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Figure 1. Given two input images, our approach can generate a sequence of intermediate images, delivering a smooth and natural transition
between them. This is achieved purely by harnessing the prior knowledge of a pre-trained diffusion model, i.e., Stable Diffusion [33].

Abstract

Diffusion models have achieved remarkable image gen-
eration quality surpassing previous generative models.
However, a notable limitation of diffusion models, in com-
parison to GANs, is their difficulty in smoothly interpolating
between two image samples, due to their highly unstruc-
tured latent space. Such a smooth interpolation is intrigu-
ing as it naturally serves as a solution for the image mor-
phing task with many applications. In this work, we ad-
dress this limitation via DiffMorpher, an approach that en-
ables smooth and natural image interpolation by harness-
ing the prior knowledge of a pre-trained diffusion model.
Our key idea is to capture the semantics of the two images
by fitting two LoRAs to them respectively, and interpolate
between both the LoRA parameters and the latent noises
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to ensure a smooth semantic transition, where correspon-
dence automatically emerges without the need for annota-
tion. In addition, we propose an attention interpolation and
injection technique, an adaptive normalization adjustment
method, and a new sampling schedule to further enhance
the smoothness between consecutive images. Extensive ex-
periments demonstrate that DiffMorpher achieves starkly
better image morphing effects than previous methods across
a variety of object categories, bridging a critical functional
gap that distinguished diffusion models from GANs.

1. Introduction
Image morphing [1, 49, 54] is a popular technique for im-
age transformation, lying at the intersection of computer vi-
sion and computer graphics with continuous attention over
decades. Given two images of topologically similar objects
and optionally a set of correspondence key points, a mor-
phing process generates a sequence of reasonable interme-
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diary images. When played in succession, the image se-
quence produces a captivating video of a smooth transition
between the two input images. Developed initially for cine-
matic and visual effects, image morphing has found its ap-
plications in various fields like animations, games [1, 54], as
well as photo-editing tools [1] for artistic and entertainment
purpose to enrich people’s imagination. In the era of deep
learning, image morphing can also be used in data augmen-
tation [12].

There are two major concerns in the problem of im-
age morphing, which are hardly balanced in previous stud-
ies: the rationality of intermediate images and the smooth-
ness of the transition video. Classic methods presented in
the graphics literature [4, 5, 9, 26, 39] typically involve an
image-warping process to align the correspondence points
and a cross-dissolution operation to mix the colors. How-
ever, the color-space dissolution does not well explain the
textural and semantic transition and is prone to undesir-
able intermediate results like ghosting artifacts. Since the
deep learning era, GANs [13] have shown stunning im-
age morphing ability through simple latent code interpo-
lations [6, 20–22, 29, 36, 37]. Despite the smoothness of
the transformation process, this method is hard to extend
to arbitrary real-world images due to the limited model ca-
pacity and the challenge of GAN inversion [50]. Recently,
diffusion models [3, 17, 33, 42, 44] have emerged as state-
of-the-art generative models, significantly enhancing image
synthesis and real image reconstruction. However, initial at-
tempts to apply diffusion models to image morphing suffer
from abrupt content changes between consecutive images.

In this work, we are interested to address the image mor-
phing problem by asking the question: Is it feasible to
achieve smooth and natural image interpolation with dif-
fusion models, akin to the capabilities of GANs? The so-
lution to this problem will immediately serve as an image
morphing approach when combined with image reconstruc-
tion techniques like DDIM inversion [43]. However, real-
izing such a reasonable interpolation on diffusion models is
non-trivial. Unlike GANs that have a meaningful compact
latent space, the latent space of diffusion models is a noise
map that lacks semantic meaning, thus random and abrupt
content flickering are often observed when naively interpo-
lating in the latent space. How to guarantee smoothness in
both high-level semantics and low-level textures remains a
key challenge.

To this end, we present DiffMorpher, a new approach
to achieve smooth image interpolation based on diffusion
models while maintaining the rationality of intermediate
images. Since the latent space is non-interpretable, our key
idea is to create smooth semantic transition via the low-
rank parameter space. This is achieved by applying low-
rank adaptations (LoRAs) [19] to the two input images sep-
arately, encapsulating the corresponding image semantics

in the two groups of LoRA parameters. Thanks to the anal-
ogous parameter structures, a linear interpolation between
the two sets of LoRA parameters will deliver a smooth tran-
sition in the image semantics. Combining spherical inter-
polation (slerp) between the two latent Gaussian noises as-
sociated with the two input images, our approach can create
a semantically meaningful transition with high-quality in-
termediates between them. However, this method does not
fully eliminate the low-level abrupt change. To address this,
we further introduce a self-attention interpolation and sub-
stitution method that ensures smooth transition in low-level
textures, and an AdaIN adjustment technique that enhances
the coherence in image colors and brightness. Finally, to
maintain a homogeneous transition speed in image seman-
tics, we propose a new sampling schedule.

We extensively evaluate DiffMorpher in a wide range
of real-world scenarios. A new image morphing bench-
mark MorphBench is created to support quantitative eval-
uation, where our approach significantly outperforms ex-
isting methods in both smoothness and image fidelity. To
the best of our knowledge, this is the first time smooth im-
age interpolation can be achieved on diffusion models at
a comparable level as GANs. Unlike GANs that struggle
with real-world images, DiffMorpher can deal with a much
wider image scope. The ability to continuously tweak im-
age semantics has empowered GAN for many downstream
applications, thus we hope our work will similarly pave the
way for new opportunities in diffusion models. For exam-
ple, our method can augment many image editing methods
such as [7, 24, 28, 53] by turning their final images into
continuous animations.

2. Related Work

2.1. Classic Image Morphing

Image morphing is a long-standing problem in computer
vision and graphics [1, 49, 54]. Classic graphical tech-
niques [4, 5, 9, 26, 39] typically combine correspondence-
driven bidirectional image warping with blending opera-
tions to obtain plausible in-betweens in a smooth transi-
tion. Although making a smooth morphing between two
images, these methods fall short of creating new content
beyond the given inputs, thus leading to unsatisfactory re-
sults like ghosting artifacts. More recently, the explosion
of data volume gave rise to a new data-driven morphing
paradigm [2, 12]. Unlike classic approaches, they capital-
ize on massive images from a specific object class to de-
termine a smooth transition path from the source image to
the target one, which contributes to compelling intermediate
morphing results. However, the great demand for enormous
single-class data impedes their applications in more general
scenarios like cross-domain or personalized morphing. In
contrast, our model leverages the prior knowledge in diffu-
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sion models pre-trained on large-scale images and thus is
applicable to diverse object categories.

2.2. Image Editing via Diffusion Models

Diffusion models [17, 42, 44] have been a prevalent star
in deep generative models in recent years, thanks to their
impressive sample quality and scaling ability [11, 18]. By
learning to gradually denoise from Gaussian noises with
a noise prediction UNet [34], diffusion models can gen-
erate high-quality clean data that fits well with real data
distribution. Diffusion models trained on large-scale text-
image pairs [38], such as Imagen [35] and Stable Dif-
fusion [33], have gained unprecedented success in text-
to-image generation. Therefore, they are suitable as a
powerful prior for multiple editing tasks, including text-
guided [7, 8, 15, 24, 30, 45] and drag-guided [28, 40] image
manipulation. Most of these works directly generate the
final edited image, while the generation of a continuous an-
imation like image morphing is much less explored in the
literature of image diffusion models.

2.3. Deep Interpolation

It has been widely demonstrated that Generative Adversar-
ial Networks (GANs) [13] can be used to morph images by
interpolating latent codes. Due to their highly continuous
and discriminative latent embedding space, a linear interpo-
lation among two latent codes will exhibit impressive image
morphing results, as demonstrated in a large body of GAN
papers [6, 20–22, 36, 37]. However, to morph between real
images, the corresponding latent codes, which are often out-
side of GAN’s latent distribution, must be obtained with
GAN inversion and tuning techniques [29, 32, 50]. Typi-
cally, the latent codes obtained struggle to recover the orig-
inal real images. Although the generator can be tuned to
reconstruct the images, the rationality of the intermediates
and the correctness of correspondence cannot be guaran-
teed.

Recent advances in diffusion models [17, 42, 44] also
show the potential to generate reasonable intermediate im-
ages through latent noise interpolations and text embedding
interpolations [3, 47]. However, due to the highly unstruc-
tured image distribution learned in diffusion models, the
generated transition videos often contain abrupt changes
and inconsistent semantic content, which are unacceptable
in the image morphing task. Preechakul et al. [31] proposed
a Diffusion Autoencoder architecture that enables more rea-
sonable image interpolation than the vanilla diffusion mod-
els, but this approach cannot be directly applied to the
widely used vanilla diffusion models like Stable Diffusion
and abrupt changes still remain. In our work, we demon-
strate the ability of diffusion models to generate smooth and
natural morphing sequences using only the prior knowledge
in pretrained text-to-image models.

Recently, a concurrent work [51] has also studied the ap-
plication of diffusion models for the image morphing task.
Compared to their approach, our method incorporates del-
icately designed self-attention control and AdaIN adjust-
ment, which greatly diminish abrupt changes in textures and
improve consistency in colors. Furthermore, our approach
fits a single LoRA for each image and interpolates between
the LoRA parameters during morphing, thus increasing the
versatility and flexibility of our method, such as applying
morphing among multiple images.

3. Method
Given two images I0 and I1, our goal is to obtain an inter-
polation video V = {Iα|α ∈ (0, 1)} that displays a natural
and smooth transition from I0 to I1, where the sequence of
α depends on the desired number of frames n and a specific
sampling schedule. A meaningful image morphing should
be done between two images with clear correspondence. In
our general morphing framework, I0 and I1 can be either
real images or diffusion-generated images with text prompts
P0 and P1.

In this section, we formally present our DiffMorpher ap-
proach to address this problem. We first introduce the pre-
liminaries on diffusion models in Sec. 3.1. To capture the
identities in I0, I1 and generate semantic consistent and
meaningful in-betweens, we propose LoRA interpolation
and latent noise interpolation techniques in Sec. 3.2 and
3.3. To enhance the smoothness of the transition video,
we propose the self-attention interpolation and replacement
method, a AdaIN adjustment technique and a new resched-
ule method in Sec. 3.4 and 3.5. An overview of our method
with an illustration example is shown in Fig. 2.

3.1. Premininaries on Diffusion Models

Diffusion models [17, 42–44] are a family of latent variable
generation models of the form:

pθ(z0) =

∫
pθ(z0:T )dz1:T (1)

It includes a diffusion process {q(zt)|t = 0, 1, · · · , T} that
gradually adds noise to the data sampled from the real data
distribution q(z0) toward q(zT ) = N (0, I), and a corre-
sponding denoising process {p(zt)|t = T, T − 1, · · · , 0}
that generates clean data from the standard Gaussian noise
zT ∼ p(zT ) = N (0, I), where T is the total number of
steps. The denoising process is achieved by learning a pa-
rameterized joint distribution pθ(z0:T ) with a noise predic-
tion network ϵθ. Specifically, in the denoising step t, ϵθ pre-
dicts the noise ϵ added to zt−1 according to current noise
zt, current time step t and possible additional condition c.
In practice, ϵθ is generally implemented as a UNet [34].

Latent Diffusion Model (LDM) [33] is an important vari-
ant of diffusion models that achieves a great balance be-
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Figure 2. Method pipeline. Given two images I0 and I1, two LoRAs are trained to fit the two images respectively. Then the latent noises
for the two images are obtained via DDIM inversion. The mean and standard deviation of the interpolated noises are adjusted through
AdaIN. To generate an intermediate image, we interpolate between both the LoRA parameters and the latent noises via the interpolation
ratio α. In addition, the text embedding and the K and V in self-attention modules are also replaced with the interpolation between the
corresponding components. Using a sequence of α and a new sampling schedule, our method will produce a series of high-fidelity images
depicting a smooth transition between I0 and I1.

tween image quality and sample efficiency. Based on the
LDM framework, a number of powerful pretrained text-to-
image models have been available to the public, including
the widely-used Stable Diffusion (SD). It involves a vari-
ational auto-encoder (VAE) [25] that encodes the images
to latent embeddings and trains a text-conditioned diffusion
model in the latent space. The denoising UNet ϵθ in the
SD model is composed of a sequence of basic blocks, each
of which includes a self-attention module, a cross-attention
module [46], and a residual block [14]. The attention mod-
ule in UNet can be formulated as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2)

where Q is the query features derived from the spatial fea-
tures, and K,V are the key and value features obtained from
either the spatial features (in self-attention layers) or the text
embedding (in cross-attention layers) with respective pro-
jection matrices. Our method in this paper is built upon the
SD model.

3.2. LoRA Interpolation

Low-Rank Adaption (LoRA) [19] is an efficient tuning
technique that was first proposed to fine-tune large language
models and recently introduced to the domain of diffusion
models. Instead of directly tuning the entire model, LoRA
fine-tunes the model parameters θ by training a low-rank
residual part ∆θ, where ∆θ can be decomposed into low-

Fix LoRA ∆�0 

Fix LoRA ∆�1 

LoRA Interp. ∆�� 

Latent Interpolation Ratio � (from 0 to 1) 

Figure 3. Effects of LoRA. A LoRA fit to an image tends to cap-
ture its semantic identity, while the layout and appearance are con-
trolled by latent noise.

rank matrices. Besides its inherent advantage in training
efficiency, we further discover that LoRA enjoys an impres-
sive capacity to encapsulate high-level image semantics into
the low-rank parameter space. By simply fitting a LoRA on
a single image, the fine-tuned model can generate diverse
samples with consistent semantic identity when traversing
the latent noise, as shown in Fig. 3.

Motivated by this observation, we first train two LoRAs
∆θ0, ∆θ1 on the SD UNet ϵθ for each of the two images
I0 and I1. Formally, the learning objective for training
∆θi(i = 0, 1) is:

L(∆θi) = Eϵ,t[∥ϵ− ϵθ+∆θi(
√
ᾱtz0i +

√
1− ᾱtϵ, t, ci)∥2]

(3)
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where z0i = E(Ii) is the VAE encoded latent embedding
associated with the input image Ii, ϵ ∼ N (0, I) is the ran-
dom sampled Gaussian noise, zti =

√
ᾱtz0i +

√
1− ᾱtϵ is

the noised latent embedding at diffusion step t, ci is the text
embedding encoded from the text prompt Pi, and ϵθ+∆θi

represents the LoRA-integrated UNet. The fine-tuning ob-
jective is optimized separately via gradient descent in ∆θ0
and ∆θ1.

After fine-tuning, ∆θ0 and ∆θ1 are fixed and stored.
When generating the intermediate image Iα, we fuse the
high-level semantics in I0 and I1 by applying a linear in-
terpolation in the low-rank parameter space:

∆θα = (1− α)∆θ0 + α∆θ1 (4)

and use the UNet with interpolated LoRA ϵθ+∆θα as the
noise prediction network in the denoising steps. Such an
interpolated ∆θα is meaningful because ∆θ0 and ∆θ1 are
moderately fine-tuned from the same initialization and thus
are highly correlated. While this idea of deep network inter-
polation [48] is not new in the literature, this is the first time
it has been used for image morphing with diffusion models.

3.3. Latent Interpolation

With the noise prediction network, the next step in generat-
ing Iα is to find the corresponding latent noise zTα and the
latent text condition cα. To this end, we further introduce
latent interpolation.

As tentatively discussed in the DDIM paper [43], a
fascinating property of DDIM compared to the original
DDPM [17] is its suitability for image inversion and inter-
polation. Following the idea, we first get the corresponding
latent noise zT0, zT1 for z00, z01 through DDIM inversion,
and obtain the intermediate latent noise zTα through spher-
ical linear interpolation (slerp) [41]:

zTα =
sin((1− α)ϕ)

sinϕ
zT0 +

sin(αϕ)

sinϕ
zT1 (5)

where ϕ = arccos

(
zTT0zT1

∥zT0∥∥zT1∥

)
.

However, the vanilla DDIM inversion is known to suffer
from unfaithful reconstruction, especially in real image sce-
narios [27]. To alleviate this, we utilize LoRA-integrated
UNet ϵθ+∆θi(i = 0, 1) when inverse the inputs. Since
LoRA has been fine-tuned in the input images, the recon-
struction from zTi to z0i is much more accurate than before.

Regarding the latent text conditions cα, we find that lin-
ear interpolations between aligned input condition c0 and
c1 can serve as meaningful intermediate conditions:

cα = (1− α)c0 + αc1 (6)

For example, an interpolation between “day” and “night”
will show a gradual transition from daylight to darkness.

After getting latent noises zTα and latent condition cα,
we then denoise zTα with LoRA-integrated UNet ϵθ+∆θα

using the DDIM schedule, and obtain semantically mean-
ingful intermediate images with natural spatial transitions.

3.4. Self-Attention Interpolation and Replacement

Despite the semantic rationality of the intermediate results
{Iα}, we still observe unsmooth changes in low-level tex-
tures in the generated video V . We attribute this problem
to the highly nonlinear properties introduced in the multi-
step denoising process. To address this, we draw inspiration
from attention control techniques in previous image editing
studies [8, 15, 30, 40, 45], and propose a novel self-attention
interpolation and replacement method that introduces lin-
early changing attention features to the denoising process
and greatly reduces abrupt changes in the generated video.

Specifically, in the denoising step t, we first feed the
latents of the input images zti(i = 0, 1) into the LoRA-
integrated UNet ϵθ+∆θi , to obtain the key and value ma-
trices Ki, Vi(i = 0, 1) in the self-attention modules of the
UNet upsampling blocks. In order to generate an interme-
diate image Iα, we linearly interpolate the matrices to get
intermediate matrices:

Kα = (1− α)K0 + αK1

Vα = (1− α)V0 + αV1

(7)

and replace the corresponding matrices in intermediate
UNet ϵθ+∆θα with them. Thus, in denoising steps, interme-
diate latents can query correlated local structures and tex-
tures from both input images to further enhance consistency
and smoothness.

In particular, we find that replacing attention features
in all denoising steps may lead to blurred image textures.
Therefore, we only replace the features in the early λT (λ ∈
(0, 1)) steps and leave the self-attention modules unchanged
in the remaining steps, to add high-quality details to the im-
ages. Empirically, we find that setting λ to 0.4 ∼ 0.6 works
well in most cases.

In order to improve the consistency of color and bright-
ness in the produced videos, we further introduce a novel
AdaIN adjustment technique. More details can be found in
the Supplementary Material.

3.5. Reschedule Sampling

With all the methods introduced above, we can generate a
smooth transition video between two input images with nat-
ural and high-quality in-betweens. However, we observe
that using a naive linear sampling schedule for α may result
in an uneven transition rate in image content. To achieve
a homogeneous transition rate, we further introduce a new
reschedule method.

Formally, assume a set of sampled interpolation ratios
{αi = i

n | i = 0, 1, . . . , n} for generating n + 1 frame.
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Figure 4. Qualitative evaluation. Our method generates intermediate images that are significantly more natural and smoother compared to
those produced by previous methods.

Here, D(Iαi
, Iαj

) is the perceptual distance between Iαi

and Iαj . We hypothesis that uneven transition between
frames are due to the high variance in distance distribution
{D(Iαi

, Iαi+1
) | i = 0, 1, . . . , n − 1}, i.e., the content of

intermediate images changes suddenly at some time steps.
We aim to derive a new sequence of interpolation ratios
{α̂i | i = 0, 1, . . . , n} that minimizes this variance, ensur-
ing nearly identical distances between consecutive frames.

Inspired by classic Histogram Equalization algorithm,
we begin by calculating the relative distance distribution for
any given interpolation ratio α as follows :

p(α) =


D(Iα0

, Iα1
)/D̄ if α0 ≤ α < α1,

D(Iα1
, Iα2

)/D̄ if α1 ≤ α < α2,
...

...
D(Iαn−1

, Iαn
)/D̄ if αn−1 ≤ αn,

(8)

where D̄ =
∑n−1

i=0 D(Iαi , Iαi+1) is the total perceptual dis-
tance summed across all adjacent frames. Next, we calcu-
late the cumulative distribution function (CDF) of p as:

P (α) =

∫ α

0

p(x)dx. (9)

Utilizing the inversion function of P , denoted as P ′, we de-
termine the rescheduled interpolation parameters as {α̂i =
P ′( i

n ) | i = 0, 1, . . . , n}. As demonstrated in Fig. 6, the
new sampling schedule ensures a more uniform transition
rate in the image content.

4. Experiment

4.1. Implementation Details and MorphBench

In all of our experiments, we use Stable Diffusion v2.1-base
as our diffusion model and only fine-tune the projection
matrices in the attention modules when training LoRA. To
comprehensively evaluate the effectiveness of our methods,
we present MorphBench, the first benchmark dataset for as-
sessing image morphing of general objects. More details
about the implementation and MorphBench are provided in
the Supplementary Material.
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Figure 5. Qualitative results. Our approach achieves visually pleasing image morphing across diverse object categories.

4.2. Qualitative Evaluation

To demonstrate the superiority of our methods, we provide
a visual comparison of the results produced by the previ-
ous methods and ours. We extensively compare our out-
comes with five representative image morphing methods
for general objects, including the following three types: i)
classic graphical morphing technique [5] based on warp-
ing and blending; ii) GAN-based deep interpolation meth-
ods DGP [29] and StyleGAN-XL [37] trained on large-scale
general image dataset [10]; iii) diffusion-based deep inter-
polation methods DDIM [43] and Diff.Interp. [47] based
on Stable Diffusion v2.1-base [33]. More details about the
baselines we use can be found in the supplementary mate-
rial.

As demonstrated in Fig. 4, our DiffMorpher outperforms
all previous approaches in terms of image fidelity, semantic
consistency, and transformation smoothness, whether used
to morph between different objects or animate the same ob-
ject. We observe that previous approaches suffer from ar-
tifacts of different characteristics, while the results of our
method are much more visually pleasing. More qualita-
tive results are presented in Fig. 5. With a single diffusion
model, our approach well handles diverse object categories
and image styles. It is worth mentioning that the generated
images accurately reflect the dense correspondence between
the two input images, although no such annotation is pro-
vided. We recommend readers refer to the supplementary
material for video results.

4.3. Quantitative Evaluation

To quantitatively evaluate the quality of intermediate im-
ages and the smoothness of the transition video, we follow
the metrics adopted in the baseline Diff.Interp. [47]:

(1) Frechet inception distance (FID, ↓) [16]: We compute
the FID score between the distribution of the input images
and the distribution of the generated images. To estimate the
distribution of generated images, we randomly sample two
images from the interpolation video 10 times and calculate
the mean FID score as an index of the rationality and fidelity
of intermediate images.

(2) Perceptual path length (PPL, ↓) [23]: We compute
the sum of the perceptual loss [52] between adjacent images
in 17-frame sequences, as an index of the smoothness and
consistency of the transition video.

Furthermore, in order to measure the homogeneity of the
video transition rate, we introduce a new metric:

(3) Perceptual distance variance (PDV, ↓): We compute
the perceptual loss between consecutive images in 17-frame
sequences just like PPL, and then calculate the variance of
these distances in the sequence. The average distance vari-
ance of all sequences from the test set is taken as the PDV
index. This can be a natural measurement of the homogene-
ity of the video transition rate, where a lower PDV indicates
a more uniform speed.

The quantitative results of all approaches are presented
in Table 1. Our approach achieves significantly lower FID
in both metamorphosis and animation scenarios, showing
better image fidelity and consistency with the input images.
Although the classic Warp & Blend approach shows better
PPL and PDV scores, this is due to the smooth and linear na-
ture of the warping and blending operation which is prone
to ghosting artifacts as can be seen in Fig. 4. Among all
the deep interpolation methods, our approach has far lower
PPL and PDV than others, demonstrating smoother transi-
tion video and more homogeneous speed of content change.
These results are consistent with the qualitative comparison.

4.4. Ablation Study

To verify the effectiveness of each proposed component, we
perform an ablation study and show the results in Table 2
and Fig. 6. The most critical component is LoRA inter-
polation, which fixes the corrupted images of DDIM to be
high-fidelity and semantically smooth images, thus reduc-
ing FID, PPL, and PDV. However, abrupt content changes
can still be observed, such as the 7th and 8th images of
Fig. 6 (b). The attention interpolation and replacement tech-
nique effectively eliminates such abrupt changes and makes
the image sequence much smoother as shown in Fig. 6 (c),
further improving PPL and PDV. Despite so, the speed of
content change is still uneven, e.g., the first three images or
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Figure 6. Ablation study. The four settings are the same as in Table 2: (a) DDIM baseline, (b) + LoRA interpolation, (c) + attention
interpolation and replacement, (d) + reschedule (Ours).

Table 1. Quantitative evaluation on MorphBench. We report FID (↓),
PPL (↓), and perceptual distance variance (PDV, ↓) to evaluate the fidelity,
smoothness, and speed homogeneity of the transition video respectively.

Method Metamorphosis Animation Overall
FID PPL PDV FID PPL PDV FID PPL PDV

Warp & Blend 79.63 15.97 4.64 56.86 9.58 0.99 67.57 14.27 3.67
DGP 150.29 29.65 79.40 194.65 27.50 34.21 138.20 29.08 67.35
StyleGAN-XL 122.42 41.94 181.50 133.73 33.43 37.95 112.63 39.67 143.22
DDIM 95.44 27.80 302.83 174.31 18.70 249.16 101.68 25.38 288.51
Diff.Interp. 169.07 108.51 135.95 148.95 96.12 49.27 146.66 105.23 112.84
Ours 70.49 18.19 22.93 43.15 5.14 3.55 54.69 21.10 21.42

Table 2. Ablation study. We study the effects of each pro-
posed component in our method.

Method
LoRA
Interp.

Attention
Interp.

AdaIN
& Reschedule FID PPL PDV

DDIM 101.68 25.38 288.51
- ✓ 44.40 21.81 249.33
- ✓ ✓ 44.90 19.86 157.73

Ours ✓ ✓ ✓ 54.69 21.10 21.42

0𝜆 = 0.2 0.4 0.6 0.8 1

Figure 7. Effects of λ. We show an intermediate image of the
second example in Fig. 1 with different λ. The image starts to get
blurry when λ > 0.6.

the last three images of Fig. 6 (c) are almost the same while
the content change during 7-9th images is much faster. As
shown in Fig. 6 (d), this problem is addressed with our new
sampling schedule, which redistributes the content change
to be balanced among all consecutive images and thus cuts
down PDV by a large margin. Note that this leads to slightly
higher FID, because results without rescheduling are biased
toward the two ends and thus are closer to the two input im-
ages. Lastly, after applying AdaIN adjustment to the latent
noises, the colors and brightness are more consistent than
before.

In our method, λ is used to control the strength of at-
tention replacement. We further study its effects in Table 3
and Fig. 7. As λ increases, more attention replacement is
involved in the denoising steps, thus improving smoothness
and reducing PPL and PDV. However, using interpolated
attentions in the later denoising steps can harm the genera-
tion of low-level textures and blurry artifacts may emerge,
as demonstrated in Fig. 7. We found that setting λ = 0.6
achieves a good balance between video smoothness and im-
age quality.

Table 3. Effects of λ.
λ 0 0.2 0.4 0.6 0.8 1

FID 53.78 52.99 53.45 54.69 52.47 55.84
PPL 23.85 23.25 22.26 21.10 19.49 17.85
PDV 81.15 62.64 36.26 21.42 15.79 12.86

5. Conclusion

We have presented DiffMorpher, an image morphing ap-
proach that only relies on the prior knowledge of a pre-
trained text-to-image diffusion model. Our method is able
to generate a sequence of visually pleasing images that de-
liver a smooth transition between two input images. This
is achieved by capturing the semantics of the two images
via two LoRAs, and interpolating in both the LoRA param-
eter space and the latent noise to produce a smooth seman-
tic interpolation. An attention interpolation and injection
method, an AdaIN adjustment technique, and a new sam-
pling schedule are further introduced to motivate smooth-
ness between consecutive images. We have demonstrated
that our approach significantly advances the state of the art
in image morphing, uncovering the large potential of diffu-
sion models in this task.
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