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Abstract

We propose a controllable visual enhancer, named
DDBF, which is based on cross-modal conditional adver-
sarial learning and aims to dispel darkness and achieve
better visible and infrared modalities fusion. Specifically, a
guided restoration module (GRM) is firstly designed to en-
hance weakened information in the low-light visible modal-
ity. The GRM utilizes the light-invariant high-contrast char-
acteristics of the infrared modality as the central target dis-
tribution, and constructs a multi-level conditional adver-
sarial sample set to enable continuous controlled bright-
ness enhancement of visible images. Then, we develop
an information fusion module (IFM) to integrate the ad-
vantageous features of the enhanced visible image and the
infrared image. Thanks to customized explicit informa-
tion preservation and hue fidelity constraints, the IFM pro-
duces visually pleasing results with rich textures, signif-
icant contrast, and vivid colors. The brightened visible
image and the final fused image compose the dual out-
put of our DDBF to meet the diverse visual preferences of
users. We evaluate DDBF on the public datasets, achiev-
ing state-of-the-art performances of low-light enhancement
and information integration that is available for both day
and night scenarios. The experiments also demonstrate
that our DDBF is effective in improving decision accuracy
for object detection and semantic segmentation. Moreover,
we offer a user-friendly interface for the convenient ap-
plication of our model. The code is publicly available at
https://github.com/HaoZhang1018/DDBF.

1. Introduction
Infrared and visible modality fusion is an enhancement
technology that aims to integrate the advantages of both
modalities to produce fused images with rich textures, sig-
nificant contrast, and vibrant colors [3, 20, 25, 27, 50]. Due
to the outstanding visual characteristics of fused images, in-
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Figure 1. An example of infrared and visible image fusion in low-
light environment.

frared and visible modality fusion has found extensive ap-
plications in adverse environments such as nighttime. Thus,
it is of great interest to develop an effective fusion algorithm
to achieve night visual enhancement, thereby promoting the
performance of tasks such as video surveillance and vehicle
navigation [4, 32, 38, 43, 54].

The advancement of deep learning has significantly ac-
celerated progress in the field of infrared and visible modal-
ity fusion in recent decades [14, 15, 19, 21, 44, 47, 52, 53].
Deep fusion methods utilize specific network architectures
to automatically extract and fuse features and reconstruct
images under the guidance of meticulously designed loss
functions [17, 28, 43, 46, 48], achieving promising visual
performance. However, there are still several challenges
that need to be addressed.

Firstly, the design concept for the loss function used to
guide texture and contrast preservation still remains at the
level of the multi-modal weighted game (see Eq. (1)), that
is, setting multiple optimization objectives in the same do-
main. Such a multi-objective optimization [37] will force
the network to sacrifice the optimal solutions in each do-
main during the learning process in favor of minimizing
the total loss, resulting in weakened texture and contrast in
the fused image [26, 42]. Secondly, nearly all deep fusion
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methods cannot directly handle color visible images [39].
Instead, they adopt a color separation strategy (see Eq. (3))
to process only the luminance component (e.g., Y ), while
preserving color by duplicating the chrominance compo-
nents (e.g., Cb and Cr) [34]. However, a problem with this
strategy is that the fixed chrominance components cannot
adapt to the changed fused luminance component, leading
to color distortions. Thirdly, existing fusion methods over-
look the weakening of information in the visible modality
during nighttime imaging. The information mismatch be-
tween the infrared and visible modalities results in the loss
of beneficial features during the fusion process, ultimately
leading to unsatisfactory visual results.

Considering these challenges, we propose DDBF, a con-
trollable visual enhancer based on cross-modal conditional
adversarial learning, which aims to dispel the darkness and
achieve better fusion. Firstly, we utilize the light-invariant
high-contrast characteristic of infrared images as the tar-
get prior, and develop a guided restoration module (GRM)
that can drive low-light visible images towards having high-
illumination distribution. In GRM, we perform data aug-
mentation for infrared images to construct a multi-level con-
ditional adversarial sample set, which facilitates discrimi-
native illumination approximation in the conditional adver-
sarial learning mechanism. Through continuous adversar-
ial learning, the condition input enables the GRM to sup-
port a customized enhancement ratio, thus flexibly recov-
ering the information of the visible modality from various
degrees of low-light environments. After significantly re-
ducing the information mismatch between infrared and vis-
ible modalities at night with GRM, we develop a promising
information fusion module (IFM) to solve the problems of
texture and contrast weakening as well as color distortion.
On the one hand, we depart from the idea of a multi-modal
weighted game and instead formulate a clear optimization
objective for preserving sharpened texture and significant
contrast. On the other hand, we introduce a novel hue fi-
delity constraint to replace the commonly used color sepa-
ration strategy, which can adaptively retain satisfying col-
ors. As a result, our proposed DDBF provides clear and
visually pleasing results, allowing for unobstructed viewing
in low-light conditions, as shown in Fig. 1.

In summary, we make the following contributions:
• We propose a controllable visual enhancer based on

cross-modal conditional adversarial learning to dispel the
darkness for better fusing infrared and visible images,
which greatly improves the visibility of imaging in low-
light environments. To our knowledge, this is the first
attempt in the field of image fusion to controllably ad-
dress the challenge of information loss caused by visible
modality degradation at night.

• A guided restoration module is designed to effectively
recover the scene information lost in low-light visi-

Figure 2. Statistical average intensity of infrared and visible im-
ages in different lighting environments that are captured by the
same surveillance camera.

ble modality. By establishing conditional adversarial
learning based on the light-invariant contrast of infrared
modality, it achieves controllable enhancement while get-
ting rid of the dependence on reference images.

• We develop a novel information fusion module, in which
the customized explicit information preservation and hue
fidelity constraints can solve the problems of contrast
and texture information loss, and color distortion that are
common in current methods.

2. Background and Motivations
Light-invariant Contrast of Infrared Modal. Infrared im-
ages are generated by capturing the thermal radiation emit-
ted by objects, which usually have significant contrast and
do not vary with changes in illumination. We randomly se-
lect 100 pairs of infrared and visible images, captured by
the same fixed multi-mode camera under varying low-light
conditions. Average intensities are calculated, and Fig. 2
presents a scatter plot. Infrared images exhibit little inten-
sity variation, indicating that for visible images captured un-
der different lighting conditions, the corresponding infrared
images can always provide reliable contrast guidance.
Information Mismatch. There exists an information mis-
match between infrared and low-light visible images, as the
values used to characterize their appearance attributes are
not at the same scale. For example, Fig. 2 demonstrates
that the average intensity values of the low-light visible im-
age are significantly lower than those of the infrared im-
age. Therefore, the appearance contrast in the fusion pro-
cess inevitably deviates, resulting in the loss of some effec-
tive visible-modal information hidden in the darkness.
Multi-modal Weighted Game. Owing to the absence of
ground truth in the task of infrared and visible modality fu-
sion, most existing deep fusion methods adopt the idea of a
multi-modal weighted game to define the loss function:

L = α1∥T (F )− T (A)∥+ α2∥T (F )− T (B)∥, (1)

where F , A, and B represent the fused image, and two
different-modal source images, respectively. T is the fea-
ture extraction function, which can be specifically defined
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as intensity, gradient, etc. In addition, αi denotes the weight
that controls the optimization tendency, and ∥·∥ is the ma-
trix norm. Clearly, optimizing F is essentially about find-
ing a balance in the distributions of the source images A
and B, which inevitably leads to the loss of useful informa-
tion. The solution to this limitation is straightforward: de-
fine a clear optimization objective instead of multiple ones.
Specifically, the improved loss function is defined as fol-
lows:

L = ∥T (F )− P (T (A), T (B))∥, (2)

where P is a custom integration function, responsible for
making the clear objective in domain T . We refer to this
improved loss function as the explicit information preserva-
tion loss.
Color Separation Strategy. Color separation strategy is
a commonly employed technique in existing deep fusion
methods to achieve color image fusion. Specifically, the
visible image is first converted to YCbCr color space, and
the luminance (Y ) is fused with the infrared image. The
resulting fused image is then concatenated with the chromi-
nance channels (Cb and Cr), and transformed back to RGB
color space to obtain the final color output. The whole pro-
cess is formalized as:

F = M(C(N(Yvis, Iir), Cbvis, Crvis)), (3)

where N is the fusion function, C is the concatenation func-
tion, and M is the transformation function from Y CbCr to
RGB color space. However, the original Cb and Cr do
not match the fused Y , which causes color distortion. A
possible way to address this problem is to identify a mea-
surement indicator that can describe the distance of intrinsic
color properties. Then, even if the fusion affects some ap-
parent color attributes, adaptive color preservation can be
achieved by controlling the distance of intrinsic color at-
tributes. Fortunately, the cosine similarity [41] is a good
choice to quantify the distance of intrinsic color properties.
It effectively eliminates the dimensional differences caused
by brightness changes and other factors in most cases, and
focuses on the critical color vector angle.

3. Method
We aim to improve visibility in low-light environments
through infrared and visible modality fusion. To achieve
this goal, we first propose a guided restoration module to
enhance the visible modality that suffers from information
loss due to poor illumination, reducing the information mis-
match with the infrared modality. Then, we introduce an in-
formation fusion module to ensure the preservation of tex-
ture, contrast, and color fidelity during the information fu-
sion process, thus producing high-quality visual enhance-
ment results. The overall architecture of our DDBF is pre-
sented in Fig. 3.

3.1. Guided Restoration Module

As mentioned, the light-invariant high-contrast characteris-
tic of infrared images provides good guidance for improving
the illuminating of low-light visible images. Besides, low-
light environments are complex and varied, requiring con-
trollable and flexible illumination enhancement. Prompted
by these considerations, we propose a GRM that utilizes a
conditional generative adversarial network (CGAN) [30] to
recover useful information hidden in the darkness.

Unlike conventional image generation models that use
random noise as input, GRM treats low-light visible im-
ages Ivis as samples from the original distribution and de-
fines enhancement ratios r as conditional inputs. Then, the
generator G produces enhanced visible images according to
Ienvis = G(Ivis|r). Now, the key lies in specifying the target
illumination distributions that correspond to the enhance-
ment ratios, thereby driving brightness adjustment through
adversarial learning. Inspired by contrastive learning [1],
we can perform data augmentation for original infrared im-
ages, constructing a multi-level infrared sample set that re-
flects the desired multiple illumination distributions:

Iγir = K(Iir, {γ1, γ2, · · · , γn}), (4)

where K is the data augmentation operation, which in our
work refers to gamma transformation [9]. γ is an expo-
nent parameter that stretches or compresses contrast, with
an inverse relationship to the augmentation ratio r (r = 1

γ ).
With all the necessary samples and variables prepared, we
are now ready for conditional adversarial learning.

We want the adversarial network to primarily focus on
learning the illumination (or contrast) distribution rather
than the differences between the visible and infrared modal-
ities. A simple yet effective operation is to remove color and
introduce blur to reduce modality differences, aligning with
the original assumption of early Retinex theory regarding
illumination [12, 18, 45]. Therefore, an illumination adver-
sarial loss can be defined for the generator G:

LIA−G = ∥D(L(U(Ienvis))|r)− a∥1, (5)

where D represents the discriminator function, U is the
color removal function, L is the low-pass filtering (LPF)
function, and a corresponds to a probability label. In this
work, U is specified as YUV color space transformation,
while L is defined as a Gaussian filtering. Intuitively, the
generator is expected to deceive the discriminator by en-
hancing visible images with deceptive illumination, so a is
set to 1. In contrast, the discriminator aims to distinguish
such a deceptive illumination. Therefore, the loss function
of the discriminator for illumination adversarial learning is
defined as:

LD =∥D(L(U(Ienvis))|r)− b∥1+∥D(L(Iγir)|r)− c∥1, (6)
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Figure 3. The overview of our DDBF. It consists of a guided restoration module, and an information fusion module. The detailed
architectures of sub-networks are on the right, which are lightweight.

where the probability labels b and c should be set as 1 and
0, respectively, to guide towards correct classification. The
evolved discriminator forces the generator to improve the
quality of adjusted illumination. Besides, skip connections
are employed to pass the enhancement ratio r to multi-
ple feature layers of both the generator and discriminator,
which provides architectural support for the controllable il-
lumination adjustment. Notably, the infrared modality is
only utilized during the training phase, while GRM can di-
rectly enhance the visible modality during the testing phase.

In addition to illumination adjustment, another important
aspect to address in the enhancement process is scene fi-
delity. Specifically, GRM should ensure that the basic com-
position (e.g., shape, color, or relative position of objects)
of the imaging scene remains unchanged during the illumi-
nation adjustment. Fortunately, the reflectance component
in Retinex theory [13] captures essential scene information,
allowing us to control the reflectance consistency, which is
crucial for maintaining scene fidelity. By applying the basic
Retinex formula I = R/S (R indicates reflectance, and S
denotes illumination), we can use the aforementioned orig-
inal illumination assumption to estimate reflectance and de-
fine a scene fidelity loss for the generator:

LSF−G=

∥∥∥∥ Ienvis
max(L(U(Ienvis)),δ)

− Ivis
max(L(U(Ivis)),δ)

∥∥∥∥
1

,

(7)
where δ is a small constant (δ = 0.01 in GRM) to avoid the
denominator being 0. Moreover, we use residual connec-
tions in our generator to facilitate the transfer and preserva-
tion of scene information.

3.2. Information Fusion Module

GRM reduces the information mismatch between different
modalities by recovering the information from the low-light

visible image. This allows us to further develop an IFM that
combines the advantages of the infrared and enhanced vis-
ible images to generate a visually appealing fused image:
If = A(Iir, I

en
vis), where A refers to the function of our

proposed aggregator. As depicted in Fig. 3, the aggregator
module is designed to be lightweight and utilizes skip con-
nections for efficient information integration. Its core lies in
the incorporation of specific constraints aimed at preserving
texture and contrast, and ensuring color fidelity.

Firstly, we consider the preservation of texture and con-
trast, aiming to alleviate the limitation of traditional multi-
modal weighted game idea that often lead to information
weakening. As discussed in Section 2, we propose to con-
struct a clear objective for preserving significant contrast
and sharpened texture to tackle this challenge. Formally, we
introduce the explicit information preservation constraints:
the significant contrast loss LSC−A and the sharpened tex-
ture loss LST−A. The significant contrast loss LSC−A for
the aggregator is defined as:

LSC−A = ∥If −max(Iir, I
en
vis)∥1, (8)

here, we use the maximum function to determine the most
salient pixel intensity in each spatial location, forming the
basis of the contrast optimization objective. Eq. (8) is a
specialization of Eq. (2), where T is defined as the intensity
domain (i.e., identity map), and P is specified as the maxi-
mum function. Similarly, the sharpened texture loss LST−A

for the aggregator is defined as:

LST−A = ∥∇If −max(∇Iir,∇Ienvis)∥1. (9)

The inclusion of above two loss terms effectively achieves
explicit information preservation, addressing the problem of
information weakening presented in existing methods.
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Figure 4. Visualization of low-light enhancement on the ExDark dataset.
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Figure 5. Visualization of low-light enhancement on the AGLIE dataset.

Secondly, we address the limitation of existing fusion
methods that are unable to directly handle color images by
incorporating a constraint for color fidelity. As mentioned
in Section 2, we propose to utilize cosine similarity to mea-
sure the difference in intrinsic color properties. Therefore,
we define a hue fidelity loss LHF−A to achieve color fi-
delity, given by:

LHF−A = 1−
∑
i

∑
j

∑
k Ifi,j,k × Ienvisi,j,k∑

k

√
I2fi,j,k ×

√
Ien

2

visi,j,k

, (10)

where i, j, k represent the pixels in the i-th row, j-th col-
umn, and k-th channel, respectively. On the one hand, the
color vectors are ℓ2-normalized along the channel, which
helps eliminate dimensional differences caused by external
factors such as illumination. On the other hand, by using
color vector angles as the evaluation criterion, we can bet-
ter preserve the intrinsic color property.

3.3. Interactive Executable Interface

We integrate all the functions of our DDBF into an interac-
tive executable interface, which provides complete action-
able function buttons and output visualization. In this way,
users can easily achieve low-light enhancement and multi-
modal image fusion, and obtain enhanced and fused visual-
izations that meet their visual preferences in a WYSIWYG
(What You See Is What You Get) manner. Please refer to
the Suppl. Material for more details.

4. Experiments
4.1. Datasets and Implementation

Datasets. We train our DDBF on the LLVIP dataset [11],
manually selecting 400 high-quality image pairs from 10
street scenarios as the training data due to imperfect regis-
tration. During training, we adopt a cropping and expanding
strategy to obtain a large number of patches, and randomly
apply one of the 7 data augmentation strategies to them,
e.g., reverse, rotate, flip, and their combinations. In the test-
ing phase, evaluation is done on ExDark [23], AGLIE [24],
LLVIP [11], MFNet [7], and RoadScene [44] datasets.
Implementation Details. GRM and IFM are iteratively
trained using the Adam optimizer with a batch size of 10,
and the training lasts for 1, 500 epochs. To improve the
training stability of CGAN, we employ a soft label strategy
where labels a and c are relaxed to random numbers within
the range of [0.8,1.0], while label b is assigned to a random
number between 0 and 0.2. All experimental work is car-
ried out using an NVIDIA RTX 2080Ti GPU with 11GB
memory and an Intel CPU i7-8750H.

4.2. Comparative Experiments

Our DDBF offers two output modes: low-light enhance-
ment and low-light multi-modal fusion. We compare it with
specialized approaches for these two tasks. See the Suppl.
Material for more visual results with high-quality images.
Low-light Enhancement. In the testing phase, our method
can enhance low-light images directly without the need for
inputting infrared images, so our method can be easily de-
ployed to low-light scenarios with only visible modality.
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Figure 6. Visualization of multi-modal fusion methods on the LLVIP dataset.
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Figure 7. Visualization of multi-modal fusion methods on the MFNet dataset.

Table 1. Statistical results of low-light enhancement.

Dataset Metric BPDHE SRIE RetinexDIP RUAS SCI Ours (r=1.0) Ours (r=1.2) Ours (r=1.5) Ours (r=1.8) Ours (r=2.0)

ExDark
NIQE ↓ 3.800 3.516 3.382 3.843 3.621 3.657 3.473 3.372 3.348 3.382
PIQE ↓ 41.611 38.105 34.193 36.343 36.567 33.832 33.533 33.861 34.400 35.065

AGLIE
SSIM ↑ 0.536 0.456 0.512 0.572 0.623 0.527 0.598 0.675 0.706 0.704
PSNR ↑ 11.407 10.234 10.535 13.961 14.845 12.754 14.230 15.770 16.434 16.427

We compare it with five state-of-the-art techniques, includ-
ing BPDHE [10], SRIE [5], RetinexDIP [51], RUAS [22],
and SCI [29]. The test set consists of 100 images from
the ExDark dataset [11] and 40 images from the AGLIE
dataset [24]. For the ExDark dataset lacking ground truth,
we utilize non-reference metrics NIQE [31] and PIQE [40],
while for the AGLIE dataset with ground truth, we use well-
known SSIM and PSNR. Fig. 4 shows the visual results of
different methods on the ExDark dataset. It can be seen that
our DDBF produces fine desert textures and tower struc-
tures with a very natural look. Consistently, our DDBF
achieves visually pleasing results that are more consistent
with the ground truth on the AGLIE dataset, as shown in
Fig. 5. Importantly, our method can generate enhanced im-
ages with progressive exposures, flexibly allowing users to
customize their preferred results. Furthermore, the quanti-
tative evaluation in Table 1 shows that our DDBF achieves
the best score on non-reference NIQE and PIQE, and at-
tains the highest SSIM and PSNR scores, demonstrating its
effective naturalness maintenance, texture preservation, and
noise reduction.
Low-light Multi-modal Fusion. Our method offers a novel
alternative in cases where enhancing only the visible modal-
ity cannot provide satisfactory results, named multi-modal

fusion. We compare it with five state-of-the-art methods,
including DenseFuse [14], IFCNN [49], RFN-Nest [16],
U2Fusion [44], and SDNet [46]. The test data consists of
100 image pairs from the LLVIP dataset and 100 image
pairs from the MFNet [7] dataset. As shown in Figs. 6
and 7, our DDBF effectively restores the objects hidden
in the darkness, and naturally presents significant contrast
and rich textures. On the contrary, other competitors pro-
vide relatively poor visibility. Besides, our DDBF natu-
rally preserves the scene colors, while other methods suf-
fer color distortion due to the use of the color separation
strategy. Furthermore, we provide quantitative results in
Table 2, where four popular image fusion metrics are se-
lected, including MI [33], VIF [8], AG [2], and SD [35].
Our DDBF ranks first in all objective metrics for both the
LLVIP and MFNet datasets. These findings highlight two
key advantages of our method. First, the designed GRM
reduces information mismatch between infrared and visible
modalities, enabling better information integration. Second,
the proposed explicit information preservation constraints
and hue fidelity constraint address information weakening
and color distortion issues during fusion. Besides, the con-
trollable fusion paradigm also provides users with the op-
portunity to choose preferences for their observations.
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Figure 8. Generalization to the daylight RoadScene dataset.

Table 2. Statistical results of multi-modal fusion methods.

Dataset LLVIP MFNet
Metric MI ↑ VIF ↑ AG ↑ SD ↑ MI ↑ VIF ↑ AG ↑ SD ↑

DenseFuse 2.683 0.400 3.899 0.152 2.945 0.423 2.426 0.126
IFCNN 2.797 0.421 5.901 0.162 2.877 0.423 3.517 0.131

RFN-Nest 2.318 0.373 2.964 0.152 2.715 0.407 1.950 0.130
U2Fusion 2.239 0.352 4.682 0.148 2.515 0.405 3.267 0.132

SDNet 2.880 0.355 4.847 0.144 2.787 0.388 3.211 0.108
Ours (r=1.0) 2.976 0.473 8.020 0.189 3.365 0.485 4.133 0.162
Ours (r=1.2) 2.914 0.486 8.634 0.197 3.378 0.490 4.398 0.176
Ours (r=1.5) 2.904 0.499 9.150 0.204 3.392 0.485 4.591 0.189
Ours (r=1.8) 2.910 0.504 9.252 0.200 3.405 0.480 4.649 0.193
Ours (r=2.0) 2.927 0.503 8.951 0.191 3.435 0.476 4.568 0.190

Generalization to Daylight. Because our DDBF models
the dependence of illumination changes on the enhance-
ment ratio, our method can be applied not only to low-light
environments but also to daytime scenarios. The general-
ization performance is evaluated using 104 daytime image
pairs from the RoadScene dataset [44]. The visual results in
Fig. 8 demonstrate that our DDBF can correct the low con-
trast of visible modality caused by overexposure, which im-
plies that our method can achieve both low-light enhance-
ment and overexposure correction, providing attractive dual
restoration capabilities. Moreover, our method also excels
in daylight multi-modal fusion, preserving text clarity on
walls and maintaining the saliency of the car. Results in Ta-
ble 3 further confirm the advantages of our DDBF, with the
highest scores on MI and VIF, indicating strong information
correlation and visual fidelity preservation.
Efficiency. Efficiency is also an important factor for eval-
uating the performance of methods. Therefore, we con-
duct an efficiency analysis for our DDBF. First, we count
the number of parameters of DDBF, in which GRM and
IFM consist of a total of 0.406 M parameters. Then, we
measure the average running time of DenseFuse, IFCNN,
RFN-Nest, U2Fusion, SDNet, and our DDBF on test im-
ages of size about 820 × 1024, which are 0.327, 0.144,

w/o 𝓛𝑰𝑨 OursLow-light Visible Ground Truthw/o LPF w/o CGAN

Figure 9. Visual analysis of GRM.
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w/o 𝓛𝑺𝑻 𝑨 Ours

w/o 𝓛𝑺𝑪 𝑨

YCbCr Mean

Figure 10. Visual analysis of IFM.

Table 3. Results of generalization to daylight.

RoadScene MI ↑ VIF ↑ AG ↑ SD ↑
DenseFuse 2.435 0.293 4.952 0.154

IFCNN 2.338 0.313 6.647 0.143
RFN-Nest 2.308 0.307 3.860 0.175
U2Fusion 2.080 0.287 6.533 0.139

SDNet 2.467 0.225 6.708 0.174
Ours (r=0.4) 3.183 0.199 4.000 0.150
Ours (r=0.6) 2.805 0.254 4.644 0.121
Ours (r=0.8) 2.968 0.364 5.403 0.118
Ours (r=1.0) 3.288 0.434 5.451 0.119

0.372, 0.223, 0.148, and 0.124 seconds, respectively. Our
DDBF achieves the fastest running speed. Besides, Pa-
rameter counts for them are 0.074, 0.084, 7.524, 0.659,
0.070, and 0.406 M, and their FLOPs are 148.006, 109.189,
2199.958, 1107.901, 112.963, and 46.778 G, respectively.

4.3. Ablation Studies

Guided Restoration Module. We conduct ablation exper-
iments on AGLIE to analyze the effectiveness of specific
designs in GRM: illumination adversarial loss LIA, low-
pass filtering function (LPF), and conditional generative ad-
versarial network (CGAN). According to Table 1, we set
r = 1.8 as the baseline for the ablation. The visual results
in Fig. 9 show the impact of removing these components.
More concretely, removing LIA results in the inability to
adjust the illumination. The absence of LPF leads to the
persistence of modality differences between infrared and
visible images, causing the network to overly focus on con-
trast rather than global illumination. Besides, after replac-
ing CGAN with a conventional GAN, the module losses the
capability of controlling the enhancement ratio. As a result,
GRM cannot effectively restore information in some scenar-
ios. The quantitative results in Table 4 further demonstrate
the negative impacts caused by removing these designs in
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Figure 11. Application to high-level vision tasks. Red boxes in the top row represent ground truth, while blue represent detection results.

Table 4. Quantitative analysis of GRM.

AGLIE w/o LIA w/o LPF w/o CGAN Ours
SSIM ↑ 0.405 0.123 0.526 0.706
PSNR ↑ 5.205 9.841 13.133 16.434

Table 5. Quantitative analysis of IFM.

LLVIP w/o LHF−A w/o LSC−A w/o LST−A YCbCr Mean Ours
MI ↑ 2.891 2.769 3.123 2.773 2.211 2.904
VIF ↑ 0.483 0.496 0.489 0.474 0.408 0.499
AG ↑ 7.473 9.086 6.165 8.899 5.414 9.150
SD ↑ 0.186 0.197 0.187 0.194 0.150 0.204

GRM. Overall, these designs collectively ensure the high
performance, flexibility, and reliability of our GRM.
Information Fusion Module. We evaluate the effective-
ness of specific designs in our IFM on the LLVIP dataset.
According to Figs. 6 and 7, we set r = 1.5 as the base-
line for the ablation on these designs, because it leads to
relatively better visual results. These specific designs in-
clude hue fidelity and explicit information preservation con-
straints. They correspond to hue fidelity loss LHF−A,
significant contrast loss LSC−A, and sharpened texture
loss LST−A. In ablation experiments, we directly re-
move LHF−A, and replace LSC−A and LST−A with the
commonly used loss functions based on the multi-modal
weighted game. Besides, we try to use the color separa-
tion strategy (YCbCr) to preserve the color, and tailor the
integration function P to the mean operation. The visual
results in Fig. 10 show that the removal of LHF−A leads to
unnatural colors with fragmented tone distribution. Exclud-
ing LSC−A reduces the saliency of thermal objects, while
the absence of LST−A results in local structural smooth-
ing. Additionally, the YCbCr strategy leads to an overly
yellowish tint, especially in highlighted thermal object re-
gions. Using the mean function leads to the fused image
suffering from brightness neutralization The objective met-
rics reported in Table 5 further support the significance of
these designs to our IFM.

4.4. Application to High-level Vision Tasks

Furthermore, we apply DDBF to high-level vision tasks,
i.e., object detection and semantic segmentation. Notably,
we use the r = 1.5 version of our DDBF due to its excel-

Table 6. Results of application to high-level vision tasks.

Detection Segmentation
Precision Recall mAP@0.5 mAP@0.95 mIOU mACC

VIS 0.976 0.946 0.764 0.667 40.292 43.774
IR 0.966 0.992 0.913 0.753 40.274 43.828

VIS+IR 0.977 0.977 0.927 0.762 40.956 44.792
DenseFuse 0.973 0.981 0.889 0.752 38.978 42.441

IFCNN 0.977 0.977 0.896 0.754 39.750 43.139
RFN-Nest 0.977 0.981 0.893 0.736 39.990 43.551
U2Fusion 0.973 0.973 0.903 0.757 40.249 43.608

SDNet 0.959 0.992 0.913 0.752 39.353 42.707
Ours 0.984 0.969 0.934 0.760 41.628 45.704

lent visualization performance. We retrain YOLOv5 [36]
and SegNeXt [6] on source infrared and visible images and
the fused images of different methods. The visual results are
presented in Fig. 11. The detection and segmentation results
based on our fused images are more accurate, while others
suffer from false detections and incomplete segmentations.
The quantitative results in Table 6 demonstrate that our
method achieves the best scores on most metrics. Notably,
the higher decision accuracy based on our fused image re-
sults compared to VIS+R may be attributed to our method’s
ability to restore scene information. Overall, these results
prove that our method can effectively aggregate scene in-
formation and provide high-quality semantic guidance.

5. Conclusion

This paper proposes a controllable visual enhancer using
cross-modal conditional adversarial learning. First, we de-
sign a guided restoration module to recover the scene in-
formation lost in low-light visible modality. It constructs
a multi-level sample set for conditional learning, enabling
users to customize the enhancement ratio according to ac-
tual circumstances. Then, a novel information fusion mod-
ule with explicit information preservation and hue fidelity
constraints is developed to deliver enhanced visualization
characterized by significant contrast, rich textures, and
faithful colors. Extensive results reveal DDBF’s advantages
with a user-friendly interface for practical application.
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