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Abstract

Recently, deep unfolding methods have achieved remark-
able success in the realm of Snapshot Compressive Imaging
(SCI) reconstruction. However, the existing methods all fol-
low the iterative framework of a single image prior, which
limits the efficiency of the unfolding methods and makes it a
problem to use other priors simply and effectively. To break
out of the box, we derive an effective Dual Prior Unfolding
(DPU), which achieves the joint utilization of multiple deep
priors and greatly improves iteration efficiency. Our un-
folding method is implemented through two parts, i.e., Dual
Prior Framework (DPF) and Focused Attention (FA). In
brief, in addition to the normal image prior, DPF introduces
a residual into the iteration formula and constructs a de-
graded prior for the residual by considering various degra-
dations to establish the unfolding framework. To improve
the effectiveness of the image prior based on self-attention,
FA adopts a novel mechanism inspired by PCA denoising to
scale and filter attention, which lets the attention focus more
on effective features with little computation cost. Besides,
an asymmetric backbone is proposed to further improve the
efficiency of hierarchical self-attention. Remarkably, our
5-stage DPU achieves state-of-the-art (SOTA) performance
with the least FLOPs and parameters compared to previous
methods, while our 9-stage DPU significantly outperforms
other unfolding methods with less computational require-
ment. https://github.com/ZhangJC-2k/DPU

1. Introduction
The advent of compressed sensing has introduced a hard-
ware encoder known as Snapshot Compressive Imaging
(SCI) [16, 30, 38]. This encoder offers characteristics like
low bandwidth, rapid acquisition, and high data through-
put, garnering substantial attention in the domains of low-
level vision and computational imaging. SCI employs a
two-dimensional (2D) detector to capture modulated three-
dimensional (3D) hyperspectral images (HSIs) through
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Figure 1. The PSNR-FLOPs-Params analysis comparing the pro-
posed Dual Prior Unfolding (DPU) with latest state-of-the-art
methods. Notably, our DPU achieves superior performance while
demanding cheaper FLOPs and Parameters, making it a more cost-
effective solution for spectral SCI reconstruction.

snapshot measurements [48]. Equipped with this hardware
encoder, the development of a high-quality algorithmic de-
coder becomes imperative for practical SCI systems.

In response to this challenge, both model-based [1, 23,
24, 36, 42, 46] and learning-based [3, 4, 6, 18, 28, 33, 44,
45, 54] approaches have been specifically designed. No-
tably, deep unfolding methods [5, 14, 19, 32, 41, 52], lever-
aging deep networks as image priors in iterative algorithms
and then implementing end-to-end training, have demon-
strated notable success. As researchers pay attention to the
important role of other priors such as mediation knowledge
[3] and degradation information [5, 14] in the imaging pro-
cess, the single image prior design can no longer meet their
requirements. More and more frameworks such as GAP
[32], DAUF [5], and RDLF [14] have been proposed to con-
sider other prior information to assist reconstruction. How-
ever, the existing unfolding methods all follow the iterative
framework of a single image prior, which limits the effi-
ciency of the unfolding methods and makes it a problem to
use other priors simply and effectively. In addition, previous
methods [3, 5, 14] identify the critical role of mask degra-
dation while ignoring the effects of shift and compression
degradation in the imaging process.

Considering the need for more effective utilization of im-
age priors and degradation-associated priors, we have de-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

25742



Figure 2. Illustration of our main idea. Dual Prior Framework (DPF): Multiple degradations are taken into account to formulate a
degraded prior, which is subsequently integrated with the image prior through a combination of gradient descent (GD) and residual learning
(RL). This fusion enables the simultaneous utilization of the two priors, thereby facilitating dual reconstruction within a single iteration.
Focused Attention (FA): Leveraging inspiration from PCA denoising, we employ a learnable principal component projection to scale self-
attention. Subsequently, we utilize thresholds to effectively eliminate irrelevant features from self-attention, enhancing the transformer’s
reconstruction capabilities. By incorporating FA as the image prior within the DPF, our Dual Prior Unfolding method is formulated.

veloped the Dual Prior Unfolding (DPU) method. This
method aims to jointly harness two or more deep priors
while significantly enhancing the iteration efficiency of un-
folding methods. Our unfolding method comprises two cru-
cial components: the Dual Prior Framework (DPF) and Fo-
cused Attention (FA). DPF, beyond the typical image prior,
introduces a residual into the iteration formula to establish
a new reconstruction prior, i.e., the degraded prior for the
residual. This novel prior accounts for various degradation
aspects, forming the fundamental framework. Further re-
finement is achieved by integrating a formula-free frame-
work based on residual learning [17]. As shown in Fig. 2 (a)
and (b), considering the imaging process as a degradation
sequence, at the k-th iteration, DPF performs simultaneous
preliminary restoration of the degraded image based on the
image prior. Additionally, it estimates the degraded resid-
ual guided by the newly constructed degraded prior. These
components are integrated via gradient descent and resid-
ual learning, resulting in dual output. The final output is
achieved via the fusion block, allowing efficient utilization
of multiple deep priors and enhancing iteration efficiency.

Moreover, we introduce the Focused Attention (FA)
mechanism to optimize the reconstruction efficiency of the
image prior as demonstrated in Fig. 2 (c). FA stands as
a tailored enhancement technique for self-attention mecha-
nisms, integrating a Scale Net utilizing a learnable principal
component projection. This Scale Net adjusts attention size,
accentuating crucial features while mitigating noisy ones.
Additionally, a Threshold Net is implemented to efficiently
filter out irrelevant features. We leverage a shifted window
(Swin) attention approach to capture non-local similarity
within the HSI. In efforts to curtail computational costs,
we engineer an asymmetric backbone structure based on
the U-Net architecture, specifically designed for hierarchi-
cal models like the Swin Transformer [25]. This adaptation

results in a notable reduction—halving both computational
requirements and parameter count within the transformers.
The contributions of our work are as follows:
• We introduce a Dual Prior Unfolding SCI reconstruction

model, which achieves the joint utilization of multiple
deep priors and greatly improves iteration efficiency.

• We present a versatile Focused Attention mechanism as
the image prior for DPF in our DPU framework. This ap-
proach directs the network’s attention towards more per-
tinent features and can be extended to general tasks.

• To decrease the computational overhead of the fundamen-
tal transformer architecture while maintaining its hierar-
chical characteristics, we propose an asymmetric back-
bone. This modification is also applicable and beneficial
for other hierarchical network architectures.

• Our approach demonstrates high performance with clear
results, achieved with minimal computational and mem-
ory costs in both simulation and real-world experiments.

2. Realated Work
2.1. Model-based and Learning-based methods
SCI reconstruction approaches fall into two broad cate-
gories: model-based and learning-based. Initially, model-
based methods [1, 23, 24, 36, 42, 46] employ hand-crafted
priors (e.g., low rank [24, 51], sparsity [20, 36], total varia-
tion) to formulate optimization problems, solved iteratively.
However, these methods are often inefficient and struggle
to yield satisfactory results. As deep learning has made
remarkable achievements in other fields, such as object
detection[8, 12, 35, 37, 43], image restoration [7, 22, 53],
image classification[15, 17] and so on, some learning-based
methods [3, 4, 6, 18, 28, 33, 44, 45, 54] have been proposed
to learn the mapping between degraded images and recon-
structed images. Although the problem of reconstruction
speed is solved, the reconstruction results are still unsatis-
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Framework GAP [32]
IJCV 2023

DAUF [5]
NeurIPS 2022

RDLF [14]
CVPR 2023

DPF
Ours

stage 5stg 9stg 5stg 9stg 5stg 9stg 5stg
PSNR 38.39 39.30 38.63 39.55 38.84 39.60 39.62
SSIM 0.965 0.971 0.965 0.972 0.969 0.973 0.973

Params (M) 1.51 2.71 1.55 2.76 1.76 3.17 1.59
FLOPs (G) 22.77 40.90 23.52 41.71 28.18 51.11 27.41

Table 1. Comparison of the proposed DPF and SOTA Unfolding
Frameworks. The DPF achieves the best 5-stage unfolding perfor-
mance even better than other frameworks’ 9-stage performance,
which demonstrates the effectiveness and efficiency of our DPF.

factory, and the methods are not interpretable.
With these problems, plug-and-play (PnP) methods and

unfolding methods offer different solutions with inter-
pretability. PnP methods [31, 47, 56] replace the hand-
craft priors with pre-trained networks as denoising priors.
Although it achieves better results than traditional model-
based methods, it is still limited by iteration efficiency. In
contrast, deep unfolding methods [19, 27, 40, 41, 52] take
deep networks as the learnable priors of optimization al-
gorithms, which can achieve higher reconstruction quality
through end-to-end training and learning while reducing the
number of iterations to several times.

2.2. Deep Unfolding Methods
The deep unfolding method, combining model-based and
learning-based approaches, shows promise for SCI recon-
struction. DGSMP [19] uses an iterative framework with
MAP estimation and a learnable Gaussian Scale Mixture
prior. HerosNet [52] improves inter-stage interaction and
parameter adaptation. DAUHST [5] addresses degradation
patterns and ill-posedness with a degradation-aware frame-
work and half-shuffle attention. RDLUF [14] jointly ex-
ploits spatial and spectral priors, and estimates the sensing
matrix using degradation information. Despite successes,
the growing computational demands pose challenges for
deep unfolding methods. Besides, we can intuitively see the
development trend of considering more prior information
to achieve higher performance in these unfolding methods.
However, the traditional unfolding framework with a single
prior limits the effective utilization of more priors and the
efficiency of the unfolding methods.

3. Proposed Method
3.1. Degradation of Snapshot Compressive Imaging
The coded aperture snapshot spectral compressive imaging
(CASSI) system is the most popular SCI system at present,
and the imaging process is shown in Fig. 2(b). Mathe-
matically, we assume a spectral image patch with Λ bands
{Fi}Λi=1 ∈ RH×W , image frame Fλ is modulated by a
physical mask with pattern M ∈ RH×W . Then the modu-
lated image frames of different wavelengths are shifted spa-
tially and summed element-wise. Therefore, the modulated
HSI frames {Fi}Λi=1 are compressed to a coded measure-

ment G ∈ RH×(W+d(Λ−1)):

G (m,n) =

Λ∑
i=1

M ⊙ Fi (m,n+ d (i− 1)), (1)

where ⊙ means element-wise (Hadamard) product, m and
n index the spatial coordinates, d represents pixels shift be-
tween adjacent bands. The SCI model represented in Eq. (1)
can be expressed in a matrix-vector format as g = Φf ,
wherein g ∈ RH(W+d(Λ−1)) and f ∈ RH(W+d(Λ−1))Λ

denote the vectorized representations of the compressive
image G and the original spectral image F , respectively.
Moreover, Φ ∈ RH(W+d(Λ−1))×H(W+d(Λ−1))Λ serves as
the sensing matrix. While previous methods acknowledged
prior information regarding mask, introducing mechanisms
like mask guidance [3], degradation-aware techniques [5],
and degradation learning approaches [14], they often over-
looked degradation induced by shift and compression.

3.2. Dual Prior Framework
Previous unfolding methods [5, 14, 19, 52] have predomi-
nantly addressed limited degradation issues within the con-
straints of a single image prior, posing challenges in effec-
tively leveraging multiple priors and impeding iteration effi-
ciency. To address this limitation, we introduce a Dual Prior
Framework (DPF), as illustrated in Fig. 2 (a). This frame-
work accommodates increased degradation considerations,
allowing the construction of a degraded prior. By doing
so, it enables the efficient utilization of two or even more
deep priors, enhancing iteration efficiency. The resultant
deep unfolding implementation is obtained by introducing
a residual and optimizing the following problem:

argmin
f,z,r

1

2
∥g − Φf∥2 + γD(z) + τR(r), s.t., f = z − r, (2)

where ∥g − Φf∥2 is the data fidelity term; z ∈
RH(W+d(Λ−1))Λ is the preliminary restored image; r ∈
RH(W+d(Λ−1))Λ is the residual associated with the degra-
dation pattern; D(·) represents the image prior; R(·) is a
degraded prior, and γ, τ are tradeoff parameters.

We adopt the Augmented Lagrange Method (ALM) for
its accuracy and fast convergence to obtain an unfolding in-
ference. Then Eq. (2) is changed into the Augmented La-
grange formulation as

L(f, z, r, y, µ) =
1

2
∥g − Φf∥2 + µ

2
∥f − z + r +

y

µ
∥2

+ γD(z) + τR(r),
(3)

where y is the Lagrange multiplier and µ is the penalty pa-
rameter. Subsequently, Eq. (3) can be solved by alternately
updating r, z, f . For r and z sub-problems, they are a partic-
ular case of the so-called proximal mapping, i.e., proxλh(x)
as follows:

proxλh(x) = argmin
x

1

2
∥x− s∥2 + λh(x), (4)
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Figure 3. Details of DPF one-stages. (a) Three different one-stage constructions. (b) and (c) The components of DPB and FB.

where λ = τ
µk+1 , h(x) = R(r), s = zk − fk + yk

µk+1 for r
sub-problem, and λ = γ

µk+1 , h(x) = D(z), s = fk + rk +
yk

µk+1 for z sub-problem. To solve the r sub-problem, we
construct a Degraded Prior Block (DPB) to learn mapping
functions from mask, shift, and compression degradation, as
illustrated in Fig. 3(b). The reverse operation in Fig. 3(b) is
proposed in MST initialization [3] and defined as follows:

Xi (m,n) = 2G (m,n− d (i− 1)) /Λ, (5)

where {Xi}Λi=1 ∈ RH×W is the reconstructed data patch
with Λ channels, G ∈ RH×(W+d(i−1)) represents a shift
and compressed measurement. To utilize compression and
shift degradation, we first shift, compress, and reverse the
mask to get a new mask that contains various degradation.
Then DPB can learn these degradations from the differences
between the new mask and the original mask through a 1×1
convolution kernel (conv1×1), and return an element-wise
degradation weight via the Sigmoid activation function to
filter the feature. As demonstrated in Fig. 3(b), we estimate
the proximal mapping as follows:

rk+1 = Hp1(Φ,Φ
∗)⊙Hp2(z

k − fk +
yk

µk+1
), (6)

where ⊙ denotes element-wise product; Φ∗ is new mask
in Fig. 3(b). We found that the prior networks have adap-
tive adjustment ability and the tradeoff parameters τ

µk+1 and
γ

µk+1 have little effect on the reconstruction, so we ignore
the tradeoff parameters in prior networks. Note that we will
depict that the z sub-problem in Eq. (3) can be solved with
a transformer-based focused attention in Sec. 3.3. Here, we
skip the details about the z sub-problem and give a general
solver to enable the subsequent deduction:

zk+1 = IPB(fk + rk +
yk

µk+1
). (7)

The data fidelity term within Eq. (3) is associated with a
quadratic regularized least-squares problem as follows:

fk+1 = argmin
f

∥g − Φf∥2 + µk+1∥(zk+1 − rk+1 − yk

µk+1
)− f∥2.

(8)

Considering the form of the sensing matrix Φ and the
Sherman-Morrison-Woodbury matrix inversion lemma, the
above formula has a closed-form solution[5, 41] as follows:

fk+1 = zk+1 − rk+1 − yk

µk+1
+ΦT

g − Φ(zk+1 − rk+1 − yk

µk+1 )

µk+1 +ΦΦT
.

(9)
Eq. (9) is a special form of Gradient Descent (GD), so

we can get the basic one-stage of DPF as shown in the top-
left of Fig. 3(a). Besides, we also propose an intuitive one-
stage based on the Residual Learning (RL) strategy [17, 50],
which is a complement to the basic scheme. As illustrated
in the top-right of Fig. 3(a), fk is inputted to IPB and DPB
respectively to get the initial recovery image zk+1 and resid-
ual rk+1, and then subtract rk+1 from zk+1 to get the fi-
nal output fk+1, which is a formula-free residual learning
network. Combining this intuitive one-stage with the ba-
sic one-stage, our final one-stage of DPF is established as
demonstrated at the bottom of Fig. 3(a). Among them, a
Fusion Block (FB) is proposed to fuse the results of the two
and get the final output, which is detailed in Fig. 3(c).

Finally, r0, y0 is initialized to 0, z0 and f0 are equally
initialized by reversing the measurement and then embed-
ding mask information with conv1 × 1, and the Lagrange
multiplier yk+1 is updated as:

yk+1 = yk + µk+1(fk+1 − zk+1 + rk+1). (10)

3.3. Focused Transformer&Attention

Inspired by Swin Transformer’s success in visual tasks
[21, 25], we introduced the Swin transformer to capture
non-local spatial similarities in SCI reconstruction. How-
ever, as a hierarchical network, Swin Transformer requires
twice the number of parameters and computations com-
pared to Transformers such as MST [3] and DAUHST [5].
To improve efficiency and maintain hierarchical character-
istics, we propose an asymmetric backbone for hierarchi-
cal networks. To further exert the reconstruction capability
of self-attention, we propose a Focused Attention (FA) in-
spired by PCA denoising, which adopts learnable principal
component projection and threshold network to make the
network pay more attention to important features and im-
prove reconstruction efficiency. Finally, we insert FA into
the Swin Transformer based on an asymmetric backbone to
build our Focused Transformer (FT), which is also our IPB.
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Network Architecture. As shown in Fig. 4(a), FT adopts
a three-level asymmetric Unet backbone built by the basic
unit Local/Swin Focused Attention Block (L/Swin-FAB).
Firstly, conv3 × 3 is adopted to extract and enhance fea-
tures in both input and output. Each encoder or decoder
layer contains a L/Swin-FAB and a resizing module. At the
bottom layer, the downsampling features are split channel-
wise, with one half fed into L-FAB and the other into Swin-
FB, then the two are merged into the upsampling module.
In Fig.4(b), L/Swin-FAB consists of two Layer Normaliza-
tion (LN), a L/Swin-FA, and a Multi-Pattern Multilayer Per-
ception (MPMLP) that is detailed in Fig. 4(c)and(e). We
adopt conv1 × 1 to fuse skip connection with upsampling
features, followed by a residual connection. The downsam-
pling and upsampling modules are stridden conv4 × 4 and
deconv2 × 2. Finally, shuffle and gconv1 × 1 operate on
input, which is added to the features obtained through Unet
to obtain the output.

Asymmetric Backbone for Hierarchical Network. When
many hierarchical networks e.g. Swin Transformer [25] and
local-global transformers [13, 39], there is an effective non-
local information modeling capability but also some com-
putational burdens. To solve this problem, the proposed
asymmetric backbone utilizes the skip connection of Unet
to reduce computation without destroying the properties of
the hierarchy, as shown in Fig. 4(a). Specifically, we divide
the UNet backbone into two parts, where the left part calcu-
lates attention between pixels in the local windows and the
right part calculates attention between pixels in the shifted
windows in our model. Then the outputs from the left part
are transported to the right part as inputs through the skip
connection, which achieves the hierarchical interaction be-
tween the two parts. For a general hierarchical network, the
left and right (even the middle) adopt different modules, and
the skip connection achieves hierarchy preservation while
halving the computation and memory cost.

Low-Rank Attention based on Principle Component
Projection. In PCA denoising, we could calculate the max-

imum energy projection direction of the data distribution
through statistics. Inspired by this, we set up a learnable
principal component with the same dimension as the fea-
ture and trained it to learn the distribution of the data. Then
the feature projection on the principal component is used to
scale the matching attention so that the features that con-
form to the trend of data distribution get more attention.
Specifically, the input tokens Xin ∈ RHW×C embedded by
an implicit position [11] are denoted as Xpe. Subsequently,
Xpe is linearly projected into query Q ∈ RHW×Λ, key
K ∈ RHW×Λ and value V ∈ RHW×C as

Q = XpeWQ, K = XpeWK , V = XpeWV , (11)
where WQ,WK ∈ RC×Λ and WV ∈ RC×C are learnable
parameters and Λ is the number of bands in HSIs. When
the channels of the feature are essentially extended from
the bands of the HSIs, we project all Q and K to the Λ
dimension to reduce the computation. For simplicity, we
will only use the notation C in the following sections re-
gardless of the number of channels. As shown in Fig. 4(d),
Q,K, V are partitioned into non-overlapping windows of
B × B tokens and reshaped into R

HW
B2 ×B2×C . Subse-

quently, Q,K, V are split along the channels wise into N
heads: Q = [Q1, Q2, · · · , QN ], K = [K1,K2, · · · ,KN ],
and V = [V1, V2, · · · , VN ] and the dimension of each head
is d = C

N . The self-attention similarity matrix Mi is calcu-
lated inside each head as Eq. (12)

Then, Q and K are used to compute the initial similarity
matrix M and the vector q and k containing scaling factors
for tokens in Q and K as follows:

Mi = QiK
T
i , qi = QiWq, ki = KiWk, (12)

where Wq,Wk ∈ R
C
N ×1 are learnable principle compo-

nents and biases are omitted for simplification. To simplify
the scaling process, q and k are used to compute a scaling
matrix attenLR and the scaled similarity matrix M

′
is fur-

ther obtained as follows:

M
′

i = attenLRi ⊙Mi, attenLRi = qik
T
i , (13)
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Method TSA-Net [29] DGSMP [19] GAP-Net [32] HDNet [18] MST [3] CST [2] BIRNAT [9] DAUHST-9stg [5] RDLUF [14] DPU-5stg DPU-9stg

Category CNN Deep Unfolding Deep Unfolding CNN Transformer Transformer Recurrent CNN Deep Unfolding Deep Unfolding Deep Unfolding Deep Unfolding

Reference ECCV 2020 CVPR 2021 IJCV 2023 CVPR 2022 CVPR 2022 ECCV 2022 TPMAI 2023 NeurIPS 2022 CVPR 2023 Ours Ours

Scene PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 32.03 0.892 33.26 0.915 33.74 0.911 35.14 0.935 35.40 0.941 35.96 0.949 36.79 0.951 37.25 0.958 37.94 0.966 38.19 0.964 38.91 0.968
2 31.00 0.858 32.09 0.898 33.26 0.900 35.67 0.940 35.87 0.944 36.84 0.955 37.89 0.957 39.02 0.967 40.95 0.977 40.57 0.975 41.99 0.981
3 32.25 0.915 33.06 0.925 34.28 0.929 36.03 0.943 36.51 0.953 38.16 0.962 40.61 0.971 41.05 0.971 43.25 0.979 43.11 0.977 44.10 0.980
4 39.19 0.953 40.54 0.964 41.03 0.967 42.30 0.969 42.27 0.973 42.44 0.975 46.94 0.985 46.15 0.983 47.83 0.990 47.78 0.988 48.33 0.990
5 29.39 0.884 28.86 0.882 31.44 0.919 32.69 0.946 32.77 0.947 33.25 0.955 35.42 0.964 35.80 0.969 37.11 0.976 37.43 0.975 38.07 0.978
6 31.44 0.908 33.08 0.937 32.40 0.925 34.46 0.952 34.80 0.955 35.72 0.963 35.30 0.959 37.08 0.970 37.47 0.975 37.49 0.973 38.58 0.978
7 30.32 0.878 30.74 0.886 32.27 0.902 33.67 0.926 33.66 0.925 34.86 0.944 36.58 0.955 37.57 0.963 38.58 0.969 38.17 0.967 39.13 0.971
8 29.35 0.888 31.55 0.923 30.46 0.905 32.48 0.941 32.67 0.948 34.34 0.961 33.96 0.956 35.10 0.966 35.50 0.970 36.13 0.970 36.90 0.975
9 30.01 0.890 31.66 0.911 33.51 0.915 34.89 0.942 35.39 0.949 36.51 0.957 39.47 0.970 40.02 0.970 41.83 0.978 41.77 0.977 42.88 0.981

10 29.59 0.874 31.44 0.925 30.24 0.895 32.38 0.937 32.50 0.941 32.09 0.945 32.80 0.938 34.59 0.956 35.23 0.962 35.55 0.964 36.36 0.970
Avg 31.46 0.894 32.63 0.917 33.26 0.917 34.97 0.943 35.18 0.948 36.12 0.957 37.58 0.960 38.36 0.967 39.57 0.974 39.62 0.973 40.52 0.977

Params 42.20M 3.58M (0.90M) 4.27M (0.47M) 2.25M 2.03M 3.00M 4.40M 6.15M (0.68M) 1.81M (0.60M) 1.59M (0.31M) 2.85M (0.31M)

GFLOPs 125.75 84.77 (21.19) 78.58 (8.75) 154.76 28.15 40.10 2122.66 79.50 (9.9) 115.16 (12.80) 27.41 (5.48) 49.26 (5.48)

Table 2. Comparisons between DPU and SOTA methods on 10 simulation scenes. PSNR in dB (left entry in each cell), SSIM (right entry in
each cell), Params, and FLOPs are reported for all methods and the additional single-stage Memory and FLOPs are reported for unfolding
methods. The best results are highlighted in bold.

where attenLRi ∈ R
HW
B2 ×HW

B2 is the Low-Rank Attention
corresponding to the similarity matrix element-wisely.
Sparse Attention based on Threshold Filtering. In tradi-
tional signal processing, it is common to remove noisy com-
ponents by projecting the signal into a specific space and
eliminating small components that usually represent noise,
such as the Principal Component Analysis (PCA) method
for noise removal, the proximal mapping for Eq. (6) when
h(x) = ∥Ψ(x)∥1 and Ψ is the projection operator [49]. In-
spired by this, we take the calculated similarity matrix as a
particular projection space and eliminate unimportant and
irrelevant attention through threshold filtering. It is noted
that different from traditional proximal mapping, activation
value 0 in the similarity matrix still has much influence af-
ter passing through the softmax activation function, so we
need to take −∞ to remove the irrelevant term. We define
the particular proximal mapping as follows:

prox(M) =

{
M, M > θ,
−∞, M ≤ θ,

θ = Hθ(M −D), (14)

where θ is a threshold estimated through a Multilayer
Perception (MLP) Hθ(·) consisting of linear layer and
LReLU , and D is a diagonal matrix whose diagonal ele-
ments are the diagonals of M . Since the self-similarity of
each token will interfere with the threshold estimation, we
remove the diagonal element in Eq. (14). Here we present
two schemes based on sparse index and threshold operator
to implement this proximal mapping: as shown in the right
of Fig. 4(d), one is that the noise in attention is set to 0
by sparse attention and then passes through the prox with a
threshold of 0, which achieves the following effect:

Atteni = softmax(prox(M
′

i ))V, (15)
the other is directly applied to the final self-attention,

Atteni = (softmax(M
′

i )⊙ attenSi)V,

attenSi = (M
′

i > θi),
(16)

where Atteni is final self-attention inside each head;
attenSi ∈ R

HW
B2 ×HW

B2 is the Sparse Attention composed of
0, 1 by threshold estimation. Finally, the outputs of N heads
are concatenated in channel-wise, reshape into RHW×C to
undergo a linear projection:

Xout = concatNi (Atteni)W + b, (17)

where Xout ∈ RHW×C is the final output; W ∈ RC×C is
learnable parameters and b is a learnable bias.
Multi-Pattern Multilayer Perception (MPMLP). Follow-
ing classic vision transformers design [15, 25], we take an
MLP after self-attention to mix spectral (channel) informa-
tion. However, normal fully connected MLP can be quite
burdensome, thus we propose an MPMLP inspired by the
multi-head self-attention to further reduce the number of
parameters and computation costs, as shown in Fig. 4(c).
To have a better understanding of MPMLP, we demonstrate
the Multi-Pattern Mechanism (MPM) in Fig. 4(e).

4. Experiment
4.1. Datasets and Evaluations
Datasets. We evaluate our DPU method on both simula-
tion and real datasets. The simulation experiments are con-
ducted on the public HSI datasets CAVE [34] and KAIST
[10]. Following the settings of TSA-Net [29], we adopt the
real mask of size 256 × 256 for simulation. The CAVE
dataset is used to train the network and 10 scenes with the
spatial size of 256 × 256 are extracted from the KAIST
dataset for testing. For the experiments on the real scenes,
5 real HSI compressive measurements with a spatial size
of 660 × 714 captured by the CASSI system developed in
TSA-Net [29] are utilized for testing.
Comparison Methods: We compare our DPU method on
synthetic data with SOTA reconstruction methods includ-
ing HDNet [18], TSA-Net [29], BIRNAT [9], and unfold-
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Figure 5. Reconstructed images of simulation scene 7 with 4 out of 28 spectral channels by the state-of-the-art methods. Two regions in
scene 7 are selected for analyzing the spectra of the reconstructed results. The figure is better viewed in a zoomed-in PDF.

ing methods: DGSMP [19], GAP-Net [32], DAUHST [5],
RDLUF [14] and Transformer methods: MST [3], CST [2].

Implementation Details. Our DPU is implemented in Py-
Torch and trained using a single RTX3090 GPU. We adopt
the multi-stage root mean square error (RMSE) loss func-
tion [55] and Adam optimizer with setting β1 = 0.9, β2 =
0.999 and ε = 10−8 to train the proposed network. We take
the similar network in [5] to estimate the hyperparameters.
The window size of basic Swin Attention is set to 8×8. We
set the initial learning rate as 4×10−4 and adopt the Cosine
Annealing learning rate scheme [26] to implement end-to-
end training. Following most previous unfolding methods,
we set the maximum number of iterations to 9, i.e., DPU-
9stg. Finally, more content and results are provided in the
supplementary materials to have a better understanding.

4.2. Quantitative Results
As shown in Table 2, we compare the PSNR, SSIM, Mem-
ory, and FLOPs of DPU and SOTA methods. To intu-
itively show the effectiveness of our DPU, we provide
Performance-FLOPs-Params comparisons of SOTA meth-
ods in Fig. 1. The proposed DPU obtains 40.52dB of
PSNR and 0.977 of SSIM, outperforming competing meth-
ods. To be noted, compared with the SOTA method RD-
LUF, our DPU-9stg achieves 0.95dB/0.003 improvement
on PSNR/SSIM with less than 1/2 FLOPs and single-stage
memory, and DPU-5stg achieves better performance with
less than 1/4 FLOPs and less memory. Compared with
the SOTA RNN method BIRNAT, the proposed DPU-5stg
achieves a 2.04dB improvement of PSNR and 0.013 im-
provement of SSIM while only requiring about 1/2 param-
eters and 1/77 FLOPs in Table. 2. Finally, our DPU-5stg
outperforms other methods with the least FLOPs and pa-
rameters when DPU-9stg significantly outperforms other
unfolding methods with the least single-stage FLOPs and
parameters, which demonstrates the reconstruction effec-
tiveness and efficiency of DPU.

4.3. Qualitative Results
Simulation Data Results. As shown in Fig. 5, the recon-
structed HSIs produced by the DPU restore more sharp edge
textures and fewer undesirable artifacts in different spec-
tral channels than other competing methods. In the compar-
isons of spectral curves, the DPU has the highest correlation
and the most similar shape to the ground truth. In addition,
the proposed DPU provides clearer pattern details, sharper
line outlines, and less blurry deformation, while the results
of the other unfolding methods are blurry to some extent,
which also shows the efficacy of our method.
Real Data Results. We also apply our DPU to address the
real-scene HSI reconstruction. In the experiment, we train
DPU with the real mask on the CAVE and KAIST datasets
jointly under the same settings as [5, 19, 29]. 11-bit shot
noise is also added into the measurements during training
to simulate the real degradation and the visual comparisons
with SOTA methods are shown in Fig. 6. Intuitively, our
DPU obtains better visualization with a smooth texture and
clear details while other methods produce more distortion
and blurred details. In the last two of the four bands, we
can even see the strawberry seeds clearly, which is difficult
for other methods. This evidence proves the powerful re-
construction ability of DPU and suggests that DPU is more
robust and practical for real-scene HSI reconstruction.

4.4. Ablation Study

To assess the individual contributions of various compo-
nents within the proposed DPU framework, as well as the
efficacy of the Degraded Prior Fusion (DPF) and trans-
former modules, we undertake a series of ablation studies
on both the CAVE and KAIST datasets.
Break-down Ablation. We adopt baseline-1, which is de-
rived by retaining the base iteration formula and removing
L/Swin-FA from DPU-5stg to conduct the breakdown abla-
tion, to study the effect of each principal component. Table
3 shows the results of PSNR and SSIM on different set-
tings and baseline-1 yields 37.28dB. The model achieves

Wavelength(nm)
550 600
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Figure 6. Reconstructed images of real scene 5 with 4 out of 28 spectral channels by the state-of-the-art methods. Compared with other
methods, our DPU recovers more details and clear content.

Method Base line-1 L/Swin-FA +Intuitive DPF +Basic DPF +DPF

PSNR 37.28 38.49 38.76 39.23 39.62
SSIM 0.958 0.966 0.968 0.971 0.973

Params (M) 1.15 1.52 1.55 1.55 1.59
FLOPs (G) 15.79 23.05 24.95 24.95 27.41

Table 3. Break-down ablation study.

Method Base line-2 S-MSA [3] Swin(H) [25] HS-MSA [5] Swin* Swin*+FA

PSNR 34.78 35.62 35.97 36.08 36.27 36.58
SSIM 0.938 0.950 0.952 0.952 0.953 0.954

Params (M) 1.14 1.68 1.68 1.68 1.38 1.51
FLOPs (G) 14.81 22.16 24.46 26.10 22.57 22.77

Table 4. Attention comparison. Swin* represents Swin-MSA [25]
based on our asymmetric backbone.

1.21 and 1.13dB improvements when we successively ap-
ply L/Swin-FA and DPF. In addition, we further investigate
the two frameworks in DPF, and the results show that the
framework derived from the basic formula has a higher gain
of 0.74dB, while the intuitive framework can supplement
the additional gain 0.39dB. These results demonstrate the
effectiveness of our L/Swin-FA and DPF.
Unfolding Framework Comparison. Table. 1 reports the
results of the comparison of unfolding frameworks. All
frameworks are implemented on our DPU, DPF achieves
an obvious improvement of 1.23, 0.99, and 0.78dB higher
than SOTA framework GAP [32], DAUF [5], and RDLF
[14] in the 5-stage unfolding. In addition, we further mea-
sured the performance of other frameworks in the 9-stage
unfolding, and the results show that our 5-stage approach
achieves better performance than other 9-stage frameworks
with less computation and parameters, which intuitively
demonstrates the efficiency and effectiveness of DPF.
Attention Comparison. To study the effect of transformer
modules, we perform ablation of L/Swin-FA and other self-
attention. Baseline-2 is obtained by removing L/Swin-

FA and the iterative formula from DPU-5stg. S-MSA[3],
Swin(H)[25] and HS-MSA[5] use the original unet back-
bone when L/Swin* and L/Swin*+FA adopt our asymmet-
ric backbone. Swin(H) is implemented using the half op-
eration of HS-MSA [5] for a fair comparison. As shown
in Table 4, baseline-2 yields 34.78dB. L/Swin*+FA yields
the most significant improvement of 1.8dB, 0.96, 0.61, and
0.5dB higher than S-MSA, Swin(H), and HS-MSA with al-
most the least parameters and FLOPs. When we exploit
Swin* and FA successively, 0.3dB and 0.61dB gains than
Swin(H) are achieved when require less Memory and com-
putation, which demonstrates the effectiveness of asymmet-
ric backbone and focused attention.

5. Conclusion
This study introduces an effective and efficient deep un-
folding approach, denoted as DPU, specifically designed
for hyperspectral SCI reconstruction. The DPU method is
initially structured by a novel dual prior framework, strate-
gically incorporating focused attention within an iterative
framework to improve reconstruction quality. This strategy
efficiently harnesses the joint utilization of multiple priors
while enhancing iteration efficiency. Moreover, an asym-
metric backbone is devised to preserve hierarchical proper-
ties while simultaneously reducing computational require-
ments for the DPU method. Empirical validation through
quantitative and ablation experiments substantiates the effi-
cacy of the proposed approach.
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