
ERMVP: Communication-Efficient and Collaboration-Robust Multi-Vehicle
Perception in Challenging Environments

Jingyu Zhang1 Kun Yang1 Yilei Wang1 Hanqi Wang1 Peng Sun2,∗ Liang Song1,∗
1Academy for Engineering and Technology, Fudan University 2Duke Kunshan University

{jingyuzhang22, yileiwang23}@m.fudan.edu.cn, songl@m.fudan.edu.cn

Abstract

Collaborative perception enhances perception perfor-
mance by enabling autonomous vehicles to exchange com-
plementary information. Despite its potential to revolu-
tionize the mobile industry, challenges in various environ-
ments, such as communication bandwidth limitations, local-
ization errors and information aggregation inefficiencies,
hinder its implementation in practical applications. In this
work, we propose ERMVP, a communication-Efficient and
collaboration-Robust Multi-Vehicle Perception method in
challenging environments. Specifically, ERMVP has three
distinct strengths: i) It utilizes the hierarchical feature sam-
pling strategy to abstract a representative set of feature vec-
tors, using less communication overhead for efficient com-
munication; ii) It employs the sparse consensus features to
execute precise spatial location calibrations, effectively mit-
igating the implications of vehicle localization errors; iii) A
pioneering feature fusion and interaction paradigm is intro-
duced to integrate holistic spatial semantics among differ-
ent vehicles and data sources. To thoroughly validate our
method, we conduct extensive experiments on real-world
and simulated datasets. The results demonstrate that the
proposed ERMVP is significantly superior to the state-of-
the-art collaborative perception methods.

1. Introduction

Autonomous vehicles are widely recognized as a valu-

able means to enhance road safety and traffic efficiency.

Equipped with lidar, cameras, and other sensors, these ve-

hicles are capable of accurately sensing their surroundings

to ensure safe and reliable operation. However, the single-

vehicle perception system has inevitable drawbacks [26,

39], such as a limited sensor field of view that can be eas-

ily obstructed and the challenge of detecting distant ob-

jects due to sparse and low-resolution data. Recently, the

*Corresponding authors. Our code is available at https://
github.com/Terry9a/ERMVP.

advances in vehicle-to-vehicle (V2V) communication tech-

nologies [12, 17, 36] and deep learning [4–6, 10, 16, 24, 45]

have spurred innovation and progress in the collaborative

perception technology. This technology allows connected

autonomous vehicles (CAVs) to share sensory data, leading

to more comprehensive environmental perception.

Although collaborative perception technology shows

great potential in transforming the mobility industry, its

practical application faces several challenges, including

communication bandwidth limitations [15, 35], localiza-

tion errors [11, 25] and information aggregation inefficien-

cies [38, 47]. In practical situations, wireless communi-

cation resource and reliability constraints severely ham-

per the efficacy of delay-sensitive collaborative perception.

While recent works [15, 42] have achieved a balance be-

tween perception performance and communication band-

width through well-designed mechanisms, these methods

have their limitations because they primarily considering

information compression over spatial redundancy. This

narrow focus exacerbates performance degradation at high

compression ratios.

Further, complex dynamic environments lead to localiza-

tion errors, which result in inaccurate relative transform es-

timates and spatial feature misalignment. This relative pose

noise produces misleading features that adversely affect the

effectiveness of collaborative perception. Existing meth-

ods [25, 34] attempt to optimize the overall pose through

intensive computation, but the high latency makes them un-

suitable for real-time dynamic perception. Meanwhile, col-

laborative methods [3, 38, 41, 42, 46] only focus on ag-

gregated information, but overlook the inherent perceptual

strengths of ego vehicle. This paradigm is vulnerable to the

perturbations introduced by collaborative noise, including

asynchronous motion blur and inaccurate projections. Such

drawback becomes a bottleneck for achieving optimal per-

ceptual performance. In contrast, ego-centric features may

contain locally accurate spatial location information that is

not affected by collaborative noise. Therefore, a priority for

establishing a pragmatic collaborative perception system is

to effectively overcome the above challenges.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12575



Attention-based 
Feature Fusion

Accuracy Enhanced 
Feature Interaction

CAV1

Ego
CAV

CAV2

Detection 
Output

Feature Spatial 
Calibration

CAC

CACA

CAVCA
Filter and Merge
Feature Sampling

Detection 
Decoders 

Filter and Merge
Feature Sampling

Point Clouds        Feature Encoder

Shared

Shared

Metadata Sharing and Feature Extraction

Local Observations

Ego-agent Feature

Sampled Feature

Calibrated Feature

Fused Feature

Interacted FeatureDetection Output

Figure 1. The overall architecture of the proposed framework. The framework consists of six phases: metadata sharing and feature ex-

traction, filter and merge feature sampling, feature spatial calibration, attention-based feature fusion, accuracy enhanced feature interaction

and detection decoders. The details of each individual component are illustrated in Section 3.

Based on these observations, we propose ERMVP,

a communication-efficient and collaboration-robust multi-

vehicle perception method in challenging environments.

From Figure 1, ERMVP uses four proposed core compo-

nents to tackle existing challenges jointly. Specifically, (i)
we first design an advanced filter and merge feature sam-

pling strategy to tackle the limitations of wireless commu-

nication resources. This strategy considers both inter-class

and intra-class redundancy relationships to abstract a re-

fined set of feature vectors from the redundant features, us-

ing less communication overhead for efficient communica-

tion. (ii) Second, we introduce a plug-and-play feature spa-

tial calibration module to mitigate the implications of ve-

hicle localization errors. This module ingeniously utilizes

consensus sparse foreground features to align the relative

pose relationships between ego-vehicle and collaborators

without any precise pose supervision. (iii) Furthermore, we

present a pioneering feature fusion and interaction paradigm

to integrate holistic spatial semantics. This paradigm com-

prises two key components: The first is an attention-based

feature fusion module that alternates between local and

global attention to fuse heterogeneous information from dif-

ferent vehicles. The second is an accuracy enhanced fea-

ture interaction strategy that leverages the accurate posi-

tional information inherent in ego-centric features to en-

hance the rich semantic information provided by fused fea-

tures. Through these tailored components, ERMVP repre-

sents a significant advancement towards pragmatic collabo-

rative perception. To validate the effectiveness of the ER-

MVP, we conduct extensive experiments on two collabora-

tive 3D object detection datasets including V2V4Real [44]

and OPV2V [43]. Comprehensive experimental results

demonstrate that our method outperforms previous state-of-

the-art methods under the bandwidth-limited noisy setting.

The main contributions can be summarized as follows:

• We present ERMVP, a communication-efficient and

collaboration-robust multi-vehicle perception method,

which addresses the communication bandwidth limita-

tions, localization errors and information aggregation ef-

ficiency challenges.

• We develop a filter and merge feature sampling strategy to

enhance communication efficiency, a feature spatial cali-

bration module for accurate spatial feature alignment, and

two information aggregation components to optimize the

fusion process.

• We conduct extensive experiments on both real-world and

simulated datasets. The results show the superiority of

our method and the necessity of the proposed compo-

nents.

2. Related Work
2.1. Multi-Agent Communication

Communication has played a pivotal role in the develop-

ment of robust multi-agent systems. Early multi-agent

communication [20, 29, 32] relied on predefined protocols

and heuristics to regulate communication between agents.

However, these fixed methods are unsuitable in complex

and dynamic settings. Advances in deep learning have in-

spired the development of advanced strategies for informa-

tion exchange and collaboration among agents. For exam-

ple, MAGIC [27] used a graph attention encoder to solve the
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problem of when and to whom to send messages. TMC [49]

utilized temporal smoothing to ensure efficient communi-

cation. EC-MARL [2] tackled high-dimensional continu-

ous control and partially observable states by introducing a

rapid communication protocol to resolve task dilemmas. In

comparison, our research focuses on LiDAR-based collabo-

rative 3D object detection tasks in complex driving scenar-

ios. We propose a hierarchical feature sampling strategy to

achieve efficient communication across agents.

2.2. Collaborative Perception

Factors including limited fields of view of sensors and

physical obstructions in the environment can adversely im-

pact the perception capabilities of individual agents. To

address these challenges, collaborative perception within

multi-agent systems has become a key technology. Utilizing

newly available datasets [22, 43, 44], several novel collab-

orative perception methods have been proposed. For exam-

ple, V2VNet [38] incorporated a graph neural network to

fuse data from different agents. V2X-ViT [42] introduced

a transformer architecture that combined information from

vehicles and infrastructures. Where2comm [15] used fea-

ture spatial heterogeneity to reduce bandwidth utilization

by transmitting sparse feature maps. CoBEVT [41] pro-

posed the first multi-camera-based collaborative perception

framework and designed the fused axis attention module to

enable multi-view interactions. In this work, we propose an

innovative feature calibration and interaction method that

ensures robust vehicle collaboration in high-noise dynamic

environments.

3. Method

This section introduces our efficient and robust collabora-

tive perception method. Figure 1 shows the general proce-

dure of our method, which is divided into six phases. We

will detail each phase in the following introduction.

3.1. Metadata Sharing and Feature Extraction

In multi-vehicle collaboration scenarios, one of the CAVs,

known as the ego vehicle, constructs a communication

graph. In this graph, the ego vehicle serves as the requester,

while other vehicles within its communication range act as

supporters. The ego vehicle broadcasts its metadata in-

formation, including position, heading, speed, and more.

Supporters, upon receiving this metadata, project their lo-

cal point cloud observations into the ego vehicle’s coordi-

nate system. Each vehicle then encodes these transformed

point clouds into bird’s eye view (BEV) features, yield-

ing a visual representation. Given the i-th vehicle local

observations Xi, the extracted features are represented as

F i = Φenc(Xi) ∈ R
H×W×C , where Φenc(·) denotes the

PointPillar [19] encoder shared by all vehicles and H , W ,

and C stand for the height, width, and channel of the fea-

ture map, respectively. Then, these extracted features are

fed into the filter and merge feature sampling module.

3.2. Filter and Merge Feature Sampling

Previous works have utilized well-designed mechanisms

such as information entropy communication selection [37]

and spatial heterogeneity map [15, 35] to reduce the re-

quired transmission bandwidth. However, these methods

primarily focus on the inter-class redundancy between fore-

ground and background features, ignoring the intra-class

redundancy among features, which results in sub-optimal

compression. To address this gap, we introduce an ad-

vanced Filtering and Merging Feature Sampling strategy

(FMS). This strategy considers both inter-class and intra-

class redundancy relationships, efficiently extracting a con-

cise and distinctive set of feature vectors from the origi-

nal feature maps, thus reducing communication overheads

more effectively. FMS is composed of two core components

as follows.

Filter Sampler. In object detection, foreground areas

containing objects are more significant than the background

areas. Therefore, we implement the idea of reducing spa-

tial redundancy into a feature filter sampler module, aiming

to preserve perceptually important yet sparse sets of feature

vectors. Since explicitly learning a binary sampler is in-

feasible, we develop a confidence filter strategy. Initially, a

detection confidence map is generated for the feature map.

It reflects the perceptual importance of different spatial ar-

eas, with higher levels indicating potential object areas and

lower levels typically denoting redundant background areas.

For the feature map F i of the i-th vehicle, its confidence

map Ci is defined as:

Ci = Φcon gen (F i) ∈ [0, 1]H×W , (1)

where Φcon gen(·) represents the confidence generation net-

work with detection decoder structure. Then the confidence

map is thresholded, followed by non-maximum suppres-

sion, resulting in a binary mask B. Utilizing this binary

mask, we proceed to preserve the sparse foreground fea-

tures F̃ i = B � F i. In order to cope with the dynamically

changing environmental conditions and fully ensure the ro-

bustness of the system, the filtering threshold can be varied

with the sensor data and the network state. We set α as the

filter rate and the number of remaining feature vectors is

L = α×HW .

Merge Sampler. Upon extracting a detailed fore-

ground feature vector set with the filter sampler, we em-

ploy the merge sampler for additional optimization, refin-

ing similar or repetitive foreground feature vectors through

weighted merging. The process is divided into three stages:

information-driven feature grouping, attention-inspired fea-

ture merging, and index-based feature reconstruction.
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(a) Information-Driven Feature Grouping. Initially, a

variant of the nearest neighbor clustering algorithm is ap-

plied to group the foreground feature vector set. Given a set

of feature vector F̃ i = [x1, x2, . . . , xL]
�

and cluster cen-

ter Xc, we compute the indicator δi for each feature vector.

δi is calculated as the minimum feature distance minus the

average pixel distance to any other cluster center vector, ex-

pressed as:

δi = min
j:xj∈Xc

(
‖xi − xj‖22 − γ ‖p(xi), p(xj)‖22

)
, (2)

where δi denotes to which cluster the feature vector xi

should belong. p(·) means getting the position of the vec-

tor and γ is a hyperparameter. Subsequently, we can divide

all the feature vectors in F̃ i into K clusters represented by

G = {G1, G2, . . . , GK}. The total number of clusters is

determined by dynamic clustering ratio β, and is calculated

as K = β × L.

(b) Attention-Inspired Feature Merging. A straight-

forward strategy for merging feature vectors is to average of

each feature vector within a cluster. However, this scheme

can be severely affected by outlier feature vectors. Draw-

ing inspiration from attention mechanisms, we utilize the

confidence score as a guide to quantify the significance of

each feature. Thus, the merged feature vector x̃i for the ith
cluster Gi is computed as:

x̃i =

∑
j∈Gi

cjxj∑
j∈Gi

cj
, (3)

where cj and xj represent the confidence score and the orig-

inal feature vector, respectively. In the end, we obtain a final

set of feature vectors Zi = {x̃1, x̃2, . . . , x̃K} that is neces-

sary for transmission.

(c) Index-Based Feature Reconstruction. During the

feature grouping and merging process, each feature vector

is allocated to a cluster, and every cluster is represented by

a merged vector. We maintain a record of the index cor-

respondence between original and merged feature vectors.

Utilizing this index record, the ego-vehicle ensures that the

merged feature vectors are mapped to their corresponding

positions, leading to the reconstruction of feature maps.

3.3. Feature Spatial Calibration

Localization errors [30, 31] may lead to the misalignment

of feature maps among vehicles. Such misalignment causes

the ego-vehicle to misinterpret the object’s location, result-

ing in sub-optimal perception, as depicted in the upper right

corner of Figure 2. To address this challenge, we introduce

the Feature Spatial Calibration module (FSC) to facilitate

precise feature alignment, as shown in Figure 2. The core

idea of FSC is that overlapping viewpoints allow multiple

vehicles to detect partially the same objects. The process

RANSAC

Cost matrix Match pairs

P

Q

Refined transformation matrix

Calibrate

Figure 2. Illustration of the proposed FSC. By employing FSC,

misaligned matching regions are corrected at the feature level,

leading to more accurate predictions.

involves three phases: consensus matching, geometric veri-

fication, and error modulation.

Consensus Matching. After reconstructing the received

features, the ego vehicle generates sparse feature maps.

Within these maps, areas rich in information signify poten-

tial target regions, which correspond to the proposed match-

ing areas. We denote the proposed matching regions of the

ego vehicle as P and those identified by the collaborative

vehicle under noisy pose conditions as Q. Utilizing P and

Q, a weighted bipartite graph is constructed, wherein the

weight of each edge is determined by the distance between

the nodes, encapsulated in a cost matrix. The matching pro-

cess is then converted into a linear assignment task, with the

objective of identifying a matching result with the lowest

cumulative edge weight. This procedure yields the match-

ing pairs M .

Geometric Verification. Invalid matches may occur due

to objects located in exclusive zones and detection noise.

To tackle this issue, we utilize RANSAC to filter and sift

a consistent set of matches aligned with expected geomet-

ric transformations. Initially, a random matching subset

Ms ⊆ M is selected, and then the transformation ma-

trix Γs is computed using singular value decomposition.

When Γs is applied to all pairs within Ms, and if the post-

transformation distance between these pairs remains below

the threshold η, the set is considered correctly aligned. The

threshold η reflects the allowable localization error within

the original collaborative framework. This process is it-

eratively conducted to identify the optimal transformation

matrix that correlates with the maximum number of correct

matches. Ultimately, a optimal refined transformation ma-

trix Γr is obtained and applied in subsequent spatial calibra-

tion operations, yielding the aligned feature Z̃j = ΓrZj .

Error Modulation. To enhance the adaptability of the

calibration method in various environments, we incorporate

an error modulation strategy. This strategy aims to achieve

a balance between localization errors and the estimation er-

rors that emerge from the calibration process. It measures

the overlap ratios between ego and collaborative features in

both their adjusted and original states. Subsequently, fea-
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Figure 3. A example of local and global Attention in AFF. This

shows how AFF processes both 3D local windows and the global

query token for position-level and context-aware aggregation.

tures demonstrating the most optimal overlap are selected

as the final input.

3.4. Attention-based Feature Fusion

In multi-vehicle collaboration scenarios, vehicles are able

to capture heterogeneous information from different spatial

regions. In order to efficiently fuse perceptual features from

multiple vehicles, we propose an Attention-based Feature

Fusion method (AFF). As shown in Figure 3, AFF utilizes

alternating local and global attention to achieve position-

level accurate matching in occlusion-variable traffic scenes

and to capture the global semantics attention of road topol-

ogy and traffic states. Specifically, we stack all the vehicles’

features to S ∈ R
N×H×W×C , where N is the number of

vehicles. The features are divided into 3D non-overlapping

windows, each of size N × P × P . The shape of the par-

tition tensor is (HP × W
P , N × P 2, C). We perform 3D lo-

cal self attention on the local window and implement re-

gion interaction within the window. In contrast, global at-

tention goes beyond the limitations of the local view. It

uses the extracted global query token and is shared between

all windows to interact with the local key and value repre-

sentations, thus helping to capture long-range dependencies

of the features. Inspired by the efficiency of [13, 33], the

global query token g is generated as follows:

g = P (C1×1 (SE(G(D(x))) + x)) , (4)

where D, G, SE , C1×1 and P denote the depth-wise sepa-

rable convolution, GELU activation function, Squeeze-and-

Excitation operation, 1 × 1 convolution and max pooling,

respectively. These designs enable the global query token

to provide advantages such as inductive bias and model-

ing of inter-channel dependencies. We then construct our

proposed AFF module by combining this local and global

attention with typical designs of Transformers, including

LayerNorm [1], MLPs [9], and skip-connections [14]. This

module allows the system to analyze spatial correlations

from a local view while also capturing global feature re-

sponses, ensuring efficient and precise perception in dy-

Split-A
ttention

Multiplication Softmax

Key

Context

Query

Value

Figure 4. The architecture of the proposed AFI component.

namic, complex, and occlusion-variable traffic scenarios.

Finally, we obtain the fused features Hi.

3.5. Accuracy Enhanced Feature Interaction

Previous works [15, 21, 38, 42, 43] have demonstrated

that fused features can provide richer semantic informa-

tion, thereby enhancing perceptual performance. However,

they may be affected by collaborative noise, such as asyn-

chronous motion blur and inaccurate projections, which can

compromise accurate position information and become a

bottleneck to the optimal realization of perceptual perfor-

mance. Ego-centric features may contain locally critical

spatial location information without being affected by col-

laborative noise. To this end, we propose a novel Accuracy

Enhanced Feature Interaction (AEI) strategy that leverages

the accurate positional information inherent in ego-centric

features to enhance the rich semantic information provided

by collaborative fused features. Firstly, we design a context

cross attention module that is tailored for feature interac-

tion, as shown in Figure 4. It considers the features from

the ego-vehicle as queries, and obtains the context of the

query location from the fused features as the key and value

to achieve cross-attention. The computed output of the spa-

tial location (i, j) is as follows:

yij =
∑

a,b∈Nk(i,j)

softmax
(
q�ijkab

)
vab, (5)

where Nk(i, j) is context position of (i, j) and qij , kab, vab
represent the ego query, context key and value, respectively.

As the relevant features of the same object are often located

in similar locations across different feature maps, we priori-

tize the local context details of the query location. Addition-

ally, considering that only a few positions within the sparse

feature map hold significant information, focusing on these

context-rich areas is computationally efficient. Following

this, we employ the split attention [48] to adaptively fuse in-

formation from multiple branches, generating the enhanced

output feature H̃i.
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Dataset V2V4Real OPV2V

Noise Level σt/σr (m/°) 0.0/0.0 0.4/0.4 0.8/0.8 0.0/0.0 0.4/0.4 0.8/0.8

No Collaboration 41.64/23.43 41.64/23.43 41.64/23.43 73.25/58.22 73.25/58.22 73.25/58.22

Late Fusion 56.80/27.62 40.81/13.31 26.65/10.66 86.46/79.21 76.56/40.01 45.57/21.00

F-Cooper [3] 61.12/32.36 51.71/24.48 41.90/19.91 87.39/79.39 79.33/40.12 52.91/16.90

AttFuse [7] 64.41/34.32 58.42/30.02 49.37/25.44 90.50/81.80 83.54/52.43 68.37/40.96

Where2comm [15] 63.69/34.79 58.48/28.09 49.77/24.25 90.46/84.22 82.17/56.47 73.95/45.86

DiscoNet [21] 64.19/35.25 57.71/28.41 49.19/24.94 89.58/81.45 83.25/53.22 61.37/30.53

V2VNet [38] 65.70/35.38 62.11/30.63 54.73/25.57 91.35/82.43 85.43/54.16 70.43/31.28

CoAlign [25] 64.06/36.60 59.58/31.52 53.02/26.60 90.93/84.28 84.48/57.45 73.95/48.86

V2X-ViT [42] 66.42/37.34 63.33/32.38 57.15/28.22 91.74/83.31 82.91/54.73 61.70/26.07

CoBEVT [41] 66.01/37.36 58.63/29.09 49.22/23.66 91.71/85.98 85.49/60.64 64.63/29.59

ERMVP (Ours) 67.66/42.97 65.01/40.45 60.88/35.01 92.18/85.59 85.67/66.32 77.13/59.15

Table 1. Overall performance on V2V4Real and OPV2V datasets with pose noises. The results are reported in AP@0.5/0.7.

3.6. Decoder and Loss

Based on the final fused feature H̃i, we use the detec-

tion decoder to generate the final prediction output Y i =

Φdec(H̃i). Each position of Y i represents a rotated box

with classes (c, x, y, h, w, cosα, sinα), corresponding to

class confidence, position, size, and angle. These objects

are the final output of the proposed collaborative perception

system. Following existing work [19], we adopt the smooth

L1 loss for regression and focal loss [23] for classification.

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets. We validate the proposed ERMVP in the

task of LiDAR-based 3D object detection on two bench-

mark datasets including V2V4real [44] and OPV2V [43].

V2V4real [44] is the first large-scale real-world dataset

on V2V perception, collected by two vehicles equipped

with multi-modal sensors driving together in a variety

of scenarios. It covers a driving area of 410 kilome-

ters, including 20K frames of point clouds, with train-

ing/validation/test sets containing 14210/2000/3986 frames,

respectively. OPV2V [43] is a large-scale vehicle-to-

vehicle collaborative perception dataset, simulated by

OpenCDA [40] and Carla [8]. It contains 73 different

scenarios, in which different numbers (2 to 7) of collab-

orative vehicles appear together, each equipped with a li-

dar sensor and 4 cameras. The dataset contains a total

of 11,464 frames of point clouds and RGB images. The

training/validation/test sets contain 6374, 1980, and 2170

frames, respectively.

Evaluation Metrics. We adopt the Average Precision (AP)

at Intersection-over-Union (IoU) thresholds of 0.5 and 0.7

to evaluate the detection performance. The calculation for-

mat of communication volume in [15] is used to count the

message size by byte in the log scale with base 2.

4.2. Implementation Details

We implement the proposed ERMVP and comparison

model on the Pytorch toolbox [28], and train them on a

NVIDIA GeForceRTX 3090 GPU using the Adam opti-

mizer [18]. The initial learning rate is 2e-3, and it decays

every 15 epochs with a factor of 0.1. All models are trained

with 60 epochs and the batch size is set to 2. Early stop-

ping is used to find the best epoch. We also add normal

point cloud data augmentation for all experiments, includ-

ing scaling, rotation, and flipping. All detection models are

based on PointPillar [19] backbone to extract 2D features

from point clouds and a 0.4 m width/length is used for each

voxel. AFF component has 3 encoded layers and a window

size of 8 for both local and global attention. The balance

hyperparameter γ is 0.1 and the error tolerance threshold

η is 0.25. Each vehicle has a communication range of 70

m based on [42], while vehicles outside of this broadcast-

ing radius will be ignored. To simulate the localization and

heading errors, we add Gaussian noise with a standard devi-

ation of σt for localization errors and σr for heading errors.

4.3. Quantitative Evaluation

Comparison of Detection Performance. Table 1 shows

the performance comparison results of 3D detection on

two datasets. We use the No Collaboration method as a

baseline, which only uses ego vehicle’s point clouds data

without collaboration. Late Fusion allows vehicles to ex-

change detected outputs and utilizes non-maximum sup-

pression to produce the final result. For intermediate fusion

strategies, we evaluate the existing state-of-the-art (SOTA)

methods: AttFuse [43], F-Cooper [3], V2VNet [38], Dis-

coNet [21], V2X-ViT [42], CoAlign (only fusion) [25],

CoBEVT [41] and Where2comm [15]. The proposed ER-

MVP achieves average improvements of 12.48%/18.47%

and 6.18%/10.02% on two datasets in AP@0.5/0.7 com-

pared with No Collaboration and Late Fusion methods,

demonstrating the superiority of our collaborative method.
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Figure 5. Collaborative perception performance comparison on the V2V4Real and OPV2V with varying communication volume.

Meanwhile, it is superior to the SOTA collaborative per-

ception method in both real-world and simulated scenarios:

improves the SOTA collaborative performance by 1.24%

and 5.61% on V2V4Real datasets in AP@0.5/0.7, and by

0.44% on OPV2V datasets in AP@0.5. These results fully

demonstrate the superiority of the ERMVP collaboration

paradigm.

Dataset V2V4Real OPV2V

Noise Level σt(m) 0.5 1.0 0.5 1.0

Late Fusion 11.02 10.13 53.88 38.80

F-Cooper [3] 24.60 18.41 32.24 12.71

AttFuse [43] 28.10 24.36 42.95 35.53

DiscoNet [21] 28.36 24.05 45.36 24.96

V2VNet [38] 29.57 23.67 47.48 25.82

Where2comm [15] 28.02 23.53 46.59 45.59

CoAlign [21] 29.84 25.82 49.09 46.66

V2X-ViT [42] 30.99 23.67 44.83 21.77

CoBEVT [41] 24.67 22.01 41.91 26.05

ERMVP (Ours) 39.26 33.94 77.25 76.09

Table 2. Detection AP@0.7 on V2V4Real and OPV2V datasets

with localization error.

Robustness to Localization and Heading Errors. To eval-

uate the sensitivity of existing methods to localization and

heading errors, we use the same noise setting as [42] and

conduct extensive experiments on two datasets. As shown

in Tables 1 and 2, under ideal settings, Late Fusion and

some advanced intermediate fusion methods can detect ob-

ject vehicles with high accuracy, but their detection accu-

racy rapidly decreases as the standard deviation of errors

increases. For example, when the localization and heading

errors of OPV2V dataset are over 0.4 m and 0.4°, the Dis-

conet [21] and F-Cooper [3] methods fail and perform even

worse than No Collaboration. Our method exceeds previous

SOTA models at all noise levels and consistently outper-

forms the No Collaboration baseline, clearly demonstrating

the robustness of ERMVP to pose errors. It is noteworthy

that for localization errors, ERMVP can maintain consistent

accuracy levels in high noise environments, showing supe-

rior robustness. When the localization error is 1.0 m, it out-

performs the second-best method by 29.43% and 8.08% in

AP@0.7 on OPV2V and V2V4Real datasets. The reason-

able explanations are: (i) feature spatial calibration aligns

mismatched collaborative features; (ii) accuracy enhanced

feature interaction reduces performance degradation caused

by collaborative noise.

Comparison of Communication Volume. To achieve

pragmatic collaborative perception, it is crucial to evalu-

ate the perceptual performance under different communi-

cation volumes. Figure 5 shows the results of the per-

formance comparison under different bandwidth consump-

tion conditions. Note that we do not consider any addi-

tional model/data/feature compression for a fair compari-

son. The results indicate that ERMVP achieves excellent

perceptual performance and bandwidth consumption trade-

off under all communication bandwidth conditions, consis-

tently outperforming Where2comm [15] . At the same time,

it achieves the same detection performance as the previous

model [3, 38, 41, 42] with less communication volume on

both real-world and simulated datasets.

4.4. Ablation Studies

AFF FSC AEI V2V4Real OPV2V

51.71/24.48 79.33/40.12

� 62.24/37.70 84.30/61.43

� � 64.36/39.59 84.98/62.67

� � � 65.01/40.45 85.67/66.32

Table 3. Ablation study results of the proposed core components

on the both datasets with noise level of 0.4/0.4. AFF: Attention-

based Feature Fusion; FSC: Feature Spatial Calibration; AEI: Ac-

curacy Enhanced Feature Interaction.

Effect of Core Components. Table 3 details the contribu-

tion of each core components in our ERMVP framework.

The base model is the naive position-wise maximum fu-

sion method. We then assess the impact of each compo-

nent by sequentially introducing i) attention-based feature
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a V2VNet                                  b CoBEVT c V2X-ViT                                d ERMVP

Figure 6. Qualitative comparison results in real-world scenarios from the V2V4Real dataset with noise level of 0.4/0.4. Green and red

boxes denote the ground truths and detection results, respectively.

fusion (AFF), ii) feature spatial calibration (FSC), iii) ac-

curacy enhanced feature interaction (AEF). The consistent

rise in detection results over both datasets demonstrates the

effectiveness of each introduced component. Notably, inte-

grating all three components boosts detection performance

by 13.3% and 15.97% on the V2V4Real dataset for AP@0.5

and AP@0.7, respectively.

Figure 7. Hyperparameter analysis of α and β

Hyperparameters α and β. We explore the impact

of the hyperparameters α and β (as described in Sec-

tion 3.2), which jointly determine the communication vol-

ume. Specifically, the feature compression ratio is repre-

sented as α × β. The communication volume, in turn, is

expressed as the product of the original feature size and

the compression rate. By modulating the values of α and

β within the interval of 10% to 80%, we chart the resul-

tant object detection performance (measured by AP@0.7)

in Figure 7. As expected, a drop in either α or β will impair

ERMVP’s efficacy. Yet, it’s worth noting that ERMVP’s

performance generally exhibits robustness to these hyper-

parameters. The performance decline remains fairly mini-

mal even under significant compression, such as a factor of

100. The results demonstrate the effectiveness of our pro-

posed filter and merge feature sampling module. Therefore,

ERMVP establishes an appropriate and effective communi-

cation paradigm among vehicles, ensuring an optimal trade-

off between perception and communication.

4.5. Qualitative Evaluation

Figure 6 displays the detection results of V2VNet [38],

CoBEVT [41], V2X-ViT [42], and ERMVP in two scenar-

ios. Clearly, ERMVP offers more precise and comprehen-

sive detection than the prior SOTA methods. To begin with,

ERMVP produces a greater number of predicted bounding

boxes that are well aligned with the ground truths, while

other methods show significant discrepancies. This demon-

strates ERMVP’s robustness, particularly in high-noise en-

vironments. Moreover, ERMVP detects more dynamic ob-

jects (more ground truth bounding boxes find matches).

This suggests that ERMVP can effectively combine the in-

puts from nearby vehicles, leading to a thorough scene rep-

resentation. Overall, these qualitative assessments confirm

ERMVP’s strengths in delivering accurate and comprehen-

sive perception, especially in challenging conditions.

5. Conclusion
In this paper, we present ERMVP, a communication-

efficient and collaboration-robust multi-vehicle perception

method in challenging environments. We introduce a filter

and merge feature sampling strategy to efficient communi-

cation, a feature spatial calibration module to align features

in fine-grid and two spatial information aggregation compo-

nents to solve the bottleneck of the fusion method. Exten-

sive experiments prove the superiority of ERMVP and the

effectiveness of our components. The feasibility of our ap-

proach for other modalities will be explored in future work.
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