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Figure 1. Blind text image super-resolution results between different methods on synthetic and real-world text images. Our method can
restore text images with high text fidelity and style realness under complex strokes, severe degradation, and various text styles.

Abstract
Recovering degraded low-resolution text images is chal-

lenging, especially for Chinese text images with complex
strokes and severe degradation in real-world scenarios. En-
suring both text fidelity and style realness is crucial for
high-quality text image super-resolution. Recently, diffu-
sion models have achieved great success in natural image
synthesis and restoration due to their powerful data dis-
tribution modeling abilities and data generation capabili-
ties. In this work, we propose an Image Diffusion Model
(IDM) to restore text images with realistic styles. For diffu-
sion models, they are not only suitable for modeling realis-
tic image distribution but also appropriate for learning text
distribution. Since text prior is important to guarantee the
correctness of the restored text structure according to exist-
ing arts, we also propose a Text Diffusion Model (TDM) for
text recognition which can guide IDM to generate text im-
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ages with correct structures. We further propose a Mixture
of Multi-modality module (MoM) to make these two diffu-
sion models cooperate with each other in all the diffusion
steps. Extensive experiments on synthetic and real-world
datasets demonstrate that our Diffusion-based Blind Text
Image Super-Resolution (DiffTSR) can restore text images
with more accurate text structures as well as more realistic
appearances simultaneously. Code is available at https:
//github.com/YuzheZhang-1999/DiffTSR.

1. Introduction

Blind text image super-resolution (SR) focuses on recover-
ing high-resolution (HR) images from low-resolution (LR)
ones corrupted by various unknown degradations. Unlike
natural image super-resolution tasks which pay more at-
tention to enriching and enhancing the image details, text
fidelity and style realness should also be guaranteed in
the restored text images. Mistakenly estimated text struc-
tures, such as distorted, missing, additional, or overlapping
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strokes, will lead to inaccurate character semantics which
is unacceptable in the restored text images. Similarly, in-
correctly generated text styles, such as changes in fonts,
glyphs, colors, and poses, will make the restored text im-
ages visually unpleasant and unreal.

In order to reconstruct text images with the correct struc-
tures, existing methods [3, 25–27, 32, 42] introduce to uti-
lize low-level and high-level text priors to guide the restora-
tion process by considering text structure-related losses
or incorporating additional text recognition modules. Al-
though these methods enhance the visual appearance of
characters in reconstructed images, they are difficult to re-
store accurate text structure when encountering text images
with complex strokes or severe degradations. To alleviate
the above issues, MARCONet [23] employs a codebook
to store the discrete code of each character which can be
used to generate high-resolution structural details with high
text fidelity. In addition, StyleGAN [20] is exploited in
MARCONet to generate visually pleasant text styles. Even
though MARCONet can handle complex strokes and severe
degradation to a certain extent, the predefined font styles
during training limit its ability to deal with unseen and di-
verse text styles in the real world, leading to the unrealness
and infidelity in some restored images.

Recently, diffusion models [15, 37] have exhibited great
success in natural image synthesis [6, 31, 33, 38] and
restoration [8, 21, 24, 36] due to their powerful data distri-
bution modeling and data generation capabilities. In this pa-
per, we argue that diffusion model should also be suitable to
model diverse text styles, which include fonts, glyphs, col-
ors, and poses, to restore visually more pleasant and realis-
tic text images. As a result, we propose an Image Diffusion
Model (IDM) based on stable diffusion [33] to effectively
model the text styles. To keep the text character fidelity,
IDM is conditioned on the input low-resolution image and
text prediction priors. However, accurately recognizing text
from severely degraded images is challenging, and inaccu-
rate text recognition will lead to incorrect text structures in
the restoration results. According to the analysis of [17],
diffusion model is also appropriate to model the discrete
variable distribution like text. On this basis, we introduce
to use a Text Diffusion Model (TDM) to correctly recog-
nize texts conditioned on low-resolution input and provide
text prior to help IDM restore text images with high fidelity.
It is worth emphasizing that TDM can benefit IDM and vice
versa. Therefore, we further propose a Mixture of Multi-
modality module (MoM) so that these two diffusion models
can cooperate with each other in all the diffusion steps.

Extensive experiments demonstrate that our Diffusion-
based Blind Text Image Super-Resolution (DiffTSR) can
restore text images, especially for Chinese text images with
complex strokes, from degraded ones with satisfactory text
fidelity and style realness simultaneously. In summary, our
work has the following main contributions:

• We propose to use IDM and TDM to model text image
distribution and text distribution in order to restore text
images with high text fidelity and style realness.

• We propose a MoM module to make IDM and TDM
closely cooperate with each other in all the diffusion
steps.

• Extensive experiments demonstrate that the proposed
DiffTSR performs better than existing methods on both
synthetic and real-world datasets.

2. Related Work

Blind Image Super-Resolution. Blind image super-
resolution (SR) aims to enhance the resolution and qual-
ity of images with complex unknown degradation in real-
world scenarios. Recent works have made efforts to achieve
more effective blind SR from two aspects: degradation
model estimation [1, 12, 18, 28] and real-world data syn-
thesis [2, 9, 19, 46]. The former learns the degradation
model from low-resolution (LR) images in an unsupervised
manner [40] and then applies non-blind SR methods. The
latter involves synthesizing LR-HR image training pairs
through a complex degradation strategy that imitates real-
world degradation. Specifically, BSRGAN [49] uses a ran-
dom shuffling strategy to achieve more generalized degra-
dation data synthesis, while Real-ESRGAN [44] further en-
hances the complexity of image degradation through a high-
order degradation modeling process. Although the above
methods have achieved great success in blind SR of natu-
ral images, we observe that it is insufficient to effectively
enhance the quality of text images without considering the
specific character structures and text style.
Text Image Super-Resolution. Text image super-
resolution aims to enhance the details of the image mean-
while improving the readability of the text, i.e. the accu-
racy of text recognition. Recent research mainly focuses on
exploring the guidance of text recognition priors and char-
acter structure priors to improve the performance of text
image SR. Specifically, based on the characteristics of text
images, existing works mainly exploit text-related prior in-
formation from three aspects to constrain text image super-
resolution: text aware loss [3, 41, 42], text recognition
prior [25, 30, 47, 52], and text structure prior [23]. Previous
research demonstrates that the text priors play an important
role in text structure enhancement. However, most of them
do not fully utilize text prior information and cannot restore
text images with diverse text styles, severe degradation, or
complex strokes.
Diffusion Model. Diffusion model [15] has attracted
great attention, due to its impressive performance in im-
age synthesis [6, 13, 33], and controllable image genera-
tion [16, 29, 34, 35, 50]. Benefiting from the powerful
data distribution modeling capability of diffusion models,
recent research [21, 22, 36, 39, 45] also achieves impres-
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Diffusion-based Blind Text Image Super-Resolution (DiffTSR)

Figure 2. Overview of Diffusion-based Blind Text Image Super-Resolution (DiffTSR) along with the baseline. (a) Our baseline model.
It contains an Image Diffusion Model (IDM) and a text recognition model. The IDM performs the diffusion-based text image super-
resolution conditioned on the latent feature ZLR from the LR image and text prior c which is extracted by the text recognition model from
the LR image. (b) DiffTSR architecture. It mainly consists of three parts: i) IDM performs the image diffusion conditioned on ZLR and
Ccondt to achieve the high-realness image generation, ii) TDM conducts the text diffusion conditioned on Icondt, which starts the reverse
process from the initial text prior cT , to achieve more accurate text prior prediction and correction, iii) MoM module fuses and encodes
the intermediate features of IDM and TDM at the previous step, and outputs the conditions Ccondt and Icondt for the current time step.
IDM and TDM cooperate with each other through MoM to finally achieve text image super-resolution with high fidelity and realness. (c)
Details of MoM. It fuses ZLR, Zt, and ct at step t, and encodes them into Icondt and Ccondt for TDM and IDM respectively.

sive performance in image super-resolution by utilizing the
diffusion prior. In addition, existing research has shown
that diffusion models are also suitable for modeling discrete
data [17], such as text [11], segmentation map [48], etc. In
this work, we aim to explore the collaboration between im-
age diffusion models and text diffusion models, and achieve
high-quality text image super-resolution with high text fi-
delity and style realness.

3. Methodology
3.1. Overview

In this paper, we propose to use the diffusion model to re-
store degraded text images by considering text prior. We
first propose a baseline model which is shown in Fig-
ure 2 (a) and described in Section 3.2. It uses a text recog-

nition model to provide text prior. Then, the proposed Im-
age Diffusion Model (IDM) is used to restore the text im-
ages conditioned on the text prior. Even though the above
baseline model can restore degraded text images with rel-
atively acceptable fidelity, it will produce distorted text
structures when encountered with severe degradation. Be-
sides IDM, the proposed Diffusion-based Blind Text Im-
age Super-Resolution (DiffTSR) also contains a Text Diffu-
sion Model (TDM) and a Mixture of Multi-modality mod-
ule (MoM) based on the assumption that more accurate text
recognition information can be beneficial for IDM to gen-
erate a more realistic image; meanwhile, a higher-quality
text image can benefit for better recognition. In DiffTSR,
TDM is a diffusion model that gradually recognizes text se-
quence with given image information. As to MoM, it is like
a bridge to connect IDM with TDM. It provides updated
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text prior to IDM and image information to TDM during
the diffusion process. In this way, the proposed DiffTSR
can restore text images with high style realness and text fi-
delity simultaneously. The overall architecture of DiffTSR
is shown in Figure 2 (b) and described in Section 3.3.

3.2. Baseline
Our baseline model is illustrated in Figure 2 (a). It mainly
consists of two parts, 1) an Image Diffusion Model (IDM),
2) a text recognition model. The text recognition model es-
timates text sequence c from the low-resolution text images
XLR as text prior in every diffusion step, and IDM imple-
ments the image super-resolution through the diffusion re-
verse process conditioned on c and XLR.

To model the distribution of real-world text images and
achieve realistic image generation, the proposed IDM is
based on Stable Diffusion [33]. IDM performs the diffu-
sion forward and reverse process in the latent space through
a VAE encoder E and decoder D. After encoding HR image
X into latent space by E as Z = E(X), IDM sequentially
adds noises into Z at time step t as Zt and a sequence of
noise prediction network Uθ is used to gradually remove the
noises in the reverse process. In order to make the restora-
tion results consistent with the input LR image, encoded
feature ZLR = E(XLR) is considered as a condition in Uθ
by concatenation with Zt. Meanwhile, text prior is also con-
sidered as another condition in Uθ. Specifically, we encode
c, which is estimated from the text recognition model P
in [3], through a transformer encoder Fψ , and fuse the en-
coded feature Fψ(c) into the intermediate layers of Uθ by
the cross-attention mechanism.

The details of the sampling process of our baseline
model can be described as follows. We first utilize the text
recognition model P to predict the text sequence c from the
LR text image XLR. After that, IDM starts the reverse pro-
cess and repeats the denoising step Uθ conditioned on the
latent feature ZLR extracted from LR image XLR by VAE
encoder E and text prior Fψ(c) extracted from c by a trans-
former encoder Fψ until obtaining Z0. Then the restored
text image can be reconstructed through VAE decoder as
D(Z0). Our baseline model can restore text images with
high realness, which benefits from the ability of IDM to
generate realistic details.

3.3. Diffusion-based Blind Text Image Super-
Resolution

Even though the baseline model above can effectively re-
store low-resolution text images, it will still generate un-
pleasant results when encountered with severe degrada-
tion which is shown in Figure 3 (a). This is because the
text recognition model cannot work well with highly dis-
torted text images and IDM cannot restore text images
with high text fidelity under inaccurate text prior. In this
subsection, we propose Diffusion-based Blind Text Image
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Figure 3. Motivation. To provide text prior for text image restora-
tion, the baseline model recognizes text from degraded images
which is inaccurate when the degradation is severe. With inac-
curate text prior, the baseline model cannot restore text image
with high text fidelity which is shown in (a). The proposed TDM
and IDM can benefit from each other through MoM in DiffTSR
and gradually recognizes more accurate text sequence and restore
higher-quality text image through the reverse diffusion process
which is shown in (b). The text sequences above each super-
resolution result at different time steps are the recognized text
characters used for blind image super-resolution and the charac-
ters in red are the mistakenly estimated ones.

Super-Resolution (DiffTSR) to restore text images with
high text fidelity and style realness by jointly optimizing im-
age restoration and text recognition in every diffusion step.
Besides IDM the same as the baseline model, DiffTSR also
contains a Text Diffusion Model (TDM) and a Mixture of
Multi-modality module (MoM). The details of TDM, MoM,
and the whole DiffTSR are described as follows.

Existing works [10, 17] indicate that the diffusion model
can not only model image distribution but also model dis-
crete data such as text. To model the distribution of text
sequence c, TDM also follows the Markov chain of the dif-
fusion process that slowly adds random noises to the text
sequence in the forward process and then learns the reverse
process to reconstruct the text sequence from the noisy data.
Unlike IDM which is a continuous diffusion model and the
added noises satisfy Gaussian distribution, TDM is a dis-
crete one. Similar to [17, 48], TDM assumes the transition
distribution q (ct | ct−1) follows a categorical distribution
in the forward process. With this assumption, TDM pro-
poses to use a Transformer Decoder Tη to remove noises
from ct and generate cpred. To make the text sequence
modeling more consistent with the context of the input im-
age, Icondt, which contains image information estimated
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by MoM, is mapped to the intermediate layer of Tη through
the cross-attention mechanism. TDM benefits from text
modeling capability as well as image conditions guidance
and produces more reasonable and accurate text sequences
consistent with the LR image.

As text recognition can benefit text image super-
resolution and vice versa, we propose a Mixture of Multi-
modality module (MoM) for joint optimization as shown in
Figure 2 (c). MoM consists of two time-aware modules, a
UNet and a Transformer encoder. The UNet of MoM at time
step t first extracts image information from the concatenated
Zt and ZLR. Then, ct is mapped into the intermediate layer
of UNet through cross-attention mechanism. UNet fuses
and encodes the multi-modality information into the image
condition Icondt for TDM at each time step, thereby adap-
tively generating image conditions that are more suitable for
TDM to achieve higher recognition accuracy. At the same
time, the Transformer encoder of MoM receives corrected
characters ct from the previous step of TDM, and encodes
ct into the characters embedding space of IDM as the text
condition Ccondt. In summary,

[Icondt,Ccondt] = MoMϕ([ZLR,Zt], ct, t), (1)

where Ccondt and Icondt serve as the condition for IDM
and TDM at time step t, respectively.

After introducing IDM, TDM and MoM, the sampling
process of DiffTSR is shown in Algorithm 1 and Fig-
ure 2 (b). To begin with, we extract features ZLR from
LR image XLR through VAE encoder E . At the same time,
we randomly sample ZT with Gaussian distribution, and get
the initially estimated text cT = P(XLR) from the LR im-
age XLR. Note that TDM starts the reverse process from
the initial estimated text rather than the random sampled
ones. After the initialization process, IDM uses the UNet U
to remove noises from the latent features with given ZLR,
the denoised feature from the previous step Zt as well as
text prior Ccondt from MoM at every time step. At the
same time, TDM uses Transformer Decoder T to estimate
the latent state of the text sequence with given the state ct
from the previous time step and the image condition Icondt
from MoM. With T collaborative diffusion steps, Z0 can be
estimated and VAE Decoder D is used to reconstruct HR
text image X0 with high fidelity and realness. Thanks to
the joint optimization strategy through MoM, the proposed
DiffTSR can gradually restore HR text image by IDM and
more accurate text sequence in TDM which is shown in Fig-
ure 3 (b). For more details about the sampling and training
strategy of DiffTSR, please see the supplementary material.

4. Experiments
4.1. Experimental Settings
Training Datasets. In this work, we mainly focus on blind
text image super-resolution for Chinese characters in the

Algorithm 1 DiffTSR Sampling

▷ input : LR Text Image XLR

▷ output : HR Text Image XHR

1: ZLR = E(XLR)
2: ZT ∼ N (0, I)
3: cT = P(XLR)
4: for t = T, . . . , 1 do
5: z ∼ N (0, I) if t > 1, else z = 0
6: [Icondt,Ccondt] = MoMϕ([ZLQ,Zt], ct, t)
7: ϵpred,t = Uθ([Zt,ZLR],Ccondt, t)

// IDM sampling based on stable diffusion [33]

8: Zt−1 = 1√
αIDM

t

(
Zt − 1−αIDM

t√
1−ᾱIDM

t

ϵpred,t

)
+ σtz

9: cpred,t = Tη(ct, Icondt, t)
10: π̃ =

[
αTDMt ct+

1−αTDM
t

K

]
⊙
[
ᾱTDMt−1 cpred,t+

1−ᾱTDM
t−1

K

]
11: πpost (ct, cpred,t)=

π̃∑K
k=1 π̃k

// TDM sampling based on multinomial diffusion [17]
12: ct−1 ∼ C (ct−1 | πpost (ct, cpred,t)) if t > 1 else

ct−1 ∼ C (c0 | cpred,t)
13: end for
14: X0 = D(Z0)
15: return X0

// C denotes the categorical distribution with probability
parameters after |.
// 1− αIDMt−1 and 1− αTDMt−1 are the noise schedule for
IDM and TDM.
// The processing details from Ln. 9 to Ln. 11 are de-
scribed in [17].

real world. In order to obtain amount of HR Chinese text
images along with text annotations, we use the large-scale
real-world Chinese text images dataset CTR [4]. To select
the images as the ground truth in the training process, we
preprocess the CTR training set by the following steps: i)
remove the images with a resolution smaller than 64 pixels,
ii) only retain images with a width-to-height ratio greater
than 2, iii) only retain images with the length of text anno-
tations not larger than 24, iv) resize the image to 128×512.
Then, there are 63,644 HR text images XHR remaining
with text annotations c, and we refer to this dataset as
the CTR-TSR-Train. The degradation pipeline proposed in
BSRGAN [49] and Real-ESRGAN [44] is used to generate
LR text images XLR.
Testing Datasets. We evaluate our method on both syn-
thetic and real-world datasets for ×2 and ×4 blind super-
resolution. For the synthetic testing set, we use the same
preprocessing and degradation strategy as in CTR-TSR-
Train to generate CTR-TSR-Test. The images are selected
from the testing set of CTR and there are 8,089 samples in
total. For real-world dataset, we use the RealCE [27] test-
ing set, which is a recently proposed real-world Chinese-
English benchmark dataset. We remove the images with
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method × 2 × 4
PSNR ↑ LPIPS ↓ FID ↓ ACC ↑ NED ↑ PSNR ↑ LPIPS ↓ FID ↓ ACC ↑ NED ↑

SRCNN 23.73 0.338 54.47 0.7856 0.7991 20.74 0.501 116.5 0.6031 0.6160
ESRGAN 24.75 0.191 9.308 0.8112 0.8239 20.90 0.310 21.86 0.6179 0.6272
NAFNet 25.04 0.286 37.42 0.8083 0.8212 21.82 0.447 87.93 0.6451 0.6573
TSRN 20.86 0.392 70.75 0.7805 0.7937 19.41 0.535 137.3 0.6149 0.6267
TBSRN 24.43 0.282 57.61 0.8018 0.8156 21.56 0.442 132.6 0.6360 0.6486
TATT 24.87 0.291 58.73 0.7911 0.8041 21.84 0.453 107.6 0.6273 0.6403
MARCONet 20.77 0.374 94.60 0.6934 0.7068 19.33 0.436 108.5 0.5123 0.5241
ours 25.08 0.156 5.906 0.8594 0.8718 21.85 0.231 8.482 0.8350 0.8471

Table 1. Quantitative comparison for the synthetic dataset CTR-TSR-Test with different methods including SRCNN [7], ESRGAN [43],
NAFNet [5], TSRN [42], TBSRN [3], TATT [25], MARCONet [23] and our method for ×2 and ×4 blind text image super-resolution.

method × 2 × 4
PSNR ↑ LPIPS ↓ FID ↓ ACC ↑ NED ↑ PSNR ↑ LPIPS ↓ FID ↓ ACC ↑ NED ↑

SRCNN 17.87 0.224 54.44 0.7922 0.8936 16.63 0.364 128.1 0.7101 0.8018
ESRGAN 18.19 0.231 28.70 0.7929 0.8945 16.84 0.407 83.22 0.7121 0.8047
NAFNet 17.86 0.216 50.42 0.7916 0.8925 16.76 0.359 118.1 0.7122 0.8023
TSRN 15.54 0.327 106.0 0.7892 0.8902 15.22 0.418 148.5 0.6963 0.7873
TBSRN 17.34 0.236 71.29 0.7915 0.8932 16.51 0.367 130.8 0.7050 0.7960
TATT 17.76 0.247 59.62 0.7953 0.8951 16.79 0.422 118.3 0.7214 0.8135
MARCONet 16.72 0.363 92.11 0.7743 0.8738 16.04 0.397 103.1 0.6638 0.7411
ours 18.88 0.211 25.08 0.9085 0.9247 17.49 0.336 70.59 0.8475 0.8747

Table 2. Quantitative comparison for the real-world dataset RealCE [27] with different methods including SRCNN [7], ESRGAN [43],
NAFNet [5], TSRN [42], TBSRN [3], TATT [25], MARCONet [23] and our method for ×2 and ×4 blind text image super-resolution.

more than 24 characters or images with severe LR-HR mis-
alignment. Finally, we obtain 1531 LR-HR pairs for real-
world testing set.
Compared Methods and Evaluation Metrics. In order to
validate the effectiveness of our method, we compare our
DiffTIR with the natural image super-resolution methods
(i.e., SRCNN [7], ESRGAN [43], and NAFNet [5]) and
text image super-resolution methods (i.e., TSRN [42], TB-
SRN [3], TATT [25], and MARCONet [23]) respectively.
For a fair comparison, we revise their implementation to
handle ×2 and ×4 image upsampling, and finetune them
with CTR-TIR-train dataset. Moreover, we employ 5 met-
rics to evaluate the performance of the above methods on
text image restoration. We adopt the peak signal-to-noise
ratio (PSNR) and learned perceptual image patch similarity
(LPIPS) [51] to evaluate the distance between the restored
image and reference image in the image space and feature
space, respectively. To further evaluate the realness of the
restored image, we employ the Fréchet Inception Distance
(FID) [14]. To better evaluate the text fidelity of the restored
text image, we employ the word accuracy (ACC), and nor-
malized edit distance (NED) [27]. Particularly, we adopt
pre-trained TransOCR [3, 4] as the text recognition model
for ACC and NED.

4.2. Quantitative Comparison
We show the quantitative comparison on the synthetic test
dataset CTR-TSR-Test and the real-world test dataset Re-
alCE. As shown in Table 1, DiffTSR performs better than

the compared methods in all metrics. It achieves the best
PSNR which demonstrates it can accurately reconstruct
the HR images. Benefiting from the powerful text image
modeling ability, our method shows better performance in
LPIPS and FID which indicates higher realness in the re-
stored images. Our method also performs better in terms of
ACC and NED which demonstrates it can effectively keep
the text fidelity with the text prior provided by TDM. Also
please note that our method still shows the best performance
on RealCE without any fine-tuning on RealCE training set,
as shown in Table 2, indicating its strong generalization per-
formance and powerful modeling ability for real-world text
images.

4.3. Qualitative Comparison
The qualitative results of the synthetic dataset CTR-TSR-
Test are shown in Figure 4. Most of the super-resolution
methods and text super-resolution ones, e.g. SRCNN [7],
NAFNet [5], TSRN [42], TBSRN [3], and TATT [25], re-
store LR images worse than our method which demon-
strates the ability of the proposed IDM to generate text im-
ages with high realness. With the strong generation ability
of GAN, ESRGAN [43] can restore more realistic images
(the first result). However, it will also generate artifacts
when the degradation is too severe (the second and third
results). Even though MARCONet [23] has the capabil-
ity to restore more visually pleasant text structures because
of the codebook, it will generate artifacts (the first result)
when the text style is not considered during its training pro-
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Figure 4. Qualitative comparison for the synthetic dataset CTR-TSR-Test with different methods including SRCNN [7], ESRGAN [43],
NAFNet [5], TSRN [42], TBSRN [3], TATT [25], MARCONet [23] and our method for ×4 super-resolution.
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Figure 5. Qualitative comparison for the real-world dataset RealCE [27] with different methods including SRCNN [7], ESRGAN [43],
NAFNet [5], TSRN [42], TBSRN [3], TATT [25], MARCONet [23] and our method for ×4 super-resolution.

cess. In addition, the text prior of MARCONet is inaccurate
when the degradation is severe (the second example) or en-
countered with occlusion (the third example). These will
make the restoration results of MARCONet with less text
fidelity. With the help of the proposed TDM to model the
text sequence and MoM to simultaneously optimize IDM
and TDM, our method can generate HR images with higher
text fidelity.

We also compare different methods based on the real-
world dataset RealCE [27]. Note that all the methods are not
trained on the training set of RealCE to evaluate the gener-
alization ability when encountered with unknown styles and
degradation. The results shown in Figure 5 demonstrate that
most of the methods, such as SRCNN [7], ESRGAN [43],
NAFNet [5], TSRN [42], TBSRN [3], and TATT [25], can
hardly remove degradation in this real-world dataset. Al-
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method
Settings CTR-TSR-Test / RealCE [27]

IDM TR TDM MoM PSNR ↑ LPIPS ↓ FID ↓ ACC ↑ NED ↑

exp1 ! % % % 20.61 / 16.86 0.289 / 0.375 13.91 / 74.63 0.6342 / 0.6953 0.6450 / 0.7801
exp2 ! ! % % 21.58 / 17.05 0.253 / 0.398 9.968 / 76.24 0.6811 / 0.7241 0.6903 / 0.8183
exp3 ! ! ! % 21.63 / 17.22 0.233 / 0.340 8.925 / 73.85 0.7412 / 0.7936 0.7530 / 0.8417
ours ! ! ! ! 21.85 / 17.49 0.231 / 0.336 8.482 / 70.59 0.8350 / 0.8475 0.8471 / 0.8747

Table 3. Ablation study based on ×4 super-resolution to validate the effectiveness of initial text recognition (TR), TDM, and MoM. For
the detailed settings of different methods, please see Sec. 4.4.

though MARCONet [23] can restore HR text image to some
extent, it will still generate some inaccurate and unpleasant
strokes in the results. With the strong distribution modeling
abilities of IDM, the proposed methods can generalize well
on real-world scenarios and restore text images with high
style realness as well as text fidelity.

4.4. Ablation Study

In this subsection, we validate the effectiveness of different
components in the proposed method and the comparison is
shown in Table 3 and Figure 6. For ‘exp1’, it only con-
tains IDM conditioned on the LR image. As shown in the
second row of Figure 6, the results look like Chinese char-
acters. However, the generated characters actually do not
exist in the Chinese alphabet because the text prior is not
considered during the diffusion process. In ‘exp2’ which is
the baseline model in Sec. 3.2, it uses the text recognition
(TR) method [3] to predict text sequence and provide text
prior to IDM. As a result, ‘exp2’ can keep the text fidelity
better than ‘exp1’ according to the third row of Figure 6.
Whereas, the results are still unsatisfactory when the degra-
dation is too severe and the text character recognition is in-
accurate as seen in the orange bounding boxes. ‘exp3’ uses
TDM, whose initial state is provided by TR [3], to predict
text sequence and provide text prior to IDM. With the strong
text sequence distribution modeling ability from TDM by
diffusion, ‘exp3’ can recognize text more accurately than
‘exp2’ as shown in the fourth row of Figure 6. But the text
characters in the green bounding boxes are still incorrect.
This is because TDM in ‘exp3’ does not utilize the higher-
quality image information provided by IDM to recognize
more accurate text sequence during the diffusion process.
Our method contains MoM module which can provide bet-
ter text prior for IDM and better image prior for TDM in the
diffusion steps. In this way, TDM in our method can correct
the mistakenly estimated text sequence with higher-quality
image information from IDM. At the same time, IDM can
restore text image with higher fidelity which is shown in the
fifth row of Figure 6. Similarly, Table 3 shows that the pro-
posed method can achieve consistently better performance
with more components considered which demonstrates the
effectiveness of TR, TDM, and MoM.

LR

GT

ours

exp1

exp2

exp3

山林防火重地 汇宇家具家饰市场

山林防火重点 汇宇家用家饰市场

山林防火星灿 汇宇家快家馆市场

Figure 6. Ablation study to validate the effectiveness of initial
text recognition (TR), TDM, and MoM. The text sequences above
each image super-resolution result are the recognized text charac-
ters used for image super-resolution and the characters in red are
the mistakenly estimated ones which will lead the text restoration
inaccurate in the orange and green bounding boxes. For the de-
tailed settings of different methods, please see Sec. 4.4.

5. Conclusion

In this paper, we propose to use the diffusion model to solve
the blind text image super-resolution problem. As diffu-
sion has a strong ability to model distribution and generate
data, the proposed IDM can restore realistic HR text images.
At the same time, we also apply another diffusion model
(TDM) to model the distribution of text sequence and pro-
vide text prior to IDM. In this way, IDM can also generate
text images with high text fidelity. At last, we propose MoM
to make these two diffusion models appropriately cooperate
with each other during the diffusion process. Extensive ex-
periments on synthetic and real-world datasets demonstrate
our method can perform better than existing arts based on
style realness and text fidelity simultaneously.
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