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Abstract

In image restoration (IR), leveraging semantic priors
from segmentation models has been a common approach to
improve performance. The recent segment anything model
(SAM) has emerged as a powerful tool for extracting ad-
vanced semantic priors to enhance IR tasks. However, the
computational cost of SAM is prohibitive for IR, compared
to existing smaller IR models. The incorporation of SAM for
extracting semantic priors considerably hampers the model
inference efficiency. To address this issue, we propose a
general framework to distill SAM’s semantic knowledge to
boost exiting IR models without interfering with their in-
ference process. Specifically, our proposed framework con-
sists of the semantic priors fusion (SPF) scheme and the
semantic priors distillation (SPD) scheme. SPF fuses two
kinds of information between the restored image predicted
by the original IR model and the semantic mask predicted by
SAM for the refined restored image. SPD leverages a self-
distillation manner to distill the fused semantic priors to
boost the performance of original IR models. Additionally,
we design a semantic-guided relation (SGR) module for
SPD, which ensures semantic feature representation space
consistency to fully distill the priors. We demonstrate the ef-
fectiveness of our framework across multiple IR models and
tasks, including deraining, deblurring, and denoising.

1. Introduction

Image restoration (IR) [7, 12, 20] is an essential computer
vision task that reconstructs high-quality (HQ) images from
degraded low-quality (LQ) inputs. These inputs are im-
paired by distortions like noise [21, 61], blurring [4, 24, 59],
and rain drops [9, 45]. To address this, IR methods incor-
porate explicit image priors and models of the distortion
process. These constraints help narrow the solution space
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Figure 1. Comparison of training and inference pipelines between
different manners of exploiting semantic priors from SAM. (a) Ex-
isting methods require the use of SAM at both the training and
inference stages. (b) Our method only uses SAM at the training
stage and preserves the same inference efficiency as the original
image restoration model at the inference stage.

for feasible reconstruction. With the advent of deep learn-
ing [3, 57, 61, 64], data-driven techniques have achieved su-
perior performance in IR tasks by learning strong statistical
regularities. Previous studies [28, 47, 50, 51] have demon-
strated the potential benefits of utilizing semantic priors ob-
tained from segmentation for image restoration tasks. These
priors contain valuable information about the texture and
color characteristics of individual objects within an image.
By incorporating these priors, a deeper understanding of the
image content can be achieved, providing explicit instruc-
tions that guide the restoration process. This integration
of semantic priors enhances the restoration performance by
leveraging the rich knowledge encoded within the segmen-
tation results.

In recent years, the emergence of the Segment Anything
Model (SAM) [19] has had a profound impact on vari-
ous computer vision tasks [1, 8, 53, 55], including image
restoration [17, 26, 34, 52]. By scaling up datasets and
model capacity, this large foundation model exhibits ca-
pabilities beyond surface-level labeling and provides use-
ful cues unavailable to mainstream networks. Specifically,
SAM can extract advanced semantic priors through a holis-
tic understanding of image content. However, the compu-
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tational cost associated with SAM poses a significant chal-
lenge when applied to IR, particularly when compared to
existing smaller IR models. Incorporating SAM for extract-
ing semantic priors during the inference stage considerably
hampers the overall efficiency of the model. As shown in
Fig. 1 (a), Existing methods require the use of SAM at both
the training and inference stages. The SAM module is em-
ployed during training to learn spatial attention for captur-
ing semantic priors. However, during inference, the SAM
module is also utilized, which can potentially introduce ad-
ditional computational overhead.

To address this issue, we propose a general framework
that distills SAM’s semantic knowledge to enhance exist-
ing IR models without interfering with their inference pro-
cess. As shown in Fig. 1(b), the objective of our framework
is to leverage the benefits of SAM’s semantic priors while
mitigating the computational burden and preserving the ef-
ficiency of the IR models. Our proposed framework con-
sists of two key schemes: the semantic priors Fusion (SPF)
scheme and the semantic priors Distillation (SPD) scheme
with a semantic-guided relation (SGR) module. The SPF
scheme focuses on fusing information from two sources:
the restored image predicted by the original IR model and
the semantic mask predicted by SAM. The SPD scheme
aims to distill the fused semantic priors to boost the per-
formance of the original IR model. In the SPF scheme, we
combine these two sources as inputs of the IR network cas-
caded behind the original IR network, to refine the restored
image and improve its quality. This fusion process enables
the incorporation of SAM’s semantic knowledge into the IR
model without sacrificing efficiency. In the SPD scheme,
we leverage the knowledge distillation manner [30, 32, 37]
to distill the fused semantic priors obtained through the
SPF scheme by enforcing the consistency between the orig-
inal restored image and the refined original restored image.
This scheme aims to enhance the performance of the orig-
inal IR model by transferring and consolidating the valu-
able insights extracted by SAM. Additionally, we design
a semantic-guided relation (SGR) module for SPD, which
ensures consistency in the semantic feature representation
space. This further enhances the distilled priors and pro-
motes their effectiveness in improving the IR model’s per-
formance. Finally, we only utilize the distilled IR model to
restore the degraded LQ inputs without segmentation masks
from SAM.

To validate the effectiveness of our proposed framework,
we conduct extensive experiments across multiple IR mod-
els and tasks, including deraining, deblurring, and denois-
ing. The results demonstrate the potential of our approach
in leveraging SAM’s semantic knowledge to enhance the
performance of existing IR models while addressing the
computational challenges associated with SAM integration.

Overall, our contributions can be summarized as follows:

• We propose a general framework to distill semantic
knowledge from SAM to boost existing IR models with-
out interfering with their inference process.

• We propose an SPF scheme to fuse information between
restored images from the IR model and semantic masks
from SAM to refine the restoration.

• We propose an SPD scheme that uses a self-distillation
manner with a designed semantic-guided relation module
to transfer semantic priors from SPF into the original IR
models.

• The effectiveness of our framework is demonstrated
through experiments on various IR models and tasks.

2. Related Work
Semantic Priors for Image Restoration. Existing meth-
ods can deal with the degraded images by low-level and
high-level vision interaction, which are categorized into
two types [51]: loss-level methods and feature-level meth-
ods. Loss-level methods [29, 46, 66] focus on incorporating
semantic priors by utilizing semantic-aware losses as ad-
ditional objective functions during the training process of
original vision tasks. However, these methods exploit se-
mantic priors in an implicit manner, lacking sufficient inter-
action between semantic priors and IR tasks. Feature-level
methods [28, 39, 42, 47] integrate semantic priors into the
feature representation space by extracting intermediate fea-
tures from semantic segmentation networks and combining
them with image features. While these methods explicitly
exploit semantic priors to significantly improve the perfor-
mance of IR tasks, these methods modify the inference way
of original IR models and still rely on the input of seman-
tic inputs during the inference stage. Although some re-
cent works have attempted to combine both loss-level and
feature-level methods [51], existing methods still do not ad-
equately exploit the semantic priors of the Segment Any-
thing Model (SAM) to achieve sufficient interaction and in-
ference efficiency. Our framework ensures effective inter-
action between semantic priors and IR tasks without inter-
fering with the inference process of the IR models.
SAM VS. Other Segmentation Models. SAM is a foun-
dation model for the image segmentation task with zero-
shot generalization capacity, which can be used to solve a
range of downstream segmentation problems on new data
distributions using prompt engineering. Although existing
segmentation models have achieved excellent performance
in various segmentation tasks such as semantic segmenta-
tion [15, 33, 65], instance segmentation [5, 11, 31], panoptic
segmentation [18, 54], and unified segmentation [25], these
models heavily rely on annotated segmentation masks for
training. However, in many image restoration tasks, such
segmentation annotations are not available. This is where
SAM stands out with its zero-shot generalization capabil-
ity. SAM can effectively handle image restoration tasks
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Figure 2. The workflow of our proposed framework to distill semantic knowledge from SAM to boost existing IR models without interfering
with their inference process.

without the need for specific segmentation annotations. In
addition, SAM provides more fine-grained semantic infor-
mation compared to instance and category labels through
segmentation at different granularity. This finer level of se-
mantic information is crucial for image restoration tasks,
as it enables the utilization of richer semantic priors in the
restoration process.

3. Method
In this section, we introduce our proposed framework, as
illustrated in Fig 2. This framework comprises two es-
sential schemes: the semantic priors Fusion (SPF) scheme
(detailed in Sec. 3.2 ) and the semantic priors Distillation
(SPD) scheme with a semantic-guided relation (SGR) mod-
ule ((detailed in Sec. 3.3)). The SPF scheme focuses on
fusing information from two distinct sources: the restored
image predicted by the original IR model and the seman-
tic mask predicted by SAM. On the other hand, the SPD
scheme aims to distill the fused semantic priors to enhance
the performance of the original IR model.

3.1. Problem Analysis and Definition

Semantic priors offer invaluable guidance for restoring col-
ors, contrasts, and texture consistency in degraded images.
As a large-scale foundation model, SAM contains exten-
sive parameters trained on diverse distributions of image
data. This broad exposure equips SAMs with rich semantic
knowledge to inform restoration processes. By leveraging
SAMs’ understanding of semantic concepts and contexts,
we can provide restoration models with informative cues to
improve fidelity. Moreover, the scale and generalizability of
the SAM allow for capturing higher-order semantics beyond
the scope of restoration datasets. These holistic scene-level
cues can further boost coherence in restored images.

Given a degraded low-quality image ILQ ∈ R3×H×W ,
we can obtain its segmentation mask by utilizing SAM’s
automatic mode:

MLQ = fSAM (ILQ), (1)

where, MLQ represents the semantic priors extracted from
the degraded image ILQ and is the segmentation masks of
each objects, and fSAM refers to the SAM model.

The objective of existing solutions [17, 26, 52] is to uti-
lize both the semantic priors MLQ and the degraded input
image ILQ to restore a high-quality image IHQ, represented
as (MLQ, ILQ) → IHQ. In our framework, we propose two
distinct designs to overcome two drawbacks in the conven-
tional pipeline:

1) Directly combining the semantic priors MLQ from
SAM and the input image ILQ at the feature level is imprac-
tical since it hampers the inference efficiency of the original
IR model and requires the input of SAM’s prior during the
inference stage. To address this, we cascade two IR models,
f IR1 and f IR2, together. The second IR model, f IR2, is re-
sponsible for fusing the semantic priors, and then the fused
model’s capabilities are distilled to the first IR model, f IR1.
This allows us to utilize f IR1 during the inference process,
thereby maintaining the efficiency of the original IR model.

2) Since the semantic priors MLQ is extracted from the
severely degraded image ILQ, it may contain segmentation
errors. To address this, we propose to extract the semantic
priors from the restored image obtained from f IR1:

I1HQ = fIR1(ILQ), M = fSAM (I1HQ), (2)

where, I1HQ represents the output of f IR1, and M ∈
RN×H×W is the segmentation with N mask channels.

3.2. Semantic Priors Fusion

The SPF scheme is used to fuse the semantic priors M and
preliminary restored image I1HQ from the IR model f IR1

into the second IR model f IR2 for obtaining the enhanced
restored image I2HQ. To provide a concrete example of how
the SPF (Semantic Prior Fusion) scheme works, let’s con-
sider the feature maps Fi from the ith building block of the
image restoration model f IR2. The SPF scheme consists of
multiple SPF units, where the number of SPF units matches
the number of building blocks in f IR2. Each SPF unit com-

25411



C

Conv3x3

Instance Normalization

GELU

FC

GELU

FC

UpSample/DownSample/None Global Average Pool

SIGMOID

Convolution Block   X 2
             

Semantic Selection Attention

C Concatenation Operation

Dot Multiplication Operation

Figure 3. Architecture of the Semantic Prior Fusion (SPF) unit.

bines the semantic prior M extracted from the restored im-
age and the corresponding feature maps Fi.

Without loss of generality, this formulation exemplifies
how SPF incorporates semantic guidance into intermediate
feature representations within the IR model f IR2:

Fi+1 = f(FSPF
i ),{

FSPF
i = fSPF

i (
[
FSPF
i−1 , Fi

]
) if i > 1

FSPF
i = fSPF

i (
[
I1HQ,M

]
) if i = 1

,
(3)

where f(·) represents the next building block to generate
the next feature maps, fSPF

i represents the ith SPF unit in
the designed SPF scheme to fuse the feature map Fi and the
semantic prior M from SAM. [·] represents the concatena-
tion operation.

The architecture of the proposed SPF unit fSPF
i is de-

tailed in Fig. 3. We first concatenate the input feature maps
FSPF
i−1 and Fi. This combined input is fed into two con-

volutional blocks to extract an intermediate fused represen-
tation. To align with the designs of different IR network
building blocks, we introduce resize operations to match
dimensions as needed. Additionally, a Semantic Selection
Attention module is proposed to focus the SPF fusion on
effective semantic priors. It implements a dot product to
selectively highlight salient semantics.

By repeating this SPF unit across network stages, seman-
tic guidance is systematically integrated into the IR model.

3.3. Semantic Priors Distillation

During the initial training stage, the output of f IR2 is the
high-quality restored image I2HQ, which aims to incorpo-
rate semantic priors and has better image quality compared
to the restored image I1HQ from the output of f IR1. To
transfer the capabilities of f IR2 to f IR1 and improve the

performance of f IR1 to match or approach the performance
of f IR2, we propose a semantic priors distillation scheme.
This scheme facilitates the convergence of both networks
during training.

In the semantic priors distillation scheme, we leverage
the high-quality restored image I2HQ obtained from f IR2

as a teacher signal to guide the training of f IR1. The key
points of the scheme are as follows:

Firstly, we distill the semantic priors from f IR2 to f IR1

by minimizing the smooth L-1 loss between I1HQ and I2HQ.
In image restoration tasks, there may be cases where the
restored images contain artifacts. By using the smooth L1
loss, we can reduce the influence of these artifacts and pro-
vide more robust training:

LSPD =

{∥∥I1HQ,−I2HQ

∥∥
1
− 0.5 if

∥∥I1HQ,−I2HQ

∥∥
1
> 1,

0.5×
∥∥I1HQ,−I2HQ

∥∥2

1
if

∥∥I1HQ,−I2HQ

∥∥
1
< 1,

(4)
where ∥·∥1 represents the L1 loss. Through minimizing the
distillation loss, we encourage the semantic priors extracted
by f IR1 to converge to the semantic priors from f IR2 as the
two networks are jointly optimized.

Secondly, we introduce a semantic-guided relation
(SGR) module to facilitate the transfer of semantic priors
from f IR2 to f IR1 while ensuring consistency between
I1HQ and I2HQ in the semantic feature representation space.
To achieve this, we utilize a pre-trained VGG model to ex-
tract semantic-aware feature maps F 1

V GG ∈ R512×H
8 ×W

8

and F 2
V GG ∈ R512×H

8 ×W
8 from I1HQ and I2HQ, respectively.

We then employ the semantic priors M to generate N ob-
ject masks m0,m1, ...,mN , which are resized to the dimen-
sions of H

8 × W
8 . This allows us to obtain the mask-guided

semantic features as follows:

F 1
V GG(n) = F 1

V GG ⊙mn, F 2
V GG(n) = F 2

V GG ⊙mn, (5)

where ⊙ denotes the dot product. F 1
V GG(n) and F 2

V GG(n)
represent the semantic features guided by the nth mask.

Next, we calculate the semantic relationship knowledge
between the mask-guided semantic features and distill this
knowledge from f IR2 to assist f IR1 in obtaining seman-
tic priors for improved image restoration performance. The
semantic relationship is formulated as:

R1
V GG(n1, n2) =

F 1
V GG(n1)F

1
V GG(n2)

∥F 1
V GG(n1)∥2 ∥F 1

V GG(n2)∥2
, (6)

where ∥·∥2 represents the L2 loss, and R1
V GG(n1, n2) rep-

resents the semantic relationship between F 1
V GG(n1) and

F 1
V GG(n2). The calculation of R2

V GG(n1, n2) follows a
similar approach.

To align the semantic relationships obtained from f IR2
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and f IR1, we use the following formulation:

LSGR =

N∑
n1,n2=1,n1 ̸=n2

∥∥R1
V GG(n1, n2)−R2

V GG(n1, n2)
∥∥
2

N2 −N
,

(7)
where FSGR represents the SGR loss calculated using the
L2 loss function.

3.4. Overall Optimization

In the training stage, the IR models f IR1 and f IR2 undergo
independent supervision using Groundtruth, with their re-
spective reconstruction loss functions denoted as L1

recon

and L2
recon.

The IR model f IR2 is only supervised by L2
recon and the

overall objective function of the IR model f IR1, denoted as
L, combines these aforementioned losses as follows:

L = L1
recon + λ1LSPD + λ2LSGR, (8)

where the weights λ1 and λ2 are used to balance the con-
tribution of the corresponding loss terms. Although all loss
functions are optimized simultaneously, LSPD and LSGR

only affect the gradient backpropagation of f IR1 and are
not propagated through f IR2 with the stop-gradient mech-
anism. The parameters of SAM and VGG models are also
frozen during the training stage.

4. Experiments
4.1. Datasets

Deraining Task. We evaluate our proposed framework on
multiple publicly available datasets for the rain removal
task, including Rain200L/H [56], DID [60], and DDN [6].
The Rain200L/H dataset comprises 1,800 synthetic rainy
images for training and 200 images for testing. The DID
and DDN datasets consist of 12,000 and 12,600 synthetic
images, respectively, with varying rain directions and den-
sity levels. Both the DID and DDN datasets provide 1,200
rainy images for testing. The results obtained from these
datasets demonstrate the effectiveness of our method in han-
dling diverse types of spatially varying rain streaks, and
they indicate a successful reduction of rain artifacts.

Furthermore, we incorporate two additional synthetic de-
raining datasets, Cityscape-syn100/200 [50], to assess the
quality of the restored images in relation to their impact on
downstream segmentation tasks. These datasets are synthe-
sized based on the Cityscape dataset [2], allowing us to eval-
uate image quality using downstream segmentation metrics
on the validation set.
Deblurring Task. We conduct an evaluation of our frame-
work on the GoPro dataset [35] for the image deblurring
task. The GoPro dataset contains a total of 2,103 train-
ing images and 1,111 test images. To generate the blurs
of different strengths, a varying number of successive latent

frames are averaged together. The images in this dataset are
captured using a GoPro camera at a frame rate of 240 fps.
Denoising Task. We conduct an evaluation of our frame-
work on the SenseNoise dataset [63] for the image denois-
ing task. The SenseNoise dataset comprises 500 diverse
scenes, each consisting of high-resolution images. The
dataset includes both indoor and outdoor scenes, and it pro-
vides high-quality ground truth images for reference.

4.2. Evaluation Metrics

We employ two commonly used metrics, Peak Signal-to-
Noise Ratio (PSNR) [14] and Structural Similarity Index
(SSIM) [48], to evaluate the performance of our image
restoration tasks. Additionally, we introduce the Fréchet
Inception Distance (FID) [13] as a measure of the subjec-
tive visual quality perceived by humans. In the context of
the cityscape-syn datasets, we utilize pixel accuracy (PA),
intersection over union (IOU), and DICE [41] as segmen-
tation metrics to assess the performance of the downstream
segmentation tasks.

4.3. Implementation Details

All the components of our framework are trained simulta-
neously. We utilize the PyTorch platform within the Python
environment and employ NVIDIA Tesla V100 GPUs with
32 GB memory for training. The framework is trained using
the Adam optimizer with β1 = 0.9 and β2 = 0.999. We set
the learning rate to 1e− 4 and utilize a batch size of 8 for a
total of 200 epochs.

4.4. Selected Baseline Methods

In order to demonstrate the effectiveness of our general
framework, we conduct experiments using several well-
established image restoration models. For the rain removal
task, we select two representative models: RCDNet [45]
and Efficientderain [9]. For the deblurring and denoising
tasks, we chose the widely recognized Uformer model [49]
as our representative model. These models are carefully se-
lected to cover a range of restoration tasks and showcase the
versatility of our framework.

4.5. Quantitative and Qualitative Results

Deraining Task. In Table 1 and Table 2, we provide the
validation results of our framework on the deraining task.
The tables illustrate that our framework consistently out-
performs the original RCDNet and Efficientderain models,
yielding significant performance gains of both objective and
subjective visual metrics across multiple datasets. Specifi-
cally, our framework achieves an average improvement of
0.91 dB PSNR over the RCDNet model and 1.02 dB PSNR
over the Efficientderain model. These improvements are
primarily attributed to the introduction of advanced capa-
bilities for suppressing noise and artifacts while preserv-
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Method
R200L R200H DID DDN

PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓

RESCAN [27] 36.09 0.9697 - 26.75 0.8353 - 33.38 0.9417 - 31.94 0.9345 -
PReNet [38] 37.80 0.9814 - 29.04 0.8991 - 33.17 0.9481 - 32.60 0.9459 -
MSPFN [16] 38.85 0.9827 - 29.36 0.9034 - 33.72 0.9550 - 32.99 0.9333 -
MPRNet [58] 39.47 0.9825 - 30.67 0.9110 - 33.99 0.9590 - 33.10 0.9347 -

RCDNet [45] 39.04 0.9846 5.42 30.27 0.9063 31.75 34.12 0.9561 26.02 33.07 0.9483 20.09

RCDNet+
40.26 0.9874 4.19 30.85 0.9142 30.05 34.67 0.9609 24.00 33.84 0.9547 19.16
+1.22 +0.0028 -1.23 +0.58 +0.0079 -1.70 +0.55 +0.0048 -2.02 +0.77 +0.0064 -0.93

Efficientderain [9] 34.42 0.9641 14.89 24.20 0.8100 86.23 31.99 0.9120 25.09 31.75 0.9234 24.46

Efficientderain+
35.70 0.9718 9.67 25.31 0.8479 56.49 32.72 0.9181 21.74 32.48 0.9323 20.77
+1.28 +0.0077 -5.22 +1.11 +0.0379 -29.74 +0.73 +0.0061 -3.35 +0.73 +0.0008 -3.69

Table 1. Quantitative comparison on multiple deraining datasets to evaluate our framework for the draining task. ‘+’ represents the IR
models enhanced by our proposed framework.
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Figure 4. The qualitative comparison of IR models with and without our framework on various deraining datasets.

ing texture and color consistency. Furthermore, we evaluate
the segmentation performance of different restored images
using an HRNet [43] model pre-trained on the Cityscape
dataset, as shown in Table 2. The results demonstrate that
our framework consistently achieves downstream segmen-
tation improvements in terms of IoU, PA, and DICE met-
rics and significantly better segmentation results compared
to the segmentation results of degraded images in ‘Rain’.

In Fig. 4, we visualize the deraining results on the bench-
mark datasets. It can be seen that our framework assists the
existing IR models not only in removing rain streaks more

effectively but also in the preservation of high-fidelity ob-
ject boundaries.

We also visually depict the deraining and corresponding
segmentation results on the Cityscape-syn datasets in Fig-
ure 5. From the deraining perspective, our framework ef-
fectively aids the IR models in removing a larger number of
rain streaks and restoring the intricate structure and content
of rainy images. Additionally, our framework provides en-
hanced semantic priors to the image restoration models, en-
abling the generation of restored images with richer seman-
tic information. This, in turn, facilitates better segmentation
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Method
Cityscape-syn 100 mm Cityscape-syn 200 mm

PSNR ↑ SSIM ↑ FID ↓ IoU ↑ PA ↑ DICE ↑ PSNR ↑ SSIM ↑ FID ↓ IoU ↑ PA ↑ DICE ↑

No Rain INF 1 0 0.8020 0.9650 0.9323 INF 1 0 0.8020 .9650 0.9323
Rain 22.06 0.7513 164.66 0.5023 0.7452 0.6138 16.77 0.6076 253.03 0.2128 0.4481 0.3076

RCDNet [45] 33.72 0.9852 9.09 0.7869 0.9618 0.9263 31.85 0.9761 13.69 0.7701 0.9585 0.9204

RCDNet+
34.88 0.9869 8.37 0.7881 0.9620 0.9268 33.04 0.9787 12.90 0.7741 0.9590 0.9214
+1.16 +0.0017 -0.72 +0.0013 +0.0002 +0.0005 +1.19 +0.0026 -0.79 +0.0040 +0.0005 +0.0010

Efficientderain [9] 35.06 0.9886 8.56 0.7807 0.9610 0.9250 33.40 0.9827 10.71 0.7692 0.9592 0.9216

Efficientderain+
36.29 0.9912 6.17 0.7862 0.9622 0.9272 34.65 0.9858 8.19 0.7770 0.9605 0.9240
+1.23 +0.0026 -2.39 +0.0065 +0.0012 +0.0022 +1.25 +0.0031 -2.52 +0.0078 +0.0013 +0.0024

Table 2. Quantitative comparison on the synthesized deraining datasets to evaluate our framework for the downstream segmentation task.
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Figure 5. The qualitative comparison of IR models with and without our framework on the cityscape datasets.

Input GT Uformer Uformer+
Figure 6. The qualitative comparison of IR models with and with-
out our framework on the GoPro dataset.

results for the downstream segmentation task. The incorpo-
ration of semantic priors through our framework enhances
both deraining and segmentation performance, demonstrat-
ing its effectiveness in addressing the challenges posed by
rainy images.
Deblurring and Denoising Tasks. We validate our frame-
work on the deblurring and denoising tasks In Table 3 and

Table 4 with the representative model Uformer, respec-
tively. It can be observed that our framework achieves over
0.1 dB PSNR performance improvement of Uformer with-
out inferring with its inference processing on both of these
two tasks.

In Figure 6, we present visual results on the GoPro
dataset for the deblurring task. These visualizations clearly
demonstrate the effectiveness of our framework in enhanc-
ing the performance of the Uformer model. Our frame-
work enables the Uformer model to effectively handle dy-
namic blurring and significantly improve the quality of the
deblurred images. Moving on to Figure 7, we showcase
visual results on the SenseNoise dataset for the denoising
task. These results further illustrate the effectiveness of our
framework in enhancing the performance of the Uformer
model. This indicates that our framework enhances the de-
noising capabilities of the Uformer model, resulting in im-
proved image quality and more accurate noise reduction.

4.6. Ablation Study

Components of the Proposed Framework. In Table 5,
we present the results of an ablation study conducted on
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Input GT UNet CBDNet Uformer Uformer+
Figure 7. The qualitative comparison of IR models with and without our framework on the SenseNoise dataset.

Method PSNR ↑ SSIM ↑ FID ↓

DeblurGAN [22] 28.70 0.858 -
DeblurGANv2 [23] 29.55 0.934 -
SRN [44] 30.26 0.934 -
DBGAN [62] 31.10 0.942 -
MT-RNN [36] 31.15 0.945 -
DMPHN [59] 31.20 0.940 -

Uformer [49] 32.10 0.949 11.36

Uformer+
32.21 0.950 11.10
+0.11 +0.001 -0.26

Table 3. Quantitative comparison on the GoPro dataset to evaluate
our framework for the deblurring task.

Method PSNR ↑ SSIM ↑ FID ↓

UNet [40] 34.92 0.9130 20.61
CBDNet [10] 35.00 0.9140 17.73

Uformer [49] 35.14 0.9139 17.37

Uformer+
35.25 0.9151 17.09
+0.11 +0.0012 -0.28

Table 4. Quantitative comparison on the SenseNoise dataset to
evaluate our framework for the denoising task.

the main components of our proposed framework. The cas-
caded networks f IR1 and f IR2 in our framework demon-
strate improved performance, as the cascading architecture
enhances the output of f IR2. Furthermore, by incorporating
the semantic priors from SAM using the SPF scheme, we
observe further performance improvement. Both the SPD
scheme and the SGR module consistently enhance the per-
formance of the output of f IR1 while maintaining the per-
formance of f IR2 itself. Notably, we achieve comparable
performance between the outputs of f IR1 and f IR2.

In addition, we evaluate the impact of different seman-
tic priors obtained from SAM and the commonly used seg-
mentation model, PSPNet. As SAM provides more detailed
and comprehensive semantic priors through segmentation
at various levels of granularity, our framework, which in-
tegrates SAM, achieves superior performance compared to
incorporating semantic priors from instance and category
labels alone.
Hyperparameters. We conduct ablation experiments to in-
vestigate the impact of hyperparameters λ1 and λ2 in bal-
ancing the losses LPSD and LSGR, respectively. The re-
sults of these experiments are summarized in Table 6. Vari-

Method
fIR1 fIR2

PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓

fIR1 34.09 0.9847 5.02 - - -

+ fIR2 34.01 0.9831 5.13 34.21 0.9851 4.68

+ SPF, (w. SAM) 34.03 0.9836 5.11 34.89 0.9859 4.67

+ SPD, (w. SAM) 34.84 0.9853 4.71 34.91 0.9865 4.52

+ SGR, (w. SAM) 35.29 0.9864 4.49 35.30 0.9864 4.51

+ SGR, (w. PSPNet) 35.08 0.9858 4.62 35.09 0.9858 4.65

Table 5. Albaltion studies on components of our framework.

λ1 0.0005 0.005 0.05

PSNR / SSIM 35.12 / 0.9859 35.29 / 0.9864 35.16 / 0.9861

λ2 20 200 2000

PSNR / SSIM 35.26 / 0.9863 35.29 / 0.9864 35.21 / 0.9863

Table 6. Ablation study on loss weights of our framework.

ous values are tested to identify an optimal weight for each
hyperparameter. Based on the experimental findings, we
empirically set λ1 = 0.005 and λ2 = 200 as they yield the
best performance. These values are chosen to strike a bal-
ance between the two losses and achieve optimal results for
our framework.

5. Conclusion
We propose a general framework to distill the semantic
knowledge of the segment anything model (SAM) and boost
existing image restoration (IR) models. By incorporating
the semantic priors fusion (SPF) and semantic priors distil-
lation (SPD) schemes, we successfully enhance the perfor-
mance of multiple IR models across tasks such as derain-
ing, deblurring, and denoising. Our framework addresses
the computational cost limitations of SAM while effectively
leveraging its semantic priors.
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