usually restore a clear im-
age directly from the hazy image. To improve the visual
quality of dehazing results, Ren et al. [33] used white bal-
ance, image contrast enhancement and gamma transforma-
tion to preprocess the original image. They then determined
the weights of the three processed images using a gating
mechanism, ultimately achieving the restoration of hazy
images. Wu et al. [44] proposed a regularization method
based on contrast learning, which achieved the recovery of
a clean image by pushing away the distance between the
dehazing result and the original image and simultaneously
narrowing the distance between the dehazing result and the
label image. Given its proficiency in highlighting useful
information, attention-based techniques have been widely
used in image dehazing [22, 30]. Moreover, Guo et al. [8]
proposed an image dehazing network combining CNN and
Transformer, which leveraged the complementary charac-
teristics of CNN and Transformer in feature extraction. Due
to the high computational complexity of softmax-attention
in transformer, Qiu et al. [31] proposed to approximate it
with Taylor expansion, effectively reducing the complexity
of traditional attention mechanisms in image dehazing. The
above methods only consider the information recovery from
the time domain, ignoring the influence of hazy information
on the frequency domain. Therefore, Shen et al. [34] pro-
posed to restore hazy-free image information in both the
time and frequency domain.

Although the end-to-end dehazing methods do not rely
on the physical model of the hazy image, they exhibit a high
dependency on the training dataset. If we find a more effec-
tive way to leverage the information in the training samples,
it will help improve the model performance. The distribu-
tion of haze has a relationship with the scene depth, Yang
et al. [47] proposed a depth perception method to estimate
the depth map of the hazy image and provide depth features
for dehazing in a unified framework. Considering the chal-
lenge posed by the absence of ground truth of hazy images
in real scenarios, Yang et al. [48] proposed a paired sample
construction method for synthesizing authentic hazy images
from clear haze-free images, thereby realizing the super-
vised training of the dehazing model. Wang et al. [43] pro-
posed a self-improving depth-consistent dehazing network
according to the differences in depth features between hazy
image and its ground truth. Nevertheless, the method fails
to achieve collaborative mutual promotion between depth

Figure 2. Dual-task Collaborative optimization formulation for
image dehazing and depth estimation.

estimation and image dehazing, which limits the model per-
formance. In this work, we fully consider the beneficial im-
pact of depth information in hazy images on dehazing and
propose to treat depth estimation and image dehazing as two
independent tasks. The two tasks are seamlessly integrated
into a unified learning framework through a dual-task in-
teraction mechanism, which realizes collaborative mutual
promotion.

3. The Proposed Method
3.1. Idea formulation

In this paper, we propose a single image dehazing
method assisted by depth information. Unlike existing im-
age dehazing methods that rely on elaborately designed al-
gorithms to yield satisfactory results, our method improves
the dehazing performance by leveraging auxiliary task sen-
sitive to the quality of dehazing results. Assuming that the
hazy image is ũ∗, the dehazed image is u∗, and the ground
truth (GT) is u, the idea of depth estimation based on the
dehazed image can be formulated as follows:

min
ωe

ℓdepth(Ψ(u∗ − u;ωe)), (3)

where Ψ is the depth estimation network with parameter ωe,
ℓdepth is specific depth estimation loss. As demonstrated in
Eq.(3), the difference between u∗ and u is used to optimize
the parameter ωe. This enables Ψ to improve its perfor-
mance on u∗ by focusing on the differences between u∗ and
u. Since one of the contributors to the difference between
u∗ and u stems from the presence of residual haze informa-
tion and regions where the dehazing effect is non-ideal. If
the depth estimation network can improve its performance
in these regions, the dehazing result can be also improved
in the corresponding regions of ũ∗.

For optimizing parameter ωd of Φ, this paper employs
the following optimization objective:

min
ωd

ℓdehaze(Φ(Mu∗ −Mu,Mũ∗ , ũ∗;ωd)), (4)

where ℓdehaze is the specific dehazing loss, Φ is the de-
hazing network with parameter ωd, Mu∗ , Mu and Mũ∗

are the depth maps of u∗, u and ũ∗ respectively. In this
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Figure 3. Architecture of the proposed method, which consists of the dehazing network, depth estimation network (DE) and difference
perception (DP). DE and DP are the main components of difference perception-based dual-task interaction mechanism. This mechanism
enables dehazing and depth estimation to be seamlessly integrated into a unified framework, and improves the model performance of two
tasks through collaborative mutual promotion.

work, RA-Depth [11] is used to generate Mu. In Eq.(4),
Mu∗−Mu is the difference between the depth maps of u∗

and u. Suppose this difference is fed back into the train-
ing process of dehazing network Φ, and used to prompt Φ
to focus on areas where depth estimation is not ideal. In
that case, the performance of Φ will be improved by Eq.(4).
Driven by this idea, the depth estimation network Ψ will
play a positive role in promoting the performance of the de-
hazing network Φ. Furthermore, as the performance of Ψ
on ũ∗ improves, the predicted depth information becomes
more accurate, leading to a more comprehensive represen-
tation of structural details in the depth map. Consequently,
injecting Mũ∗ into Φ will have a beneficial effect on the re-
covery of structural information in hazy images. This also
reflects the promotion effect of Ψ on Φ. As shown in Figure
2, this design idea of dual-task collaboration can also ef-
fectively prevent the dehazing network parameter ωd from
falling into an undesirable local optimum [20].

3.2. Depth Information Assisted Image Dehazing

3.2.1 Encoder of Dehazing Network

As seen from Figure 3, the depth information-assisted
image dehazing network consists of encoder and decoder.

The encoder is mainly composed of U-Net, local feature-
embedded global feature extraction module (LEGM), depth
estimation network (DE), dilated residual dense block
(DRDB) and multi-scale aggregation attention module
(MSAAM). To ensure the quality of U-Net output, the pa-
rameters of U-Net are optimized by l1-loss:

ℓunet = ||F unet
ũ∗ − F unet

u ||1 (5)

where F unet
ũ∗ and F unet

u denote the features of ũ∗ and u of
U-Net output respectively. As shown in Figure 4 (a), the
self-attention block is the main component of LEGM. Its
inputs include the features output by the 1 × 1 convolution
after the U-Net, the features output by the 3 × 3 convo-
lution and the features output by the DRDB after the DE.
Since the features extracted by the convolutional network
contain a large number of local information, we name the
self-attention block combined with the convolution layer
LEGM. In the depth information-assisted dehazing, only
the first LEGM receives the depth information of the hazy
image. The encoder of the dehazing network contains three
LEGMs, and the outputs of these LEGMs are integrated
through the MSAAM shown in Figure 4 (b) to prevent the
loss of shallow features.
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Figure 4. Architectures of the LEGM, MSAAM, MFM.

Let the outputs of three LEGMs be F 1
legm, F 2

legm and
F 3
legm respectively. The three outputs are then processed

through GAP, Concat, MLP and split operations, the weight
matrices A1

legm, A2
legm and A3

legm are obtained and used
for modulating them. The modulated features can be ex-
pressed as:

F̃ i
legm = Ai

legm ⊙ F i
legm (i = 1, 2, 3) (6)

where ⊙ denotes dot product. After modulation by Eq. (6),
the features related to the clear image in F i

legm (i = 1, 2, 3)
will be highlighted, which is conducive to the protection of
detailed information. Since F̃ 1

legm, F̃ 2
legm and F̃ 3

legm have
different dimensions, to mine the potential relationship be-
tween them, the convolution operation is respectively em-
ployed on F̃ 2

legm and F̃ 3
legm to facilitate their dimensional

alignment with F̃ 1
legm. Subsequently, F̃ 1

legm, F̃ 2
legm and

F̃ 3
legm are concatenated and processed through two convo-

lutional layers with non-shared parameters, yielding the fea-
tures F̂ 1

legm and F̂ 2
legm.

3.2.2 Decoder of Dehazing Network

As can be seen from Figure 3, the decoder of the dehazed
image mainly consists of two LEGMs with feature modula-
tion implantation (FMI). Each of them consists of two con-
volution layers, a modulation fusion module (MFM) and an
LEGM, where the structure of the MFM is shown in Fig-
ure 4 (c). The inputs of the first MFM are F̂ 1

legm and the
feature F 1

rc derived after F̃ 3
legm undergoes 3 × 3 convolu-

tion. The result obtained after the sum of F̂ 1
legm and F 1

rc

is processed through GAP, MLP, and Softmax, is denoted
as A1

r,c. The values in A1
r,c indicate the significance of the

features in F̂ 1
legm and F 1

rc in the reconstruction of the de-
hazed image. Their contribution to the image dehazing can
be highlighted by adjusting with A1

r,c. The specific process
can be expressed as follows:

F̃ 1
rc = A1

r,c ⊙ F̂ 1
legm +A1

r,c ⊙ F 1
rc (7)

F̃ 1
rc and F̂ 1

legm are concatenated to enhance the shared in-
formation between them. Subsequently, the concatenation
result is processed through a convolution layer to yield the
output of the first LEGM with FMI. In the second LEGM
with FMI, the first output of LEGM with FMI and F̂ 2

legm

are used as its inputs, and the final output is sent to a con-
volution layer to reconstruct the final dehazed image u∗.

3.3. Depth Estimation Driven by Difference Percep-
tion

The proposed dehazing method not only addresses the
image dehazing but also incorporates depth estimation
based on the dehazed images, thereby presenting a dual-
task collaborative promotion network framework. Regard-
ing network architecture, DE follows a U-Net structure,
adopting a DRDB-based encoder and decoder design. The
encoder and decoder comprises 4 DRDBs, respectively. To
improve the performance of the DE on hazy images, we
introduce the difference perception between dehazing im-
ages and their GTs. The process is shown in the difference
perception-based dual-task interaction of Figure 3.

The difference between the dehazing result u∗ and u is:

Ru∗/u = u∗ − u (8)

where Ru∗/u reflects the difference between the dehazing
result and the label. It also indirectly indicates the location
of regions in the dehazing result where the dehazing effect
is not ideal. Suppose the DE can focus on those regions and
yield accurate depth estimation results in these regions. In
that case, it will provide more accurate depth information
for image dehazing in the mutual promotion of dual tasks
to assist the dehazing network in obtaining ideal dehazing
results. In this process, the difference Ru∗/u is processed
through a difference perceptron consisting of convolutional
layers, MLP and Softmax to predict the coefficient matrix
Ad,r that reflects the difference between u∗ and u. DE is
optimized by minimizing a tailored loss function as follows:

ℓdepth = ∥Ad,r ⊙ (Mu∗ −Mu)∥1 + ∥Mũ∗ −Mu∥1 (9)

It is worth noting that optimizing the DE guided by Eq.
(9) embodies an integrated optimization strategy of dual
tasks. On the one hand, the DE ensures consistency be-
tween the estimated depth maps of dehazed images and their
corresponding GTs, particularly in regions that exhibit sub-
optimal dehazing results. This promotes the DE to allocate
increased attention to the regions where the dehazed image
differs from the GT. The difference is mainly from the resid-
ual haze in the dehazed image. Therefore, the optimization
in Eq. (9) can improve the dehazing network’s perceptive-
ness to the haze information in the hazy image. On the other
hand, the constraint on hazy image depth estimation is intro-
duced into the loss function in Eq. (9), which is equivalent
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to optimizing the DE via a dual-task strategy. As depicted
in Figure 2, this strategy can effectively mitigate the limi-
tation of a single-task DE that may converge to a non-ideal
local optimal solution, enhancing overall performance ro-
bustness.

3.4. Dual-task Collaborative Mutual Promotion
Learning

DE and the image dehazing network are trained in a mu-
tually promoting manner. When optimizing the DE, the
main loss function is ℓdepth. Since Mu∗ = Ψ(u∗, ωe),
Mũ∗ = Ψ(ũ∗, ωe) and u∗ = Φ(ũ∗, ωd), we have Mu∗ =
Ψ(Φ(ũ∗, ωd), ωe), and then the formula for updating pa-
rameter ωe can be expressed as:

ωe ← ωe−
ηe∇ωe

ℓdepth(Ψ(Φ(ũ∗, ωd), ωe); Ψ(ũ∗, ωe);Mu)
(10)

where ηe denotes the learning rate. Ψ(Φ(ũ∗, ωd), ωe),
Ψ(ũ∗, ωe) and Mu represent the inputs of the loss function
ℓdepth. It can be seen that the output result u∗ = Φ(ũ∗, ωd)
is used when updating the parameter ωe. In the iterative op-
timization of Φ and Ψ, the performance of the dehazing net-
work Φ increases from weak to strong. Under the constraint
of loss function ∥Ad,r ⊙ (Mu∗ −Mu)∥1 in Eq. (9), the
DE can improve its accuracy by focusing on the difference
between the dehazing result and the GT. This demonstrates
that the dehazing network plays a positive role in promoting
the performance of the DE.

During the optimization of the dehazing network,
Mu∗ −Mu is fed to the difference perceptron to yield the
coefficient matrix Ae,r. With Ae,r, we use the following
loss function to update the parameters of the dehazing net-
work:

ℓdehaze = ∥Ae,r ⊙ (u∗ − u)∥1

+

n∑
i=1

λi
∥V GGi(u)− V GGi(Φ(ũ

∗, ωd))∥1
∥V GGi(ũ∗)− V GGi(Φ(ũ∗, ωd))∥1

(11)
where V GGi represents the output feature of the i-th layer
of VGG19 [35], and λi is the weight coefficient [44]. There-
fore, the update process of the dehazing network can be de-
scribed by:

ωd ← ωd−
ηd∇ωdℓdehaze(Φ(ũ

∗, ωd);Ψ(Φ(ũ∗, ωd), ωe);u;Mu)
(12)

where ηd is the learning rate. It can be seen that when up-
dating ωd, the depth estimation result of the dehazing image
Ψ(Φ(ũ∗, ωd), ωe) is used. In this process, the difference
between Ψ(Φ(ũ∗, ωd), ωe) and Mu is directly conveyed to
the optimization of ωd through the loss function, which pro-
motes the dehazing network to improve its performance by
updating ωd, to reduce the difference between u∗ and u.

Therefore, it is evident from the above analysis that the DE
plays a positive role in promoting the performance of the de-
hazing network. On the other hand, as illustrated in Figure
3, the depth estimation result of ũ∗ is fed into the LEGM
and participates in the feature extraction of hazy images.
This facilitates the dehazing network to obtain useful aux-
iliary information from Mũ∗ to improve the quality of the
dehazing results.

4. Experiments
4.1. Experimental Settings

Datasets To ensure an unbiased comparison with current
dehazing methods, we use the Indoor Training Set (ITS)
and Outdoor Training Set (OTS) from the RESIDE dataset
[16] as the training data. For evaluation, we employ the
Synthetic Objective Test Set (SOTS), which contains 500
indoor and 500 outdoor hazy images for testing. The real-
world images are collected to verify the model generaliza-
tion.

Implementation Details. All experiments are conducted
on an NVIDIA GeForce RTX 3090 with 24GB GPU, and
the model is implemented in the Pytorch 1.12.0 framework.
During the training phase, Adam optimizer [13] is used
to optimize the network. We set the initial learning rate
to 0.001 and use a cosine annealing strategy to adjust the
learning rate. Moreover, we randomly crop the images into
256 × 256 patches for training. In each mini-batch, the
patches are augmented through horizontal or vertical flip-
ping to enlarge the training samples. The entire training
process lasted for a total of 600 epochs on the indoor dataset
and 60 epochs on the outdoor dataset.

Evaluation Metrics. The proposed method is compared
with the state-of-the-art deep learning-based dehazing
methods. Their performance in terms of fidelity and per-
ceptual quality is evaluated by five metrics: PSNR, SSIM,
NIQE [26], PIQE [41] and FADE [5].

4.2. Comparison with State-of-the-arts

Table 1 shows the quantitative results of different de-
hazing methods on the SOTS indoor and outdoor datasets,
respectively. The evaluation results indicate that the pro-
posed method has achieved the best values on SSIM, NIQE,
PIQE, and FADE, while also obtaining comparable scores
on PSNR. Figure 5 depicts the dehazing results obtained on
the SOTS indoor and outdoor datasets by different methods.
It can be seen from the local residual maps that the pro-
posed method has better dehazing performance than other
methods on synthetic data. Moreover, to assess the gen-
eralization of the proposed method, experiments are con-
ducted on real-world hazy images. The experimental re-
sults are presented in Figure 6. It shows that the proposed
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Table 1. Performance of the proposed method is compared with that of state-of-the-art methods on the synthetic datasets (SOTS-indoor
and SOTS-outdoor). Best values are in bold.

Methods
SOTS-indoor SOTS-outdoor

PSNR↑ SSIM↑ NIQE↓ PIQE↓ FADE↓ PSNR↑ SSIM↑ NIQE↓ PIQE↓ FADE↓

AECR-Net [44] 37.17 0.9901 – – – – – – – –
PSD [4] 12.50 0.7153 4.6350 35.1740 0.6023 15.51 0.7488 3.2619 11.7166 0.7235

MAXIM-2S [40] 38.11 0.9908 4.2962 31.8841 0.5209 34.19 0.9846 3.0964 7.7737 0.7697
Dehamer [8] 36.63 0.9881 4.6482 31.4427 0.5020 35.18 0.9860 3.0088 9.7072 0.8318

D4 [48] 25.24 0.9320 4.3261 31.5310 0.7084 25.83 0.9560 2.9474 7.6678 0.7340
Dehazeformer [36] 40.05 0.9958 4.3276 32.2755 0.4987 34.95 0.9840 2.9507 7.8495 0.8093

C2PNet [52] 42.56 0.9954 4.3978 31.7937 0.4983 36.68 0.9900 3.1437 11.7275 1.0630
MB-TaylorFormer [31] 42.63 0.9942 4.3047 31.9366 0.4959 38.09 0.9910 2.9952 7.9968 0.8378

MITNet [34] 40.23 0.9920 4.2529 31.3239 0.5019 35.18 0.9920 2.9454 7.8575 0.7563
Proposed 42.18 0.9967 4.2403 31.3046 0.4907 36.56 0.9931 2.9377 7.6498 0.7112

Figure 5. Visual comparisons on SOTS-indoor and SOTS-outdoor. Due to space limitations, we only show the visual effects of the images
obtained by the methods with excellent performance of each year in Table 1. To facilitate the visual comparison, we display the visual
effects of enclosed areas from the dehazed results and the differences between areas enclosed and their GTs. Less residual information in
the difference map indicates better dehazing effect.

method achieves better dehazing effect than other methods
compared on real-world data.

4.3. Ablation Study

The proposed method mainly consists of the LEGM,
MFM, MSAAM, DE and DP. To verify their contribution to
the full model, we conduct ablation experiments on SOTS-
Indoor dataset. We exclude the MSAAM, DE, and DP from
the model depicted in Figure 3, and replace the LEGM and
MFM with a summation operation, then construct the Base-
line. It is trained with constrains of loss in Eq.(11). The
quantitative evaluation results of the ablation experiment
are listed in Table 2.

Table 2. Ablation study of each module on SOTS-Indoor dataset.

Methods PSNR↑ SSIM↑ NIQE↓ PIQE↓ FADE↓

Baseline 35.69 0.9900 4.3974 31.9224 0.5950
+LEGM 40.41 0.9947 4.2701 31.4971 0.5948
+MFM 40.60 0.9957 4.2601 31.3885 0.5717

+MSSAM 40.75 0.9957 4.2485 31.3657 0.5423
+DE 41.55 0.9958 4.2269 31.3438 0.5018
+DP 42.18 0.9967 4.2400 31.3050 0.4907

Effectiveness of LEGM. As shown in Table 2, compared
to the Baseline, the PSNR of the Baseline+LEGM increases
by 4.72dB. Moreover, in terms of other metrics, notable
enhancements can be also observed. Those improvements
can be attributed to the inherent capability of the LEGM,
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Figure 6. Visual comparisons on real-world images collected by ourselves. These images were taken casually with a mobile phone under
foggy weather conditions.

Figure 7. Depth estimation and Dehazing results of the proposed
method without DP and with DP.

which integrates both global and local features.

Effectiveness of MFM. To enhance the feature represen-
tation ability of the network, MFM facilitates the feature in-
teraction across diverse channels by dynamically adjusting
fusion weights. As listed in Table 2, the addition of MFM
to the Baseline+LEGM improves the model performance.

Effectiveness of MSAAM. As shown in Table 2, the per-
formance of the model is further improved after MSAAM is
added into Baseline+LEGM+MFM. The features of differ-
ent scales aggregated through MSAAM are fused with the
decoding layer features, which could alleviate the feature
dilution problem in the encoding and decoding process.

Effectiveness of DE. DE is incorporated into the Base-
line+LEGM+MFM+MSAAM to verify its effectiveness.
As listed in Table 2, the DE effectively enhances the perfor-
mance of the model. This can be attributed to the fact that
depth information offers crucial insights, including object
depth and spatial coherence. It contributes to the preser-

vation of image structure stability, which also proves the
effectiveness of dual task mutual promotion.

Effectiveness of DP. DP is added into Base-
line+LEGM+MFM+MSAAM+DE to verify its effec-
tiveness. As compared in Table 2, the DP facilitates the
enhancement of model performance. It is discernible
from Figure 7 that the network with DP module acquires
a noteworthy improvement in both depth estimation and
dehazing results.

5. Conclusion

We propose a novel approach to treat depth estimation
and image dehazing as two independent tasks, and integrate
them into a joint learning framework through a dual task in-
teraction mechanism for joint optimization. The proposed
difference perception in the depth maps between the dehaz-
ing result and the ideal image allows the dehazing network
to focus on the sub-optimal dehazing areas to improve the
network performance. Concurrently, the difference between
the dehazed image and its label guides the depth estima-
tion network to pay attention to the sub-optimal dehazing
areas, thereby improving the depth prediction accuracy. In
this manner, the image dehazing and depth estimation net-
work are mutually reinforced. Experimental results show
that the proposed method exhibits superior performance on
both synthetic and real-world hazy images.
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