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Please help protect my image 
against intentional tampering. My 
exclusive copyright information is 
00111010110…

I‘ve added the exclusive EditGuard 
watermark to it. You can post the 
picture on the left and I will be 
responsible for its protection.

The picture is cool. I will manipulate and share it.

I find a picture online that looks 
similar to mine. Can you provide 
evidence to prove my copyright 
and pinpoint tampered areas?

I have marked the tampered 
areas for you and extracted its 
copyright as 00111010110..., 
which matches your copyright. 
Please use this as evidence to 
defend your rights.
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Remove the woman AI Fill, “A Picasso painting on the wall”

Replace background, “A man in an office”Change the cloth, “A pink shirt, high quality”

Secondary creation of artworks, “A straw hat”
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Figure 1. We propose a versatile proactive forensics framework EditGuard. The application scenario is shown on the left, wherein users
embed invisible watermarks to their images via EditGuard in advance. If suffering tampering, users can defend their rights via the tampered
areas and copyright information provided by EditGuard. Some supported tampering methods (marked in blue) and localization results of
EditGuard are placed on the right. Our EditGuard can achieve over 95% localization precision and nearly 100% copyright accuracy.

Abstract

In the era of AI-generated content (AIGC), malicious
tampering poses imminent threats to copyright integrity
and information security. Current deep image watermark-
ing, while widely accepted for safeguarding visual content,
can only protect copyright and ensure traceability. They
fall short in localizing increasingly realistic image tamper-
ing, potentially leading to trust crises, privacy violations,
and legal disputes. To solve this challenge, we propose
an innovative proactive forensics framework EditGuard, to
unify copyright protection and tamper-agnostic localiza-
tion, especially for AIGC-based editing methods. It can
offer a meticulous embedding of imperceptible watermarks
and precise decoding of tampered areas and copyright in-
formation. Leveraging our observed fragility and locality
of image-into-image steganography, the realization of Edit-
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Guard can be converted into a united image-bit steganogra-
phy issue, thus completely decoupling the training process
from the tampering types. Extensive experiments verify that
our EditGuard balances the tamper localization accuracy,
copyright recovery precision, and generalizability to vari-
ous AIGC-based tampering methods, especially for image
forgery that is difficult for the naked eye to detect.

1. Introduction

Owing to the advantageous properties of diffusion mod-
els and the bolstering of extensive datasets, AI-generated
content (AIGC) models like DALL·E 3 [14], Imagen [52],
and Stable Diffusion [51], can produce lifelike and won-
drous images, which brings great convenience to photog-
raphy enthusiasts and image editors. Nonetheless, the re-
markable capabilities of these models come with a double-
edged sword, presenting new challenges in copyright pro-
tection and information security. The efficiency of image
manipulation [43, 47, 49, 51, 55, 68, 72] has blurred the
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line between fact and forgery, ushering in myriad security
and legal concerns. For instance, artistic works are vulner-
able to malicious tampering or unauthorized AI-facilitated
recreations, making it challenging to protect their original
creations [13]. Meanwhile, forged images may be spread
online or used as court evidence, causing adverse effects on
public opinion, ethical issues, and social stability.

Given the challenges of preventing image tampering
from the source, image watermarking has become a con-
sensus for proactive forensics [54]. However, most preva-
lent forensic image watermarking [12, 15, 44, 62] still focus
on detecting image authenticity or protecting image copy-
rights, but fall short when it comes to advanced demands,
such as localizing tampered areas. Tamper localization fa-
cilitates an evaluation of the severity of the image manipula-
tion, and provides an understanding of the intent of attack-
ers, potentially allowing for the partial reuse of the tam-
pered images. However, most passive forensics methods
such as previous black-box localization networks [8, 56, 61]
tend to seek anomalies like artifacts or flickers in images
but struggle to detect more realistic textures and more ad-
vanced AIGC models. Moreover, they inevitably need to in-
troduce tampered data during the training and focus solely
on specific “CheapFake” tampering like slicing and copy-
and-paste [8, 45, 56], or on “DeepFake” targeting human
faces [2, 50], restricted in generalizability. Thus, it is vital to
develop an integrated watermarking framework that unites
tamper-agnostic localization and copyright protection.

To clarify our task scope, we re-emphasize the def-
inition of dual forensics tasks as illustrated in Fig. 1:
(1) Copyright protection: “Who does this image belong
to?” We aspire to accurately retrieve the original copyright
of an image, even suffering various tampering and degra-
dation. (2) Tamper localization: “Where was this image
manipulated?” We aim to precisely pinpoint the tampered
areas, unrestrained by specific tampering types. To the best
of our knowledge, no existing method accomplishes these
two tasks simultaneously, while maintaining a balance of
high precision and extensive generalizability.

To address this urgent demand, we propose a novel
proactive forensics framework, dubbed EditGuard, to pro-
tect copyrights and localize tamper areas for AIGC-based
editing methods. Specifically, drawing inspiration from our
observed locality and fragility of image-into-image (I2I)
steganography and inherent robustness of bit-into-image
steganography, we can transform the realization of Edit-
Guard into a joint image-bit steganography issue, which
allows the training of EditGuard to be entirely decoupled
from tampering types, thereby endowing it with exceptional
generalizability and locate tampering in a zero-shot manner.
In a nutshell, our contributions are as follows:

❑ (1) We present the first attempt to design a deep versa-
tile proactive forensics framework EditGuard for univer-

sal tamper localization and copyright protection. It embeds
dual invisible watermarks into original images and accu-
rately decodes tampered areas and copyright information.
❑ (2) We have observed the fragility and locality of I2I
steganography and innovatively convert the solution of
this dual forensics task into training a united Image-Bit
Steganography Network (IBSN), and utilize the core com-
ponents of IBSN to construct EditGuard.
❑ (3) We introduce a prompt-based posterior estimation
module to enhance the localization accuracy and degrada-
tion robustness of the proposed framework.
❑ (4) The effectiveness of our method has been verified on
our constructed dataset and classical benchmarks. Com-
pared to other competitive methods, our approach has no-
table merits in localization precision, generalization abil-
ities, and copyright accuracy without any labeled data or
additional training required for specific tampering types.

2. Related works
2.1. Tamper Localization

Prevalent passive image forensic techniques have focused
on localizing specific types of manipulations [25, 33, 34,
53, 61, 75]. Meanwhile, some universal tamper localiza-
tion methods [5, 23, 31, 35, 63, 65–67] also tend to ex-
plore artifacts and anomalies in tampered images. For in-
stance, MVSS-Net [8] employed multi-view feature learn-
ing and multi-scale supervision to jointly exploit boundary
artifacts and the noise view of images. OSN [61] proposed
a novel robust training scheme to address the challenges
posed by lossy operations. Trufor [17] used a learned noise-
sensitive fingerprint and extracted both high-level and low-
level traces via transformer-based fusion. HiFi-Net [18] uti-
lized multi-branch feature extractor and localization mod-
ules for both CNN-synthesized and edited images. SAFL-
Net [56] constrained a feature extractor to learn semantic-
agnostic features with specific modules and auxiliary tasks.
However, the above-mentioned passive localization meth-
ods are often limited in terms of generalization and local-
ization accuracy, which usually work on known tampering
types that have been trained. Although MaLP [2] used tem-
plate matching for proactive tamper localization, it still re-
quires a large number of forgery images and cannot fully
decouple the network training from the tamper types.

2.2. Image Watermarking

Image watermarking can be broadly used for the verifica-
tion, authenticity, and traceability of images. Although tra-
ditional fragile watermarking [6, 24, 29, 36, 37, 48] can also
achieve block-wise tamper localization, their localization
accuracy and flexibility are unsatisfactory. How to realize
joint pixel-level tamper localization and copyright protec-
tion remains largely unexplored. Owing to the development
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Figure 2. Fragility and locality of I2I steganography. The
first line shows that when X′

con is changed, X̂sec will also be
fragilely demaged. The second line plots the attribution maps
1
|S|

∑
(i,j)∈S

∂X̂sec[i,j]
∂X′

con
of five point sets S (marked by 1⃝- 5⃝) in

X̂sec. We observed that X̂sec almost only has a strong response
at the corresponding positions of X′

con and its neighborhoods.

of deep learning, deep image watermarking has attracted in-
creased attention. For instance, HiDDeN [74] firstly intro-
duced a deep encoder-decoder network to hide and recover
bitstream. Moreover, many distortion layers such as dif-
ferentiable JPEG and screen-shooting [1, 10, 40, 62] were
designed to enhance its robustness. Flow-based models [11,
44] were also utilized to further improve the fidelity of con-
tainer images. Recently, researchers [7, 12, 27, 59, 73] have
designed specialized watermarking mechanisms for large-
scale image generation models [51], to merge watermark-
ing into the generation process. However, these deep water-
marking methods have a singular function and cannot accu-
rately localize the tampered areas.

3. Overall Framework of EditGuard

3.1. Motivation

Challenges of existing methods: (1) How to equip existing
watermark methods, which are solely for copyright protec-
tion, with the ability to localize tampering is the crux of
EditGuard. We will solve it via the framework design in
Sec. 3.2. (2) Most previous tamper localization methods in-
evitably introduce specific tampering data during network
training but tend to raise generalization concerns in un-
known tampering types, which will be addressed in Sec. 3.3.

Our observations: Fortunately, we observed that image-
into-image (I2I) steganography exhibits distinct fragility
and locality, possessing great potential to address these is-
sues. Concretly, I2I steganography [3, 28, 42, 46, 64, 69]
aims to hide a secret image Xsec into a cover image Xcov to
produce a container image Xcon, and reveal X̂sec and X̂cov

with minimal distortion from the received image X′
con. We

discover that when X′
con undergoes significant alteration

compared to Xcon, X̂sec will also be damaged and generate
artifacts (the first row of Fig. 2), which is called fragility.
Furthermore, we notice that the artifacts in X̂sec are almost
pixel-level corresponding to the changes in X′

con relative to
Xcon, which is called locality. To demonstrate this locality,

we select five 7×7 point sets on X̂sec and calculated their
attribution maps with respect to X′

con. As plotted in the
second row of Fig. 2, X̂sec only exhibits a strong response
at the corresponding locations of X′

con and their immediate
vicinity, almost irrelevant to other pixels. These properties
inspire us to treat Xsec as a special localization watermark
and embed it within existing watermarking frameworks.

3.2. Framework Design and Forensics Process

To realize united tamper localization and copyright protec-
tion, EditGuard is envisioned to embed both a 2D localiza-
tion watermark and a 1D copyright traceability watermark
into the original image in an imperceptible manner, which
allows the decoding end to obtain the copyright of the im-
ages and a binary mask reflecting tampered areas. However,
designing such a framework needs to solve the compatibil-
ity issue of two types of watermarks.

(1) Local vs. Global: The localization watermark is re-
quired to be hidden in the corresponding pixel positions of
the original image, while the copyright watermark should
be unrelated to spatial location and embedded in the global
area redundantly. (2) Semi-fragile vs. Robust: The de-
sired attribute of the localization watermark is semi-fragile,
which means it is fragile to tampering but robust against
some common degradations (such as Gaussian noise, JPEG
compression, and Poisson noise) during network transmis-
sion. However, the copyright should be extracted nearly
losslessly, irrespective of tampering or degradation.

To address the two pivotal conflicts, EditGuard employs
a “sequential encoding and parallel decoding” structure,
which comprises a dual-watermark encoder, a tamper lo-
cator, and a copyright extractor. As shown in Fig. 3, the
dual-watermark encoder will sequentially add pre-defined
localization watermark and global copyright watermark
wcop provided by users to the original image Iori, form-
ing the container image Icon. Our experiments have proved
that parallel encoding cannot effectively add dual water-
marks into images (in supplementary materials (S.M.)). In
contrast, sequential embedding effectively prevents cross-
interference by hiding these two watermarks. Furthermore,
we model the network transmission process in which the re-
ceived (tampered) image Irec is transformed from Icon as:

Irec = D(Icon ⊙ (1−M) + T (Icon)⊙M), (1)

where T (·), D(·) and M respectively denote the tamper
function, degradation operation, and tempered mask. More-
over, the parallel decoding processes allow us to flexibly
train each branch under different levels of robustness and
obtain the predicted mask M̂ via the tamper locator and
traceability watermark ŵcop via the copyright extractor. We
can categorize the dual forensic process of EditGuard into
the following scenarios.
❑ Case 1: If ŵcop ̸≈ wcop, suspicious Irec is either not

11966



Localization 
W

aterm
arking

Copyright 
W

aterm
arking

Malicious Tampering

Network Transmission

Dual-Watermark 
Encoder Copyright 

Extractor

Tamper
Locator

1 0 0 1 0 0… 1 0 0 1 0 0…
Verified

Not certified

Figure 3. Illustration of the proposed proactive forensics framework EditGuard. The dual-watermark encoder sequentially embeds the
pre-defined localization watermark and copyright watermark wcop into the original image Iori, generating the container image Icon. After
encountering potential malicious tampering and degradation during network transmission, tampered mask M̂ and copyright information
ŵcop are respectively extracted via the tamper locator and copyright extractor from the received image Irec.

registered in our EditGuard or underwent extremely severe
global tampering, rendering it unreliable as evidence.
❑ Case 2: If ŵcop ≈ wcop and M̂ ̸≈ 0, suspicious Irec
has undergone tampering, disqualifying it as valid evidence.
Users may infer the intention of tamperers based on M̂ and
decide whether to reuse parts of the image.
❑ Case 3: If ŵcop ≈ wcop and M̂ ≈ 0, Irec remains un-
tampered and trustworthy under the shield of EditGuard.

3.3. Transform Dual Forensics into Steganography

To realize universal and tamper-agnostic localization, we
resort to our observed locality and fragility of I2I steganog-
raphy. As described in Sec. 3.1, localization watermark-
ing and tamper locator in Fig. 3 can be effectively real-
ized via image hiding and revealing. Meanwhile, comb-
ing with the robustness of current bit-into-image steganog-
raphy, copyright watermarking and extractor in Fig. 3 are
achieved via bit encryption and recovery. Thus, we can
convert the realization of the dual forensics framework Ed-
itGuard into a united image-bit steganography network.
Our training objective is just a self-recovery mechanism,
meaning it only needs to ensure the input and output of
the steganography network maintain high fidelity under
various robustness levels, with no need to introduce any
labeled data or tampered samples. During inference, it
can naturally locate tampering via simple comparisons in a
zero-shot manner and extract copyright exactly.

4. United Image-bit Steganography Network
4.1. Network Architecture

As plotted in Fig. 4, the proposed IBSN includes an image
hiding module (IHM), a bit encryption module (BEM), a
bit recovery module (BRM), and an image revealing module
(IRM). First, the IHM aims to hide a localization watermark
Wloc∈RH×W×3 into the original image Iori∈RH×W×3,
resulting in an intermediate output Imed∈RH×W×3. Sub-
sequently, Imed is fed to the BEM for feature refinement,

while the copyright watermark wcop∈{0, 1}L is modu-
lated into the BEM, forming the final container image
Icon∈RH×W×3. After network transmission, the BRM will
faithfully reconstruct the copyright watermark ŵcop from
the received container image Irec. Meanwhile, Irec predicts
the missing information Ẑ via the prompt-based posterior
estimation and uses it as the initialization for the invertible
blocks, producing Îori and semi-fragile watermark Ŵloc.

4.2. Invertible Blocks in IHM and IRM

Given the inherent capacity of flow-based models to pre-
cisely recover multimedia information, we harness stacked
invertible blocks to construct image hiding and reveal-
ing modules. The original image Iori∈RH×W×3 and lo-
calization watermark Wloc∈RH×W×3 will undergo dis-
crete wavelet transformations (DWT) to yield frequency-
decoupled image features. We then employ enhanced ad-
ditive affine coupling layers to project the original image
and its corresponding localization watermark branches. The
transformation parameters are generated from each other.
The enhanced affine coupling layer is composed of a five-
layer dense convolution block [46] and a lightweight feature
interaction module (LFIM) [4]. The LFIM can enhance the
non-linearity of transformations and capture the long-range
dependencies with low computational cost. More details are
presented in S.M.. Finally, the revealed features are then
transformed to the image domain via the inverse DWT.

4.3. Prompt-based Posterior Estimation

To bolster the fidelity and robustness of the image hiding
and revealing module, we introduce a degradation prompt-
based posteriori estimation module (PPEM). Since the en-
coding network tends to compress [Iori;Wloc]∈RH×W×6

into the container image Icon∈RH×W×3, previous meth-
ods [42, 64] typically utilized a random Gaussian initial-
ization or an all-zero map at the decoding end to compen-
sate for the lost high-frequency channels. Yet, our obser-
vations suggest that discarded information lurks within the
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Figure 4. Illustration of the united Image-bit Steganography Network (IBSN). In the training process, we randomly sample original image
Iori, localization watermark Wloc (a natural RGB image) and copyright watermark wcop and expect the IBSN to recover Îori, Ŵloc and
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Figure 5. Illustration of the proposed prompt-based posterior es-
timation. It will dynamically fuse degraded representations and
extracted features to obtain posterior mean Ẑ=E[Z|Irec].
edges and textures of the container image. Thus, deploy-
ing a dedicated network proves to be a more potent strategy
in predicting the posterior mean of the vanished localiza-
tion watermark information Ẑ=E[Z|Irec]. Specifically, as
shown in Fig. 5, we stack M residual blocks Res(·) [19]
and M channel-wise transformer blocks Trans(·) [70] to
extract the local and non-local features Fc.
Fc = Trans(Res(DWT(Irec)))+Res(DWT(Irec)). (2)

Considering that the container image is prone to various
degradations during network transmission, we pre-define N
learnable embedding tensors as degradation prompts P =
[P1,P2, . . . ,PN ], where N denotes the number of degra-
dation types and is set to 3. These learned prompts P can

adaptively learn a diverse range of degradation representa-
tions and are integrated with the intrinsic features extracted
from Irec, enabling the proposed IBSN to handle multiple
types of degradations using a single set of parameters. To
better foster the interaction between the input features Fc

and the degradation prompt P, the features Fc are passed to
a global average pooling (GAP) layer, a 1×1 convolution,
and a softmax operator to produce a set of dynamic weight
coefficients. Each degradation prompt Pi is combined us-
ing these dynamic coefficients wp⊛i and subsequently inte-
grated via an upsampling operator ↑ and 3×3 convolution
to obtain the enhanced representation Pc.

Pc = Conv3×3((
∑N

i=1
wp⊛iPi)↑),

where wp = Softmax (Conv1×1 (GAP (Fc))) .
(3)

Finally, we utilize a 3×3 convolution to fuse the learned
degradation representation conditioned on the extracted fea-
tures Fc to enrich the degradation-specific context, obtain-
ing Ẑ. This process can be formulated as:

Ẑ = Conv3×3 ([Pc;Fc]) ∈ R
H
2 ×W

2 ×12. (4)

4.4. Bit Encryption and Recovery Modules

As shown in Fig. 4, to encode the copyright watermark
wcop into Imed, we firstly expand wcop∈{0, 1}L via stacked
MLPs and reshape it into several L×L message feature
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Table 1. Localization precision (F1-Score) and bit accuracy (BA)
comparison with other competitive methods on [9, 16, 20, 58].

Method CAISAv1 [9] Coverage [58] NIST16 [16] Columbia [20]
F1 BA(%) F1 BA(%) F1 BA(%) F1 BA(%)

ManTraNet [63] 0.320 - 0.486 - 0.225 - 0.650 -
SPAN [22] 0.169 - 0.428 - 0.363 - 0.873 -

CAT-Net v2 [32] 0.852 - 0.582 - 0.417 - 0.923 -
OSN [61] 0.676 - 0.472 - 0.449 - 0.836 -

MVSS-Net [8] 0.650 - 0.659 - 0.372 - 0.781 -
PSCC-Net [39] 0.670 - 0.615 - 0.210 - 0.760 -

TruFor [17] 0.822 - 0.735 - 0.470 - 0.914 -
EditGuard (Ours) 0.954 99.91 0.955 100 0.911 99.88 0.988 99.93

Tampered Ours Ground TruthOSNMVSS-Net PSCC-Net

Figure 6. Localization precision comparisons of our EditGuard
and competitive methods [8, 39, 61] on four classical benchmarks.

maps. Meanwhile, Imed is fed to a U-style feature enhance-
ment network to extract features of each downsampling and
upsampling layer. Finally, the message features will be up-
scaled and integrated with multi-level image features via the
fusion mechanism [21, 62], achieving the modulation of bit-
image information. In the decoding end, Irec is fed into a
U-shaped sub-network and downsampled to a size of L×L.
The recovered copyright watermark ŵcop is then extracted
via an MLP. More details are presented in S.M..

4.5. Construct EditGuard via the IBSN

To stabilize the optimization of the proposed IBSN, we pro-
pose a bi-level optimization strategy. Given an arbitrary
original image Imed and watermark wcop, we first train the
bit encryption and recovery module via the ℓ2 loss.

ℓcop = ∥Icon − Imed∥22 + λ ∥ŵcop −wcop∥22 , (5)

where λ is set to 10. Furthermore, we freeze the weights of
BEM and BRM and jointly train the IHM and IRM. Given
a random original image Iori, localization watermark Wloc

and copyright watermark wcop, the loss function is:

ℓloc = ∥Îori−Iori∥1+α ∥Icon − Iori∥22+β∥Ŵloc−Wloc∥1, (6)

where α and β are respectively set to 100 and 1. During
training, we only introduced degradations to Icon without
being exposed to any tampering. After acquiring a pre-
trained IBSN, we can construct the proposed EditGuard via
the components of IBSN. As plotted in Fig. 4, the dual-
watermark encoder of EditGuard is composed of IHM and
BEM, which correspond to the localization and copyright
watermarking in Fig. 3 respectively. The copyright ex-
tractor strictly corresponds to BRM. The tamper locater

Table 2. Visual quality of the container image Icon and bit accu-
racy comparison with other pure watermarking methods.

Method Image Size M. L. PSNR (dB) SSIM NIQE(↓) BA(%)
MBRS [26] 128×128 30 26.57 0.886 7.219 100

CIN [44] 128×128 30 41.35 0.981 7.171 99.99
PIMoG [10] 128×128 30 36.22 0.941 7.113 99.99

SepMark [62] 128×128 30 35.42 0.931 7.095 99.86
EditGuard 128×128 30 36.93 0.944 5.567 99.89
EditGuard 512×512 64 37.77 0.949 4.257 99.95

includes IRM and a mask extractor (ME). Note that we
need to pre-define a localization watermark Wloc, which
is shared between the encoding and decoding ends. The
choice of Wloc is very general to our method. It can be any
natural image or even a solid color image. Finally, by com-
paring the pre-defined watermark Wloc with the decoded
one Ŵloc, we can obtain a binary mask M̂∈RH×W :

M̂[i, j] = θτ (max(|Ŵloc[i, j, :]−Wloc[i, j, :]|)). (7)

where i ∈ [0, H) and j ∈ [0,W ). θτ (z) = 1 (z ≥ τ ). τ is
set to 0.2. | · | is an absolute value operation.

5. Experiments
5.1. Implementation Details

We trained our EditGuard via the training set of COCO [38]
without any tampered data. Thus, for tamper localization,
our method is actually zero-shot. The Adam [30] is used
for training 250K iterations with β1=0.9 and β2=0.5. The
learning rate is initialized to 1×10−4 and decreases by half
for every 30K iterations, with the batch size set to 4. We
embed a 64-bit copyright watermark and a simple localiza-
tion watermark such as a pure blue image ([R, G, B] = [0,
0, 255]) to original images. Following [8, 17, 39], F1-score,
AUC, IoU, and bit accuracy are used to evaluate localization
and copyright protection performance. Since no prior meth-
ods can simultaneously achieve this dual forensics, we con-
ducted separate comparisons with tamper localization and
image watermarking methods.

5.2. Comparison with Localization Methods

For a fair comparison with tamper localization methods, we
conducted extensive evaluations on four classical bench-
marks [9, 16, 20, 58], as reported on Tab. 1. Since Edit-
Guard is a proactive approach, we initially embed water-
marks into authentic images and then paste the tampered
areas into the container images. Remarkably, even for
tamper types that existing methods specialize in, the lo-
calization accuracy of EditGuard consistently outperforms
the SOTA method [17] across four datasets by margins of
0.102, 0.116, 0.441, and 0.065 in F1-score without any la-
beled data or tampered samples required, which verifies
the superiority of our proactive localization mechanism. As
shown in Fig. 6, our EditGuard can precisely pinpoint pixel-
level tampered areas but other methods can only produce a
rough outline or are only effective in some cases. Mean-
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Table 3. Comparison with other competitive tamper localization methods under different AIGC-based editing methods. Note that † denotes
the network finetuned in our constructed AGE-Set-C.

Method Stable Diffusion Inpaint [51] Controlnet [72] SDXL [49] RePaint [43] Lama [57] FaceSwap [60]
F1 AUC IoU BA(%) F1 AUC IoU BA(%) F1 AUC IoU BA(%) F1 AUC IoU BA(%) F1 AUC IoU BA(%) F1 AUC IoU BA(%)

MVSS-Net [8] 0.178 0.488 0.103 - 0.178 0.492 0.103 - 0.037 0.503 0.028 - 0.104 0.546 0.082 - 0.024 0.505 0.022 - 0.285 0.612 0.192 -
OSN [61] 0.174 0.486 0.101 - 0.191 0.644 0.110 - 0.200 0.755 0.118 - 0.183 0.644 0.105 - 0.170 0.430 0.099 - 0.308 0.791 0.171 -

PSCC-Net [39] 0.166 0.501 0.112 - 0.177 0.565 0.116 - 0.189 0.704 0.115 - 0.140 0.469 0.109 - 0.132 0.329 0.104 - 0.157 0.346 0.180 -
IML-VIT [45] 0.213 0.596 0.135 - 0.200 0.576 0.128 - 0.221 0.603 0.145 - 0.103 0.497 0.059 - 0.105 0.465 0.064 - 0.105 0.465 0.064 -
HiFi-Net [18] 0.547 0.734 0.128 - 0.542 0.735 0.123 - 0.633 0.828 0.261 - 0.681 0.896 0.339 - 0.483 0.721 0.029 - 0.781 0.890 0.478 -

MVSS-Net† [8] 0.694 0.939 0.575 - 0.678 0.925 0.558 - 0.482 0.884 0.359 - 0.185 0.529 0.111 - 0.393 0.829 0.275 - 0.459 0.739 0.333 -
EditGuard (Ours) 0.966 0.971 0.936 99.95 0.968 0.987 0.940 99.96 0.965 0.989 0.936 99.96 0.967 0.977 0.938 99.95 0.965 0.969 0.934 99.95 0.896 0.943 0.876 99.86
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Figure 7. Visual results of the container image Icon and the error
map of the proposed EditGuard. Here, localization and copyright
watermarks are randomly selected from the dataset.

while, our bit accuracy remains over 99.8% while all other
methods can not realize effective copyright protection.

5.3. Comparison with Watermarking Methods

To evaluate the visual quality of Icon, we compared Edit-
Guard with other watermarking methods on 1K testing im-
ages from COCO [38] under the tampering of stable diffu-
sion inpaint [51]. For a fair comparison, we also retrained
our EditGuard on 128×128 original images and 30 bits.
Tab. 2 reports that the fidelity of our container image far sur-
passes that of SepMark [62], PIMoG [10], and MBRS [26]
but is slightly inferior to CIN [44]. Meanwhile, our method
exhibits the best performance in perceptual quality mea-
sures like NIQE. As shown in Fig. 7, dual-watermarked
images do not have noticeable artifacts and noise, making
them imperceptible to the human eyes. When suffer mali-
cious tampering, our method outperforms SepMark and is
very close to PIMoG and CIN in bit accuracy. Note that
other competitive methods only hide 30 bits, with a capac-
ity of 30/(128×128). In contrast, our EditGuard hides both
an RGB localization watermark and a 1D copyright water-
mark, with a capacity far greater than 30/(128×128). Here,
we do not claim to achieve the best visual quality and bit
accuracy, but just to demonstrate that our method is compa-
rable to the current image watermarking methods.

5.4. Extension to AIGC-based Editing Methods

Dataset Preparation: We constructed a dataset tailored
for AIGC Editing methods, dubbed AGE-Set, comprising
two sub-datasets. The first AGE-Set-C is a batch-processed
coarse tamper dataset. Its original images are sourced from
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Figure 8. Localization performance comparisons of our EditGuard
and other methods [8, 18, 39, 61] on our constructed AGE-Set-C.

COCO 2017 [38] and CelebA [41], containing 30K training
images and 1.2K testing images. We used some SOTA edit-
ing methods such as Stable Diffusion Inpaint [51], Control-
net [72], SDXL [49] to manipulate images with the prompt
to be “None”, and employed some unconditional methods
like Repaint [43], Lama [57], and Faceswap [60]. Note
that we only use the tampered data to train other meth-
ods, not our EditGuard. The second sub-dataset AGE-
Set-F includes 100 finely edited images. It is edited man-
ually via some sophisticated software such as SD-Web-UI,
Photoshop, and Adobe Firefly. These AIGC-based editing
methods can achieve a good fusion of the tampered and un-
changed areas, making it hard for the naked eye to catch
artifacts. More details are presented in S.M..

AGE-Set-C: Tab. 3 presents the comparison of our Edit-
Guard and some SOTA tamper localization methods [8, 18,
39, 45, 61]. We observe that the F1-scores of other pas-
sive forensic methods are generally lower than 0.7 when
applied to AGE-Set-C. Meanwhile, even when we try our
best to finetune MVSS-Net using AGE-Set-C, the accu-
racy of MVSS-Net† remains unsatisfactory, and they exhibit
catastrophic forgetting across various tamper methods. In
contrast, our method can guarantee an F1-score and AUC
of over 95%, maintaining around 90% IOU, regardless of
tampering types. As shown in Fig. 8, our EditGuard can ac-
curately capture these imperceptible tampering traces pro-
duced by AIGC-based editing methods, but other methods
are almost ineffective. Moreover, our EditGuard can effec-
tively recover copyright information with a bit accuracy ex-
ceeding 99.8%. Noting that none of the comparison meth-
ods offer copyright protection capabilities.

AGE-Set-F: To further highlight the practicality of
our EditGuard, we conducted subjective comparisons with
other methods on the meticulously tampered AGE-Set-F.
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Figure 9. Localization precision comparisons of our EditGuard and other competitive methods on the meticulously tampered AGE-Set-F.

Table 4. Localization and bit recovery performance of our Edit-
Guard and MVSS-Net† [8] under different levels of degradations.

Methods Metrics Clean Gaussian Noise JPEG Poisson
σ=1 σ=5 Q=70 Q=80 Q=90

MVSS-Net† [8]
F1 0.694 0.644 0.619 0.458 0.507 0.558 0.652

BA(%) - - - - - - -

EditGuard (Ours) F1 0.966 0.937 0.932 0.920 0.920 0.925 0.943
BA(%) 99.95 99.94 99.37 97.69 98.16 98.23 99.91

The tamper types in this subset did not appear in the training
set. As shown in Fig. 9, when faced with real-world tam-
pering, even the most powerful tamper localization meth-
ods almost entirely fail. This is due to their mechanisms to
look for image artifacts and explore instance-wise seman-
tic information. However, our EditGuard, which locates
tampered masks via the natural fragility and locality of I2I
steganography, can still clearly annotate the tampered area.

5.5. Robustness Analysis

As shown in Tab. 4, we conducted robustness analysis
on the tampering of “Stable Diffusion Inpaint” [51] under
Gaussian noise with σ=1 and 5, JPEG compression with
Q=70, 80 and 90, and Poisson noise with α=4 [71]. We
observed that our method still maintains a high localiza-
tion accuracy (F1-score>0.9) and bit accuracy with a very
slight performance decrease under various levels of degra-
dations, while MVSS-Net† [8] exhibits a noticeable perfor-
mance degradation compared to its results in clean condi-
tions. It is attributed to our prompt-based estimation that
can effectively learn the degradation representation.

5.6. Ablation Study

To verify the effectiveness of each component of the Edit-
Guard, we conducted ablation studies on bi-level optimiza-
tion (BO), lightweight feature interaction module (LFIM),
transformer block (TB), and prompt-based fusion (PF) un-
der the tampering of “Stable Diffusion Inpaint”. As listed
in Tab. 5, without BO, the joint training of all components

Table 5. Abalation studies on the core components of EditGuard.
Case Degradation Type D(·) PF TB LFIM BO F1 AUC IoU BA(%)
(a) Clean ✓ ✓ ✓ - - - 49.17
(b) Clean ✓ ✓ ✓ 0.950 0.960 0.904 99.73
(c) Clean ✓ ✓ ✓ 0.957 0.966 0.927 99.51
(d) Random Degradations ✓ ✓ ✓ 0.903 0.933 0.841 99.12

Ours Clean ✓ ✓ ✓ ✓ 0.966 0.971 0.936 99.95
Random Degradations ✓ ✓ ✓ ✓ 0.938 0.964 0.887 99.36

cannot converge effectively, resulting in bit accuracy that
is close to random guessing. Without LFIM and TB, the
IoU of EditGuard will suffer 0.032 and 0.009 declines since
these two modules can better perform feature fusion. With-
out PF, the robustness of the EditGuard will significantly de-
cline. We observed that the F1/AUC/IoU of our method far
surpasses that of case (d) by 0.035/0.031/0.046 under “Ran-
dom Degradations”, which indicates that the PF effectively
enables a single network to support watermark recovery un-
der various degradations. “Random Degradations” denotes
that we randomly set the D(·) to various levels of Gaussian
noise, Poisson noise, and JPEG compression.

6. Conclusion
We present the first attempt to design a deep versatile water-
marking mechanism EditGuard. It enhances the credibil-
ity of images by embedding imperceptible localization and
copyright watermarks, and decoding accurate copyright in-
formation and tampered areas, making it a reliable tool for
artistic creation and legal forensic analysis. In the future,
we will focus on improving the robustness of EditGuard
and strive not only to offer pixel-wise localization results
but also to provide semantic-wise outcomes. Additionally,
we plan to further expand EditGuard to a broader range of
modalities and applications, including video, audio, and 3D
scenes. Our efforts at information authenticity serve not
only the AIGC industry, but the trust in our digital world,
ensuring that every pixel tells the truth and the rights of each
individual are safeguarded.
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