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Abstract

With the emergence of pre-trained vision-language mod-
els like CLIP, how to adapt them to various downstream
classification tasks has garnered significant attention in re-
cent research. The adaptation strategies can be typically
categorized into three paradigms: zero-shot adaptation,
few-shot adaptation, and the recently-proposed training-
free few-shot adaptation. Most existing approaches are tai-
lored for a specific setting and can only cater to one or two
of these paradigms. In this paper, we introduce a versa-
tile adaptation approach that can effectively work under all
three settings. Specifically, we propose the dual memory
networks that comprise dynamic and static memory com-
ponents. The static memory caches training data knowl-
edge, enabling training-free few-shot adaptation, while the
dynamic memory preserves historical test features online
during the testing process, allowing for the exploration
of additional data insights beyond the training set. This
novel capability enhances model performance in the few-
shot setting and enables model usability in the absence of
training data. The two memory networks employ the same
flexible memory interactive strategy, which can operate in
a training-free mode and can be further enhanced by in-
corporating learnable projection layers. Our approach is
tested across 11 datasets under the three task settings. Re-
markably, in the zero-shot scenario, it outperforms exist-
ing methods by over 3% and even shows superior results
against methods utilizing external training data. Addition-
ally, our method exhibits robust performance against nat-
ural distribution shifts. Codes are available at https:
//github.com/YBZh/DMN .

1. Introduction

Contrastive vision-language pre-training [20, 27, 44, 64]
has shown promising results in various downstream vision
tasks, including 2D/3D perception [69, 74] and generation
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Figure 1. Illustration of the classification accuracy, (test-time)
training GFLOPs, and learning parameters on zero-shot and 16-
shot ImageNet classification. The icon sizes denote the number of
learnable parameters. Our method is unique in its ability to work
for all three task settings with superior results.

[6, 48]. Among these models, CLIP [44] is arguably the
most representative one due to its simplicity and effective-
ness. Leveraging a vast collection of image-text pairs from
the Internet, CLIP aligns features across modalities, leading
to notable zero-shot classification capabilities. To further
enhance its performance on downstream tasks, numerous
adaptation strategies have emerged, primarily employing
frozen CLIP encoders in zero-shot and few-shot settings.

Most existing approaches are tailored for one specific
task setting. Specifically, enhanced zero-shot performance
is achieved by exploring additional insights from the test
sample itself [14, 51] or via enhanced text prompts [38, 43].
In the few-shot setting, researchers typically insert adap-
tive parameters (e.g., Prompt [22, 74], Adapter [13], and
Residual [65]) into the pre-trained vision-language models
and optimize these parameters using labeled training data.
Recently, a training-free variant of few-shot adaptation has
been proposed for resource-constrained applications [68].
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Methods No External Training Data Task Settings
Zero-shot Few-shot TF Few-shot

TPT [51] and [38, 40, 43, 46, 75] ! ! % %
DiffTPT [12] % ! % %
CoOp [74] and [3, 22, 36, 50, 59, 63, 65, 66, 73, 76] ! % ! %
Tip-Adapter [68], and [77] ! % ! !
SuS-X [56] % % ! !
CALIP [14] ! ! ! %
CaFo [70] % ! ! !

DMN (Ours) ! ! ! !

Table 1. Summary of adaptation methods for vision-language models. ‘Zero-shot’, ‘Few-shot’, and ‘TF Few-shot’ represent the zero-shot
adaptation, few-shot adaptation, and the recently introduced training-free few-shot adaptation, respectively. ‘No External Training Data’
indicates that the approach does not utilize any synthetic training images from generation models or retrieved images via class names.

In this setting, no parameters are needed to learn, and thus
much computational resources are saved. While numerous
methods have been introduced, they typically cater to only
one or two task settings, as summarized in Tab. 1, thereby
limiting their applicability.

In this work, we propose a versatile adaptation approach
that works effectively for all the three task settings, as
shown in Fig. 1. Specifically, we propose the dual mem-
ory networks comprising dynamic and static memory com-
ponents, producing sample-adaptive classifiers for each test
point. The static memory network caches features of train-
ing data, generating the adaptive classifier for each test sam-
ple by adaptively weighting cached training features and
thus enabling training-free few-shot adaptation. In contrast,
the dynamic memory network preserves features of histori-
cal test samples during the testing process, introducing an-
other adaptive classifier by adaptively weighting cached test
features. This allows us to explore additional data insights
beyond the training samples, further enhancing the model’s
performance in the few-shot setting and extending its ap-
plications to the zero-shot setting where training data is
absent. These two types of memory networks employ the
same memory interactive strategy, which is highly flexible.
This strategy can be used in a training-free mode for zero-
shot and training-free few-shot adaptations. In addition, it
can be further enhanced by incorporating learnable projec-
tion layers in the traditional few-shot setting.

We evaluate our approach on 11 datasets. In particular,
in the setting where external training data are unavailable,
our method surpasses existing zero-shot methods by a sig-
nificant margin of over 3% by leveraging knowledge of his-
torical test samples. Even in comparison to methods that
utilize external training data, our model still exhibits sub-
stantial advantages, outperforming the recent CaFo [70] by
1.48%. These results highlight the crucial significance of
historical test samples in the adaptation process, which is

neglected in existing works. It is worth emphasizing the
efficiency of incorporating historical test knowledge with
the dynamic memory network, as the memory interaction
process involves only a single attention module. Through
the utilization of historical test knowledge, labeled train-
ing data, and vanilla text information, our approach signif-
icantly enhances few-shot performance, establishing a new
state-of-the-art in both the few-shot and training-free few-
shot settings. Moreover, our method demonstrates excellent
generalization capabilities to natural distribution shifts. We
summarize our contributions as follows:
• We introduce a versatile adaptation strategy for pre-

trained vision-language models, termed Dual Memory
Networks (DMN), aimming to effectively address the
tasks of zero-shot adaptation, few-shot adaptation, and
training-free few-shot adaptation. To the best of our
knowledge, this is the first work to enhance vision-
language model adaptation across the three settings with-
out the use of external training data.

• DMN comprises static and dynamic memory networks
that gather information from labeled training data and his-
torical test data, respectively. The two memory networks
employ a flexible interactive strategy, which can operate
in a training-free mode and can be further enhanced with
learnable projection layers.

• Our approach has been validated on 11 datasets with three
task settings. In the zero-shot setting, it outperforms com-
petitors by over 3% and even surpasses methods using
external training data. It also demonstrates robust perfor-
mance against natural distribution shifts.

2. Related Work

Adaptation of Vision-Language Models. Foundation
models [24, 29, 44, 47] have attracted increasing attention in
downstream tasks recently [32, 33, 55, 60, 67]. Pre-trained
on vast collections of image-text pairs, vision-language
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models like CLIP exhibit remarkable zero-shot generaliza-
tion capabilities across a range of downstream datasets [44].
Building upon CLIP, numerous methods have been intro-
duced to adapt it to various downstream classification tasks,
especially under the zero-shot and few-shot settings as sum-
marized in Tab. 1. In the zero-shot setting where labeled
training data are unavailable, one primary research direc-
tion is how to extract richer information from the test sam-
ples [12, 14, 51, 75] and class names [12, 38, 40, 43, 56].
For the former group, CALIP [14] enhances feature extrac-
tion through attention mechanisms, and instance-adaptive
prompts are explored using consistency regularization in
[12, 51]. Leveraging class names, some approaches [56, 70]
generate synthetic training samples utilizing additional im-
age generation models [7, 47], and others [38, 43, 46] craft
advanced text prompts by querying pre-trained large lan-
guage models.

To further unlock the potential of pre-trained CLIP mod-
els for downstream tasks, how to adapt the frozen CLIP
model with a limited amount of labeled training data has
attracted increasing attention, leading to the few-shot adap-
tation. Inspired by the parameter-efficient transfer learn-
ing [19, 26], many methods propose to tune the pre-trained
CLIP models with carefully designed prompts [3, 3, 22,
23, 66, 73, 74] and adapters [13]. Besides, Lin et al.
[34], Wortsman et al. [59], and Yu et al. [65] respec-
tively investigate the cross-modal adaptation, weight en-
sembles, and task residuals for better CLIP adaptation. Re-
cently, a training-free variant of few-shot adaptation has
been proposed for resource-constrained applications [68],
where computationally intensive model training is prohib-
ited. Specifically, Tip-Adapter [68] is a pioneering training-
free few-shot approach, which caches the encoded features
and labels of training images as task priors. Predictions are
then derived based on the similarity between the test fea-
ture and cached features. Tip-Adapter is subsequently aug-
mented with the integration of calibrated intra-modal dis-
tance as described in [56], and through adaptive channel
prior refinement as elaborated in [77]. These training-free
adaptation methods can be enhanced with optional model
optimization by either tuning the cached features [68] or
adding learnable category residuals [77].

Most aforementioned methods are tailored for a specific
task setting and can only cater to one or two of these adap-
tation paradigms, as summarized in Tab. 1. Although exist-
ing few-shot methods can be applied to the zero-shot task by
utilizing external training data through generation or search-
ing [56, 70], they may not fully meet the practical require-
ments of zero-shot applications, such as efficient and rapid
adaptation to new tasks. In contrast, we propose a versatile
adaptation approach that can effectively handle all the three
tasks without relying on any external training data. This is
achieved by fully utilizing the training data and historical

test samples via the proposed DMN framework, leading to
the new state-of-the-art across all three adaptation settings.

Memory Networks. Memory networks were initially
introduced in the realm of Natural Language Processing.
Inspired by the knowledge accumulation and recalling in
human brain [1, 53], they introduce an external mem-
ory component, allowing the storage and retrieval of his-
torical knowledge to facilitate decision making [54, 58].
Subsequently, the concept of interactive memory, facili-
tating the storage and retrieval of historical information,
has been adopted in various vision tasks, including clas-
sification [21, 49], segmentation [28, 41, 62], and detec-
tion [4, 8, 30, 31]. Recently, ideas reminiscent of mem-
ory networks have been introduced into CLIP adaptation
[56, 68]. However, the memory modules employed in their
approaches are typically read-only and do not support real-
time writing, akin to the static memory in our method. As
expected, these approaches are unable to leverage historical
test samples, limiting their performance in few-shot adapta-
tion and impeding their application in zero-shot adaptation.
Our method stands out as the first to introduce a dynamic
memory that supports both reading and writing operations
for test data, while optionally maintaining a static memory
for training data. By exploring all available data sources,
our method can effectively handle all the three adaptation
tasks and achieve superior performance.

3. Method

We first present a flexible memory interactive strategy for
both dynamic and static memory networks. Then, we
present these memory networks in detail.

3.1. A Flexible Memory Interactive Strategy

Memory networks [54, 58] provide an effective mechanism
to explicitly accumulate and recall knowledge, empowering
better performance by utilizing the relevant historical infor-
mation. A memory network typically comprises the follow-
ing four abstract steps:
1. Convert a new input x into the feature space.
2. Update the memory M with x.
3. Read out an output given x and the current memory.
4. Convert the output into the desired response.
In the following, we demonstrate how to instantiate these
steps in CLIP adaptation, where the memory interaction
strategy in steps 2 and 3 is our main focus.

We first present how to use CLIP to classify a test sam-
ple under the zero-shot setting. For a test image x within a
downstream task of C classes, we extract the visual repre-
sentation v 2 RD and textual representation C 2 RC⇥D

with pre-trained CLIP encoders, where D is the feature di-
mension. Both v and C are L2 normalized along the D
dimension. Then, the zero-shot prediction probability can
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Figure 2. An illustration of the overall framework of our Dual Memory Networks (DMN), which integrates knowledge from three sources
(i.e., text input, historical test data, and optional training images) to tackle the three types of adaptation tasks (i.e., zero-shot, few-shot, and
the recently-proposed training-free few-shot adaptations).

be achieved by using text features C as the classifier:

Pt = Softmax
�
vC>� 2 RC , (1)

where the scaling parameter is omitted for simplicity.
To instantiate the memory networks in CLIP adaption, it

is natural to adopt the pretrained image encoders of CLIP to
transform the input x to the image feature v. We construct
a category-split memory M 2 RC⇥L⇥D, where L is the
memory length for each category. To update the memory
M with v, we simply store v in a ‘slot’ of M. Specifically,
given the (pseudo) label y 2 [1, C] of the input image, we
locate the sub-memory My 2 RL⇥D corresponding to the
category y, find an empty slot of it, say the ith row, denoted
by My,i 2 RD, and update the memory as:

My,i = v. (2)

Besides the image feature, we also cache the corresponding
prediction entropy estimated from Pt, which is used to lo-
cate the slot to update when My is full. Specifically, if all
rows of My are occupied by image features, we replace the
row of maximum entropy in My with v if v exhibits smaller
prediction entropy. In other words, we store samples with
lower prediction entropy in the memory.

Given the updated memory M and the test feature v,
we read out a sample adaptive classifier Cm 2 RC⇥D via
cross-attention as:

Cm = ReadOut(v,M), (3)

where the yth row of Cm is produced by using v as query
and adopting memory My as key and value:

Cm
y = !o

�
'
�
!q(v)!k(My)

>�!v(My)
�
. (4)

The !q , !k, !v and !o respectively represent the
project functions for query, key, value, and the output,
!q(v)!k(My)> 2 R1⇥L measures the cosine similarities
between normalized features of !q(v) and !k(My), and
'(x) = exp(��(1�x)) modulates the sharpness of x with
hyper-parameter �. Intuitively, Cm

y is the weighted combi-
nation of image features in My , where the weight is based
on the cosine similarity between test and memoried image
features. In other words, the sample adaptive classifier Cm

is produced by image features, instead of the text features
that produce the text classifier C.

Finally, we follow Eq. (1) to convert the memory output
Cm to the desired classification prediction, leading to the
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final memory response:

Pm = M2P(v,Cm) = Softmax
�
vCm>� 2 RC . (5)

The Pm is the classification probability of test feature v
with the sample adaptive classifier Cm.

The versatility of our memory interactive strategy across
various task settings stems from the flexibility of the projec-
tion layer. Specifically, we define the projection function !⇤
(covering !q,!k,!v , and !o) using a residual architecture:

!⇤(x) = L2 (x+ Linear(x)) , (6)

where Linear(·) represents a linear layer with all parame-
ters initialized to zero and L2(·) indicates the L2 normaliza-
tion along feature dimension. In the training-free setting,
the projection function !⇤(·) degenerates to !⇤(x) = x,
given the L2 normalized input x. Therefore, the memory
interaction is conducted in the vanilla feature space of CLIP.
Given labeled training samples, we can explore a more ef-
ficient feature space for memory interaction by optimizing
the linear layers with the classification objective. Next, we
present the dynamic and static memory networks based on
this flexible interactive strategy.

3.2. Dynamic Memory Network

The dynamic memory networks accumulate historical test
samples in the test process and is activated for all task set-
tings. Firstly, we introduce a dynamic memory Md 2
RC⇥L⇥D initialized with zero values. Given the test fea-
ture v, we update the memory Md using Eq. (2) with the
estimated pseudo label y from the text classifier:

y = argmax
j

Pt
j . (7)

Given the updated memory Md and the test feature v, we
can read out a sample adaptive classifier Cd with the read-
out function in Eq. (3) as:

Cd = ReadOut(v,cMd), (8)

where cMd = [Md,C] 2 RC⇥(L+1)⇥D is the extended
memory with text feature. Such a memory extension ac-
tually initializes the Cd with the text classifier C, consider-
ing that the memory Md is initialized with zero values. As
more image features are written into the memory, the clas-
sifier Cd is gradually refined with cached image features,
utilizing the historical test samples in the testing process.
Finally, the sample classification probability with the dy-
namic memory network is introduced with Eq. (5) as:

Pd = M2P(v,Cd) 2 RC . (9)

The prediction Pd utilizes knowledge of historical test sam-
ples, including the current one, whose effectiveness is ana-
lyzed in Sec. 4.3.

Variants Adaptation Settings Md Ms !⇤

DMN-ZS Zero-shot ! % %
DMN-TF Training-free Few-shot ! ! %
DMN Few-shot ! ! !

Table 2. Summary of our DMN variants for different adaptation
tasks. The ‘Md’ and ‘Ms’ respectively represent whether the dy-
namic and the static memory networks are activated and ‘!⇤’ in-
dicates whether the projection layers are optimized.

3.3. Dual Memory Networks

In this section, we present the full version of our versa-
tile DMN, which comprises the aforementioned dynamic
memory network and the following static memory network.
The overall framework is shown in Fig. 2. For a C-
way-K-shot task with K training images per category, one
may opt to utilize these samples by extending the dynamic
memories with image features of these data, i.e., updating
cMd = [Md,Ms,C] 2 RC⇥(L+K+1)⇥D in Eq. (8), where
Ms 2 RC⇥K⇥D is the aggregation of image features of
CK training samples. Although this simple strategy brings
certain improvement, we argue that the valuable knowledge
from labeled data may gradually get diluted as the dynamic
memory fills up. This dilution results in a degraded perfor-
mance (see Fig. 6a for more analyses).

To make full use of labeled data, we additionally main-
tain one static memory, i.e., Ms, and introduce another
sample adaptive classifier using these labeled data only. As
described by its name, the static memory Ms keeps un-
changed after creation. Given the static memory Ms and
the test feature v, we can read out a sample adaptive classi-
fier Cs with the readout function in Eq. (3) as:

Cs = ReadOut(v,Ms). (10)

The corresponding prediction probability is:

Ps = M2P(v,Cs) 2 RC . (11)

The prediction Ps is based on the knowledge of labeled
training data, which are complement to the text knowl-
edge in Pt and historical test knowledge in Pd. The final
prediction is obtained by aggregating the three knowledge
sources:

Pdmn = ↵1P
t + ↵2P

d + ↵3P
s, (12)

where ↵1⇠3 denote the weights for text prediction, predic-
tion of dynamic memory network, and prediction of static
memory network, respectively.

Our DMN is a versatile adaptation approach for vision-
language models that handles three task settings, i.e., zero-
shot, few-shot, and training-free few-shot adaptations. Con-
sidering the inherent variations among different task set-
tings, the implementation of our DMN exhibits subtle dif-
ferences. For example, in the training-free setting, such
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Method ImageNet Flower DTD Pets Cars UCF Caltech Food SUN Aircraft EuroSAT Mean

CLIP-RN50 [44] 58.16 61.75 40.37 83.57 55.70 58.84 85.88 73.97 58.80 15.66 23.69 56.04
DN [75] 60.16 63.32 41.21 81.92 56.55 55.60 87.25 74.64 59.11 17.43 28.31 56.86
TPT [51] 60.74 62.69 40.84 84.49 58.46 60.82 87.02 74.88 61.46 17.58 28.33 57.94
VisDesc [38] 59.68 65.37 41.96 82.39 54.76 58.47 88.11 76.80 59.84 16.26 37.60 58.29
Ensemble [68] 60.32 66.10 40.07 85.83 55.71 61.33 83.94 77.32 58.53 17.10 37.54 58.53
CALIP [14] 60.57 66.38 42.39 86.21 56.27 61.72 87.71 77.42 58.59 17.76 38.90 59.45
DiffTPT [12]⇤ 60.80 63.53 40.72 83.40 60.71 62.67 86.89 79.21 62.72 17.60 41.04 59.94
CuPL [43] 61.45 65.44 48.64 84.84 57.28 58.97 89.29 76.94 62.55 19.59 38.38 60.31
SuS-X-SD-C [56]⇤ 61.84 67.72 50.59 85.34 57.27 61.54 89.53 77.58 62.95 19.47 45.57 61.76
CaFo [70]⇤ 62.74 66.54 50.24 87.49 58.45 63.67 90.91 77.53 63.16 21.06 42.73 62.23
DMN-ZS (Ours) 63.87 67.93 50.41 86.78 60.02 65.34 90.14 76.70 64.39 22.77 48.72 63.71

CLIP-ViTB/16 [44] 66.73 67.44 44.27 88.25 65.48 65.13 93.35 83.65 62.59 23.67 42.01 63.87
Ensemble [68] 68.34 66.99 45.04 86.92 66.11 65.16 93.55 82.86 65.63 23.22 50.42 64.93
TPT [51] 68.98 68.98 47.75 87.79 66.87 68.04 94.16 84.67 65.50 24.78 42.44 65.45
DiffTPT [12]⇤ 70.30 70.10 47.00 88.20 67.01 68.22 92.49 87.23 65.74 25.60 43.13 65.91
DMN-ZS (Ours) 72.25 74.49 55.85 92.04 67.96 72.51 95.38 85.08 70.18 30.03 59.43 70.72

Table 3. Zero-shot classification performance on eleven downstream datasets, where results with ⇤ are achieved with external training data.

Figure 3. Training-free few-shot results with a ResNet50 backbone. Full results on 11 classification datasets are presented in Fig. A7.

as zero-shot and the training-free few-shot adaptations, we
adopt the initialized projection layers in Eq. (6) and con-
duct memory interaction in the vanilla CLIP feature space,
while we finetune these projection layers and explore more
efficient feature space for the traditional few-shot setting.
To distinguish our results under different task settings, we
term the DMN variants with respect to zero-shot, few-shot,
and training-free few-shot settings as DMN-ZS, DMN, and
DMN-TF, respectively. We summarize these variants in
Tab. 2.

4. Experiments

4.1. Experiment Settings

Datasets. We validate our method on 11 classification
benchmarks, including ImageNet [9], Flowers102 [39],
DTD [5], OxfordPets [42], StandfordCars [25], UCF101
[52], Caltech101 [11], Food101 [2], SUN397 [61], FGV-
CAircraft [37], and EuroSAT [16]. We also evaluate the
robustness of DMN to natural distribution shifts [71, 72] on
four ImageNet variants, i.e., ImageNet-V2 [45], ImageNet-
A [18], ImageNet-R [17], and ImageNet-Sketch [57].

Settings. We adopt visual encoders of ResNet50 [15]

and VIT-B/16 [10] pretrained by CLIP. We follow existing
works to conduct the image split in few-shot learning and
adopt the textual prompt in [43, 68]. Inspired by [51], we
enhance the robust pseudo label estimation in Eq. 7 with
view augmentation and confidence selection. We search the
optimal prediction weights, i.e., ↵1⇠3, for each downstream
task, while illustrate that the fixed weights generalize well
within each task setting. We train the DMN with AdamW
optimizer [35], where we adopt the cosine annealing learn-
ing schedule with the initial learning rate of 1e-4 and set the
batch size as 128. We train the model for 20 epochs for most
datasets except for the Flower102 and EuroSAT, where 100
epochs are adopted.

4.2. Performance Evaluation

Zero-shot DMN-ZS Results. We first present the experi-
mental results under the zero-shot adaptation setting, where
the significance of historical test knowledge becomes par-
ticularly pronounced. As illustrated in Tab. 3, our method
surpasses its closest competitors that do not involve exter-
nal training data, such as CALIP and TPT. Specifically,
we observe improvements of 3.40% and 5.27% when em-
ploying ResNet-50 and ViTB/16 backbones, respectively.

28723



Figure 4. Few-shot performance with ViTB/16 backbone, where the full results on 11 classification datasets are presented in Fig. A8.

Figure 5. Few-shot performance with ResNet50 backbone, where the full results on 11 classification datasets are presented in Fig. A9.

Method ImageNet -A -V2 -R -Sketch

CLIP-RN50 [44] 58.16 21.83 51.41 56.15 33.37
Ensemble 59.81 23.24 52.91 60.72 35.48
TPT [51] 60.74 26.67 54.70 59.11 35.09
CALIP [14] 60.57 23.96 53.70 60.81 35.61
DiffTPT [12] 60.80 31.06 55.80 58.80 37.10
CoCoOp⇤ [73] 62.81 23.32 55.72 57.74 34.48
CoOp⇤ [74] 63.33 23.06 55.40 56.60 34.67
DMN-ZS (Ours) 63.87 28.57 56.12 61.44 39.84

CLIP-ViT-B/16 [44] 66.73 47.87 60.86 73.98 46.09
Ensemble 68.34 49.89 61.88 77.65 48.24
TPT [51] 68.98 54.77 63.45 77.06 47.94
DiffTPT [12] 70.30 55.68 65.10 75.00 46.80
MaPLe⇤ [22] 70.72 50.90 64.07 76.98 49.15
CoCoOp⇤ [73] 71.02 50.63 64.07 76.18 48.75
CoOp⇤ [74] 71.51 49.71 64.20 75.21 47.99
PromptSRC⇤ [23] 71.27 50.90 64.35 77.80 49.55
DMN-ZS (Ours) 72.25 58.28 65.17 78.55 53.20

Table 4. Robustness to Natural Distribution Shifts. Results with
⇤ are tuned on ImageNet using 16-shot training samples per cate-
gory, while other methods do not require labeled training data.

Compared to approaches like TPT [51], which necessitate
model optimization on test samples, the memory interac-
tions within our DMN do not introduce any test time opti-
mization, substantially accelerating the inference speed, as
shown in Tab. 5.

To tackle the zero-shot challenge, some approaches uti-
lize labeled synthetic training samples generated from pre-
trained image generation models [56, 70]. By treating these
synthetic labeled data like genuine labeled data, the zero-

shot problem can be tackled through few-shot approaches.
While these strategies offer notable performance gains, the
generation of synthetic data and subsequent model opti-
mization come with considerable computational overheads,
failing to meet the efficient adaptation requirement in zero-
shot setting. In contrast, incorporating historical test knowl-
edge with our dynamic memory network is considerably
faster. Interestingly, even when compared to techniques that
employ synthetic training data, our approach maintains a
distinct advantage, highlighting the superiority of historical
test samples over synthetic training data.

Training-free Few-shot DMN-TF Results. We com-
pare our DMN-TF with the training-free few-shot methods
of Tip-Adapter [68], Tip-X [56], and the recent APE [77].
As illustrated in Fig. 3, our method achieves a superior ad-
vantage with one training sample per category. The advan-
tage gradually diminishes with additional training samples.

Few-shot DMN Results. We compare our method with
seven few-shot adaptation methods of CoOp [74], CoCoOp
[73], MaPLe [22], PromptSRC [23], CLIP-Adapter [13],
Tip-Adapter-F [68], and APE-T [77]. All methods em-
ployed for comparison do not utilize external training data.
As evidenced by the results averaged over eleven datasets
shown in Fig. 4 and Fig. 5, our DMN consistently surpasses
competing approaches, maintaining superiority with differ-
ent backbone architectures and varying numbers of training
samples. On individual datasets, although our method oc-
casionally lags behind some competing methods in certain
settings, it achieves consistent gains on the acknowledged
ImageNet dataset, affirming its effectiveness.
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Figure 6. Analyses on (a) static and dynamic memory networks, (b) memory length of the dynamic memory, (b) position of projection
layers, and (d) values of � in Eq. (4).

Generalization to Natural Distribution Shifts. As il-
lustrated in Tab. 4, our method not only achieves superior
performance on traditional ImageNet dataset, but also gen-
eralizes well to the samples with natural distribution shifts,
validating its robustness.

4.3. Ablation and Analyses

Dynamic Memory Network vs. Static Memory Network.

To analyze the roles of dynamic and static memory net-
works individually, we introduce two degenerated versions
of DMN with dynamic or static memory network only. We
illustrate the results under the training-free few-shot setting
in Fig. 6a. Both dynamic and static memory networks
significantly outperform zero-shot CLIP, and the larger the
training sample size, the greater the improvement. Results
with dynamic memory network surpass those with static
memory network, confirming the importance of historical
test samples. The optimal results are achieved by com-
bining the advantages of both memory networks, validating
their complementarity.

Memory Length. As shown in Fig. 6b, the classifica-
tion accuracy gradually increases as the memory length in-
creases and saturates when the memory length exceeds 30.
In all experiments, we set the memory length to 50.

Position of Projection Layers. We report the results
with different projection layers in Fig. 6c, where Q, K, V
and O represent the !q , !k, !v and !o, respectively. We
observe that all these projection layers bring improvement
and the output projection, i.e., !o, contributes the most to
the results. We adopt the QKVO strategy in all experiments.

Values of �. Results with different values of � are illus-
trated in Fig. 6d. We set �=5.5 in all experiments.

Computation Efficiency. As summarized in Tab. 5, in
zero-shot and training-free few-shot settings, our approach
does not introduce any learning parameter, maintaining fast
inference speed. In classical few-shot learning, our method
achieves fast adaptation by introducing a small amount of
training computation and learnable parameters.

Due to the limit of space, more analyses on classifier
weights, non-linear function '(·), and test data order can
be found in the Supplementary Material.

Methods Train Test GFLOPs Param.

Zero-shot
CLIP [44] – 10.1ms 0 0
CALIP [14] – 10.2ms 0 0
TPT [51] – 436ms >10 0.01M
DMN-ZS (Ours) – 10.7ms 0 0

Few-shot
Tip-Adapter [68] – 10.4ms 0 0
APE [77] – 10.4ms 0 0
DMN-TF (Ours) – 10.7ms 0 0
CoOp [74] 14 h 10.2ms >10 0.01M
CLIP-Adapter [13] 50 min 10.4ms 0.004 0.52M
Tip-Adapter-F [68] 5 min 10.4ms 0.030 16.3M
APE-T [77] 5 min 10.4ms 0.002 0.51M
DMN (Ours) 5 min 10.7ms 0.033 4.20M

Table 5. Analyses of computation efficiency on zero-shot and
16-shot ImageNet with a ResNet50 backbone. ‘Training’ mea-
sures the training time, ‘GFLOPs’ are calculated during training
or test-time training with gradient back-propagation, and ‘Param.’
presents the number of learnable parameters. Results are achieved
with a NVIDIA RTX A6000 GPU.

5. Conclusion

In this paper, we proposed a versatile adaptation ap-
proach, named Dual Memory Networks (DMN), for vision-
language models. By leveraging historical test data and
few-shot training samples with dynamic and static mem-
ory networks, our DMN can handle all the three commonly
used task settings: zero-shot, few-shot, and training-free
few-shot adaptations, outperforming existing methods de-
signed for single-task scenarios. Notably, the integration
of the dynamic memory network, which utilizes historical
test knowledge, distinguished our approach from previous
research that overlooked this knowledge source. Nonethe-
less, our approach had some limitations due to the introduc-
tion of two external memories. For instance, in the case of
16-shot ImageNet adaptation, the dynamic and static mem-
ories occupied storage space of 204.8MB and 65.5MB, re-
spectively. This may pose challenges for its applications to
storage-constrained scenarios.
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