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Abstract

Extending large image-text pre-trained models (e.g.,
CLIP) for video understanding has made significant ad-
vancements. To enable the capability of CLIP to perceive
dynamic information in videos, existing works are dedicated
to equipping the visual encoder with various temporal mod-
ules. However, these methods exhibit “asymmetry” between
the visual and textual sides, with neither temporal descrip-
tions in input texts nor temporal modules in text encoder.
This limitation hinders the potential of language supervi-
sion emphasized in CLIP, and restricts the learning of tem-
poral features, as the text encoder has demonstrated limited
proficiency in motion understanding. To address this issue,
we propose leveraging “MoTion-Enhanced Descriptions”
(MoTED) to facilitate the extraction of distinctive tempo-
ral features in videos. Specifically, we first generate dis-
criminative motion-related descriptions via querying GPT-
4 to compare easy-confusing action categories. Then, we
incorporate both the visual and textual encoders with addi-
tional perception modules to process the video frames and
generated descriptions, respectively. Finally, we adopt a
contrastive loss to align the visual and textual motion fea-
tures. Extensive experiments on five benchmarks show that
MoTED surpasses state-of-the-art methods with convincing
gaps, laying a solid foundation for empowering CLIP with
strong temporal modeling.

1. Introduction
Recent years have witnessed remarkable achievements in
contrastive language-image pre-training models [9, 25, 36,
60, 87, 88], with CLIP [60] emerging as the front-runner.
Through language supervision with a vast collection of 400
million image-text pairs, CLIP has achieved exceptional im-
age comprehension and unprecedented zero-shot general-
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Figure 1. (a) Previous methods [27, 49, 75, 78] align the visual
embeddings with the textual embeddings derived from category
names. (b) Our work symmetrically aligns the spatial/temporal
visual embeddings with class descriptions and motion descriptions
correspondingly. (c) The descriptions generated by large language
modes (e.g., GPT-4 [50]) enhance the conceptual definitions and
discriminative details of motions.

ization. This breakthrough has opened up new possibilities
for leveraging the power of large-scale pre-trained mod-
els to comprehend videos. It has also introduced a new
paradigm [26, 40, 49, 52, 58, 75, 80] that endows image-
based CLIP to effectively perceive dynamic information for
video recognition.

To equip CLIP with motion perception, existing works
propose to incorporate various temporal modules into the
visual encoder. These temporal modules are additional tun-
able parameters, including designed efficient units between
pre-trained transformer blocks [49, 75], and parallel struc-
tures to disentangle the temporal modeling out of the spa-
tial modeling [40, 58]. However, while considerable effort
has been put into capturing temporal visual features from
videos, these methods have paid little attention to the in-
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put text and text encoder, leading to an imbalance between
the visual and textual alignment. When transferring to the
classification task of video recognition (Fig. 1(a)), the only
available text is the “category names” of the actions, e.g.,
“clapping” and “slapping”. These coarse-grained word-
level descriptors lack clear descriptions and explanations,
making it difficult to distinguish between them. For in-
stance, “slapping” refers to a quick hand movement strik-
ing against something, while “clapping” refers to the act of
striking both hands together rapidly. The scarcity of tex-
tual motion information contradicts the language supervi-
sion principle of CLIP. Furthermore, it’s observed that the
CLIP text encoder delivers a strong bias towards spatial
concepts (e.g., nouns) [5, 30, 47, 63], with a weak under-
standing of temporal cues (e.g., verbs). These issues signif-
icantly limit the effectiveness of extending CLIP with mo-
tion modeling for video understanding.

To overcome the limitations of language supervision on
temporal modeling, we propose a novel approach that sym-
metrically aligns the spatial/temporal visual embeddings
with class descriptions (“slapping”) and motion descrip-
tions correspondingly (“a quick hand movement striking
against something”). We introduce the MoTion-Enhanced
Descriptions (MoTED) as the language supervision for the
visual temporal modules. In the implementation, we en-
counter two main challenges: i) how to generate motion-
related descriptions? ii) how to effectively utilize descrip-
tions as supervision? To tackle the first challenge, we aim
for clear, detailed, and distinctive descriptions in the text.
With the recent advancements in large language models
(LLMs) [4, 11, 50], it has become possible to automatically
generate conceptual descriptions for corresponding actions.
As for the second challenge, we disentangle the spatial and
temporal learning by constructing a temporal encoder, in
parallel to the CLIP image encoder, to extract the temporal
features aligned with motion-enhanced descriptions.

To be specific, we employ GPT-4 [50] to generate de-
scriptions by posing a query: “Q: what is the motion con-
cept of <CLASS>? A: ” (as shown in Fig. 1(c)). How-
ever, our empirical findings indicate that only the concept
descriptions offer marginal assistance in motion perception,
particularly on datasets such as Something-Something-V2
(SSv2) [20]) that necessitate the differentiation of similar
classes using intricate motion cues. To mitigate this is-
sue, we propose to incorporate related top-k actions as con-
text for the LLMs to generate more discriminative descrip-
tions. These generated texts are then passed through the
CLIP text encoder to extract textual motion representations,
where an adapter is utilized to eliminate the biases in the
original model. Correspondingly, the temporal module in
the visual encoder processes the video to extract dynamic
features and aligns them with the generated textual descrip-
tions through contrastive learning. Finally, these two sets of

features are independently fused with the original CLIP’s
text and image features using cross-attention, and subse-
quently aligned. Evaluated on two supervised video recog-
nition benchmarks, i.e., Kinetics-400 [28] and SSv2 [20], as
well as three zero-shot benchmarks, i.e., Kinetics-600 [12],
HMDB51 [24], UCF101 [65], the proposed MoTED sur-
passes state-of-the-art methods with convincing gaps, in-
dicating the effectiveness of aligning enhanced motion de-
scriptions with the temporal embedding of input videos.

We summarize the contributions as follows:
• We present a new perspective that underscores the signif-

icance of textual side on par with visual side. By delving
into in-depth distinguishing descriptions of actions, we
make the first attempt to reveal the potential of language
supervision as emphasized in CLIP.

• We propose MoTED that leverages LLMs to automati-
cally generate action descriptions, and mining distinctive
descriptions among similar actions. Then, we use a par-
allel path for both visual and textual motion modeling.

• We evaluate our approach on supervised as well as gener-
alization tasks. Extensive experiments demonstrate the
superiority and good generalization ability of the pro-
posed method.

2. Related Work
Vision-Language Pre-training. In recent years, Vision-
Language Pre-training (VLP) [9, 25, 36, 45, 46, 60, 76,
87, 88] has made remarkable progress. One of the most re-
markable and influential works is CLIP [60], which adopts
the contrastive language-image pretraining paradigm. Fol-
lowing that, this paradigm has shown impressive zero-
shot generalization capabilities on various image-related
tasks [31, 35, 37, 43, 82, 90]. However, pre-training a
language-video model [34, 81] is prohibitively expensive,
as it requires large-scale video-text data and extensive train-
ing resources (e.g., thousands of GPU days). Meanwhile,
transferring language-image pre-trained models to the video
domain [10, 26, 40, 49, 52, 58, 75, 78] has captured sig-
nificant attention due to its striking performance and train-
ing efficiency. For instance, X-CLIP [49] integrates the
CLIP image encoder with a cross-frame attention module
for temporal modeling. Vita-CLIP [78] utilizes multi-modal
prompting techniques to learn video and text-specific con-
text vectors. DiST [58] is the most related work that also
disentangles spatial and temporal learning in the visual side.
In contrast, our MoTED highlights the effectiveness of tem-
poral disentangling both in the visual and textual sides, su-
pervised by the detailed descriptions of motions.
Video Recognition. The conventional approaches in video
recognition primarily focus on spatio-temporal learning un-
der fully-supervised settings, where all categories are pre-
defined. These approaches have achieved remarkable per-
formance using various architectures, including convolution
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Figure 2. The overall framework of MoTED. Building upon the dual image and text encoders initialized by CLIP [60], we extend the
capability to perceive motion information symmetrically in both sides. In the text side, the motion-related conceptual and discriminative
descriptions are generated via querying LLMs (e.g., GPT-4) using category names as input. In the vision side, a motion encoder is built to
extract temporal dynamics given densely-sampled frames and integrated with the middle-layer features from image encoder. To align the
motion embeddings and video embeddings from both sides, it employs two contrastive losses, respectively.

Related work Task Action annotation Example

Dist. Sup. [39] pretrain event description ‘insert window mounting bolts’

Weakly Sup. [14] pretrain event description ‘take up the iron clamp’

LAVILA [89] pretrain event description ‘ a lady walks past a car’

VFC [47] VL transfer
learning event description ‘two brown horses eating grass’

MoTED (Ours) VL transfer
learning

motion concept
description

‘slapping: a quick hand movement
striking against something’

Table 1. Comparison of our method with related works focused on
action annotations. ‘VL’ is the abbreviation of ‘vision-language’.

networks [7, 17, 21, 59, 64, 67–69, 71, 73], and vision trans-
formers [1, 2, 6, 16, 32, 33, 38, 42, 48, 54, 55, 62]. In ad-
dition to the architecture design, self-supervised video rep-
resentation learning [13, 18, 19, 23, 53, 57, 66, 74, 77, 79]
has also gained popularity recently. However, these meth-
ods operate purely within the visual domain and meet bot-
tlenecks of recognizing unseen or unfamiliar categories
in real-world applications. Fortunately, the advance of
large language models (LLMs) [4, 51] provides opportu-
nities to mitigate this issue, due to their powerful capa-
bilities of encoding world knowledge [29]. Recent stud-
ies [44, 56, 83, 85] have verified that factual sentences
generated by LLMs can improve zero-shot image recog-
nition accuracy. VFC [47] leverages PaLM [11] to create
verb-focused hard negatives to enhance the understanding
of verbs in video models. LSS [61] integrates language-
based action concepts with self-supervised learning to adapt
an image model to video domain. Our MoTED employs the
descriptions that delineate the labeled classes and further
accentuate the useful traits distinguishing similar classes.

Related work LLMs role Example

Chatvideo
[72]

manager&
summarize

Input: ‘Summarize the activity in video’
Output: ‘A person is cooking in the kitchen’

MM-REACT
[86]

execution&
summarize

Input: ‘Please create a summary of the video’
Output: ‘The speaker is making a BLT sandwich ...’

MiniGPT4 [91]/
LLAVA [41]

KB&
data clean

Input: ‘Describe this image in detail.’
Output: ‘The image shows a group of musicians ...’

MoTED
(Ours)

generate
descriptions

Input: ‘What is the motion concept of slapping’
Output: ‘A quick hand movement striking against ...’

Table 2. Comparison of our method with related works that take
LLMs as a knowledge base (KB) and automatically annotated tool.

3. Method

The generic pipeline of MoTED is presented in Fig. 2,
which consists of three steps: (1) Motion Description Gen-
eration to obtain conceptual descriptions Dcon and discrim-
inative descriptions Ddis, via querying language models
given the category names of the target video dataset in Sec.
3.1; (2) Textual Motion Adaptation to obtain the text em-
beddings that extract the motion semantics given the gen-
erated descriptions Dcon and Ddis in Sec. 3.2; (3) Visual
Motion Extraction to obtain the visual embeddings that
extract the motion semantics given input video frames in
Sec. 3.3. Overall, the framework is trained in an end-to-end
contrastive manner as illustrated in Sec. 3.4.

3.1. Motion Description Generation

The first step is to obtain a set of appropriate descrip-
tions for each category. Given a video dataset with mul-
tiple different categories (e.g., Kinetics400 [28] with 400
action classes), the descriptions are generated automati-
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cally utilizing GPT-4 [50]. Note that, the generation pro-
cess is agnostic to this choice and other LLMs can be
used instead. For each category name, we query GPT-
4 to provide the motion concepts using the following
prompt: “ Q: What is the motion concept in
a video of <category name>? A:”. As shown
in Fig. 1, the generated concept descriptions often cover
moving objects, object interactions, moving directions and
speeds, etc. But the output of LLMs can also be open-ended
duplicates or anything in natural language (as illustrated in
the Appendix). To control the generated descriptions to be
concise and motion-related, we adopt a two-shot prompt in
which we include two exemplars of question-answer for the
same operation that is being queried.

Besides the conceptual descriptions Dcon, we further
investigate into the confusing actions that are characterized
by their distinct differences from similar categories. To
this end, we first compute the cosine distance of text
embeddings for every two categories. Then we select top-k
similar classes (e.g., k=5) and query GPT-4 to generate
motion characteristics for distinguishing the similar classes
using the following prompt: “Q: What are the
useful features for distinguishing the
original class <category1 name> from
the similar class <category2 name>?
A:”. Different from the conceptual descriptions Dcon

that are mainly determined by the general knowledge of
LLMs, the descriptions Ddis further contain task-specific
information that the downstream task emphasizes.

In this way, given a dataset of N categories, we can ob-
tain the motion-enhanced N ∗ (k + 1) descriptions, con-
sisting of 1 conceptual description and k discriminative de-
scriptions for each category. The above generation process
is completed before the training of whole framework.

The detailed comparisons of action annotations and
LLM-based generations are presented in Tab. 1 and Tab. 2,
respectively. Tab. 1 shows that existing works employ an-
notations that describe the action events in a subject-verb-
object manner, which are object-centric. In contrast, our
generated annotations are motion-related, object-agnostic
and to supervise the learning of visual motion features with
the world knowledge of motion concepts. In Tab. 2, LLMs
are mainly applied in generative tasks, to summarize query
results and generate general responses, or to obtain in-
struction data to align with human preference. In contrast,
we apply LLMs to obtain descriptions of motion concept,
aligned with the temporal visual features.

3.2. Textual Motion Adaptation

After generating the motion-enhanced descriptions, the sec-
ond step is to perceive the motion cues within the descrip-
tions and aggregate them into a compact motion-enhanced
embedding. Given a set of motion-enhanced descriptions D

=
{
Di

con,D
i,j
dis

}
where i ∈ [1, N ] and j ∈ [1, k], we extract

normalized feature embedding ei by using the text encoder
ftxt: ei = ftxt(di), where di is a motion-enhanced descrip-
tion sampled from D. In this way, we obtain the text embed-
dings Etxt ∈ RN×(k+1)×C , where C denotes the channel
number of each embedding. Noticeably, the parameters of
text encoder is frozen and initialized by CLIP [60] to inherit
its capacity of encoding visual-aligned semantics.

However, as CLIP is pre-trained on image-text paired
corpus, the text encoder has a strong bias towards spatial
appearance of objects and backgrounds, instead of tempo-
ral motions [5, 30, 47, 63]. To adapt the text encoder to
understand the motion-enhanced descriptions, we introduce
a Text Motion Adapter, which consists of a multi-head self-
attention (MHSA) [70]. The adapter is parameter-tunable
and takes Etxt as input to learn the information dependen-
cies between motion-enhanced descriptions. To aggregate
the motion semantics for each category, we perform adap-
tive pooling to obtain the motion-enhanced embeddings
Em

txt ∈ RN×1×C .

3.3. Visual Motion Extraction

In the visual side, as shown in Fig. 3, it comprises of
two components: (i) The image encoder adopts the CLIP
pre-trained Vision Transformer (ViT), which extracts frozen
features for sparse frames with powerful spatial semantics.
(ii) The motion encoder takes dense frames as input to cap-
ture the local temporal cues, integrated with the global tem-
poral dynamics from middle-layer image features.

3.3.1 Image Encoder

Given a video clip XS ∈ RT×H×W×3 (T , H , and W rep-
resent the frame number, height, and width, respectively),
the image features are extracted individually for several
sparse frames. Following ViT [15], each frame is divided
into K = H

P × W
P patches, and the size of each patch is

denoted as P × P . These patches are then projected us-
ing a fully connected layer, referred to as the 2D stem in
Fig. 3. This projection generates a sequence of patch em-
beddings [x

(0)
t,cls,x

(0)
t,1 ,x

(0)
t,2 , · · · ,x

(0)
t,K ] + espatial, where t =

{1, · · · , T}, xcls is an additional learnable token (termed
as “class embedding”), and espatial denotes spatial position
embedding. Assuming that the spatial encoder has L Trans-
former blocks, the features of the lth layer for the tth frame
can be extracted by:

X
(l)
t = Transformer(l)(X(l−1)

t ) ∈ R(K+1)×C , (1)

where l = {1, · · · , L} denotes the layer index. The class
embeddings of T frames in the lth layer is termed as X(l) =

[X
(l)
1 , · · · ,X(l)

T ] ∈ RT×1×C . Benefit from the CLIP pre-
trained parameters, the class embeddings X(L) aggregate
powerful spatial semantics within each frame.
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Figure 3. The structural details of MoTED in the vision side.

3.3.2 Motion Encoder

To fully extract the motion information in videos, the tem-
poral input XT ∈ RαT×H×W×3 for the motion encoder is
sampled around the spatial input XS by α times. In this
study, we set α = 2 by default, as empirically studied in
[17, 58]. Then, XT is projected by a 3D convolution, i.e.,
the 3D stem in Fig. 3, for patch embedding. The kernel size
and stride of the 3D stem are both P in spatial dimension
and α in temporal dimension. Thus the number of temporal
patch tokens are the same with that in the image encoder,
which makes it convenient to integrate the spatial and tem-
poral features. Thus the projected temporal features can be
formulated as: Z(0) = Conv3d(XT ) ∈ RT×K×C , where
K = H

P × W
P . Then, a series of Temporal Blocks are de-

signed to extract motion patterns, which can be written as:

Z(l) = Temp-Block(l)(Z(l−1),X(l−1)) ∈ RT×K×C , (2)

where the function Temp-Block(·) performs temporal mod-
eling integrated with the spatial features X(l−1).

Following the effective and efficient design philosophy
in [32, 33], the temporal block consists of the following
three modules: (i) Local Motion Extraction (LME). Since
3D convolution can capture detailed and local spatiotem-
poral features, by processing each pixel with context from
a small 3D neighborhood (e.g., 2 × 16 × 16), the tempo-
ral patch tokens Z(0) remain the nature of local motion
extraction. Then these tokens are flattened to a sequence
RTK×C and perform spatiotemporal learning via joint self-
attention modules [66] and token merging for efficiency [3].
(ii) Global Motion Extraction (GME). Given the class
embeddings X(l) that aggregate powerful spatial seman-
tics for each individual frame, we apply a cross-frame self-
attention module [49] to learn the global inter-frame inter-
actions. (iii) Feature Integration. After obtaining the local
and global motion features, we adopt a cross-attention mod-

ule, which takes local features as query and global features
as key/value, to complement the features for better tempo-
ral modeling. In this way, the output of the final temporal
block Z(L) aggregates powerful temporal dynamics within
the dense frames.

3.4. Training Loss

Following CLIP [60], we first apply adaptive pooling to ob-
tain a video-level motion embedding Z

(L)
avg ∈ R1×C . Then

we introduce a contrastive loss to align the visual and tex-
tual motion embeddings:

Lmotion = −log
exp(sim(Z

(L)
avg, ei)/τ)∑N

c=1 exp(sim(Z
(L)
avg, ec)/τ)

, (3)

where sim(·, ·) is the normalized cosine similarity, τ refers
to the temperature parameter. ei is a motion-enhanced text
embedding for the ith category.

Moreover, we adopt a cross-attention module to fuse the
visual motion features (as key/value) and image features (as
query) to obtain the compact video embedding vi. Simi-
larly, the fused text embedding e′i is acquired via a cross-
attention module. We introduce a contrastive loss to align
the visual and textual video-level embeddings:

Lvideo = −log
exp(sim(vi, e

′
i)/τ)∑N

c=1 exp(sim(vi, e′c)/τ)
. (4)

Compatible with CLIP training paradigm, the overall
framework is trained based on these two contrastive losses:

L = Lmotion + Lvideo. (5)

4. Experiments

4.1. Dataset and Implementation.

Datasets. In the supervised setting, we train on the train set
of Kinetics-400 (K400) [28] and Something-Something-V2
(SSv2) [20] and report supervised performance against ex-
isting methods on the validation sets of K400 and SSv2.
In the zero-shot setting, we train on the Kinetics-400 train-
ing set and evaluate on three datasets: Kinetics-600 (K600)
[12], HMDB51 [24] and UCF101 [65]. For zero-shot eval-
uation on K600, following [12], we use the 220 new cat-
egories outside of K400 for evaluation, and conduct eval-
uation three times, each time randomly sampling 160 cat-
egories for evaluation from the 220 categories. For zero-
shot evaluation on HMDB51 and UCF101, we follow [49]
and report average top-1 accuracy and standard deviation on
three splits of the test set.
Implementation Details. Following previous work [40,
58], we use the CLIP [60] pre-trained ViT-B/16, ViT-L/14
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Class Names Concept. Discr. SSv2 K400
✓ ✗ ✗ 65.7 82.9
✓ ✓ ✗ 66.0 84.5
✓ ✗ ✓ 69.9 84.0
✓ ✓ ✓ 70.1 85.1

(a) “Concept.” is the abbreviation of “conceptual
descriptions”. “Discr.” is the abbreviation of “dis-
criminative descriptions”.

M.Enc. Adapter. SSv2 K400
✗ ✗ 64.3 81.5
✓ ✗ 68.6 83.4
✗ ✓ 66.2 83.8
✓ ✓ 70.1 85.1

(b) “M.Enc.” is the separated motion encoder
where motion modules are parallel with CLIP vi-
sual encoder. “Adapter” is the text motion adapter.

Text.Fuse. Vision.Fuse. SSv2 K400
✗ ✗ 68.3 83.6
✓ ✗ 68.9 84.2
✗ ✓ 69.5 84.5
✓ ✓ 70.1 85.1

(c) “Text.Fuse.” indicates feature fusion in the tex-
tual side. “Vision.Fuse.” indicates feature fusion
in the visual side.

Table 3. Ablations on Something-Something-V2 and Kinetics-400. The spatial encoder is a 8-frame vanilla ViT-B/16 pre-trained by
CLIP [60]. The inference protocol of all models and datasets are 3 clips × 1 center crop.
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Figure 4. Two cases to visualize the relevance [8] between text and image/motion features to highlight the information relevant to the
prediction. The different “regions of interest” and “words of importance” indicate that the motion and image features could be disentangled.

and ViT-L/14-336p as our image encoder. Unless other-
wise specified, we mark the default settings in the temporal
encoder in gray in Sec. 4.2. For simplicity, the ablation
studies are conducted based on ViT-B/16 with a low-rate
sampled 8 frames. We conduct the experiments with the
NVIDIA 32G V100 GPUs. More implementation details
(e.g., training and testing hyper-parameters) are described
in the Appendix.

4.2. Ablation and Analysis

Language Supervision. In this section, we aim to demon-
strate the significance of language supervision by compar-
ing different types of text descriptions. Tab. 3a presents a
comparison of three types of texts: category names, motion
concept descriptions, motion discriminative descriptions.
It reveals that the performance of action category names,
which contain the least information, is notably lower than
other results, particularly on the SSv2 dataset with abun-
dant temporal information. Although descriptions with only
action concepts show a slight improvement of 0.3%/1.6%,
they lack the vital information regarding the distinguish-
ing characteristics of the actions. As a result, the model
exhibits poor classification accuracy for similar categories.
On the other hand, when the discriminative descriptions
are adopted, the accuracy on SSv2 is improved noticeably
(+4.2%), revealing the significance of discriminative char-
acteristics for fine-grained datasets. Additionally, when the
full descriptions are utilized, the model’s performance ob-
tain the further gains of 4.4%/2.2%.

Disentangled Motion Modeling. Our method has an
advantage in allowing the learning of dynamic information
without interference, while preserving CLIP’s original spa-
tially transferable representation capabilities. To validate
this, we compared two different structures in Tab. 3b. For
the serial structure, additional dynamic modules are inserted
between the Transformer Blocks of each layer of the visual
encoder, resulting in a unified video representation. All the
texts are combined through the text encoder to obtain text
representations for alignment. It can be observed that the
parallel structure outperforms the serial structure, with im-
provements of 4.3% and 1.9% respectively. This demon-
strates the rationality of the parallel approach. Tab. 3b also
presents a comparison of introducing an adapter in the text
encoder. The model’s classification performance improved
by 1.9% and 2.3% after adding the adapter, indicating its
effectiveness in reducing bias in the text encoder.

Feature Fusion Direction. As shown in Tab. 3c, both
directions of information integration can improve perfor-
mances. The combination of the two can boost accu-
racy more significantly +1.8%/+1.5% on SSv2/K400, re-
spectively. This verifies the importance of spatio-temporal
blending for the parallel architectures. In our opinion, inde-
pendent learning of motion can effectively avoid excessive
reliance of the model on the previously learned spatial in-
formation. By using cross attention for fusion, it is possible
to effectively integrate features from two different dimen-
sions, ultimately forming the features of the target video
and achieving the best results.
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Method Pre-train Architecture Input Size FLOPs×Cr.×Cl. (T) Param (M) Frozen Top-1 Top-5

SlowFast [17] ImageNet-21K R101+NL 16× 2242 0.1× 3× 1 60 ✗ 63.1 87.6
ViViT FE [1] IN21K+K400 ViT-L 16× 2242 1.0× 3× 4 612 ✗ 65.4 89.8

MTV-B(320p) [84] IN21K+K400 - 32× 2242 0.9× 3× 4 310 ✗ 68.5 90.4
MViT [16] Kinetics-600 MViT-B-24 32× 2242 0.2× 3× 1 53 ✗ 68.7 91.5

Video Swin [42] IN21K+K400 Swin-B 32× 2242 0.3× 3× 1 60 ✗ 69.6 92.7
TAdaConvNeXtV2 [22] IN1K+K400 ConvNeXt-S 32× 2242 0.2× 3× 2 82 ✗ 70.0 92.0

EVL [40] CLIP-400M ViT-B 32× 2242 0.68× 1× 3 175 ✓ 62.4 -
ST-Adapter [52] CLIP-400M ViT-B 32× 2242 0.61× 1× 3 93 ✓ 69.5 92.6

DiST CLIP-400M ViT-B 32× 2242 0.65× 1× 3 105 ✓ 70.9 92.1
MoTED CLIP-400M ViT-B 8× 2242 0.18× 1× 3 112 ✓ 70.1 91.8
MoTED CLIP-400M ViT-B 16× 2242 0.34× 1× 3 112 ✓ 71.2 92.4
MoTED CLIP-400M ViT-B 32× 2242 0.68× 1× 3 112 ✓ 71.9 92.7

UnifromerV2 [32] CLIP-400M ViT-L 32× 2242 1.73× 1× 3 574 ✗ 73.0 94.5
TAdaFormer [22] CLIP-400M ViT-L 32× 2242 1.70× 2× 3 364 ✗ 73.6 -

EVL [40] CLIP-400M ViT-L 32× 2242 3.21× 1× 3 654 ✓ 66.7 -
EVL [40] CLIP-400M ViT-L 32× 3362 8.08× 1× 3 654 ✓ 68.0 -

ST-Adapter [52] CLIP-400M ViT-L 32× 2242 2.75× 1× 3 347 ✓ 72.3 93.9
DiST CLIP-400M ViT-L 32× 2242 2.83× 1× 3 336 ✓ 73.1 93.2

MoTED CLIP-400M ViT-L 8× 2242 0.78× 1× 3 346 ✓ 71.5 92.6
MoTED CLIP-400M ViT-L 16× 2242 1.49× 1× 3 346 ✓ 73.0 93.4
MoTED CLIP-400M ViT-L 32× 2242 2.89× 1× 3 346 ✓ 73.8 93.8

Table 4. Comparison with the state-of-the-art methods on Something-Something-V2. “Cr.” and “Cl.” are the abbreviation for “spatial
crops” and “temporal clips”. “Frozen” indicates freezing the CLIP pre-trained parameters.

Motion Modeling Visualization. In Fig. 4, we also per-
form the analysis of vision features generated by image and
motion encoder to investigate the learned patterns from lan-
guage supervision. Based on the reasoning tool [8], we de-
pict the attention maps of class token from the final trans-
former block of the image/motion stream encoder w.r.t. the
text encoder. It is observed that, for the case1 in Fig. 4, the
CLIP image encoder attends to both motion-relevant fore-
ground and motion-irrelevant background with a major fo-
cus on “surface”. In contrast, features extracted from the
motion modules concentrate on the motion-relevant regions
of the moving object, and emphasize the motion-related
words “sliding”. This phenomenon reveals that the mo-
tion features can complement the static spatial semantics of
objects in the image features via modeling object motions.
More cases can be accessed in the Appendix.

4.3. Fully-supervised Experiments

In the supervised setting, the results on SSv2 and K400 are
presented in Tab. 4 and Tab. 6, respectively. Compared with
EVL, our proposed MoTED introduces a similar temporal
module for CLIP visual encoder, but our method has a sig-
nificant improvement compared to EVL, with an improve-
ment of 9.5%/2.0% and 5.8%/1.5% on ViT-B and ViT-L
respectively on SSv2/K400. The performance gains greatly
demonstrate the rationality and effectiveness of using lan-

guage supervision. Interestingly, the performance gains are
particularly pronounced on SSv2. This is because SSv2 is a
fine-grained action classification task requiring stronger ac-
tion discrimination and perception of dynamic information.

Related work Visual
disentangle

Textual
disentangle K400 (Acc / ∆) SSv2 (Acc / ∆)

Previous SOTA ✗ ✗ 84.2 / - 69.5 / -
DiST [58] ✓ ✗ 85.0 / +0.8 70.9 / +1.4

MoTED (Ours) ✓ ✓ 86.2 / +1.2 71.9 / +1.0

Table 5. Comparison of our method with previous state-of-the-art
(SOTA) and the latest related work DiST.

Disentangling spatio-temporal learning is an effective
approach to endow the model with temporal capability. As
shown in Tab. 5, DiST focuses on temporal disentangling in
the visual side with gains of +0.8%/+1.4% on K400/SSv2.
Our study highlights the effectiveness of temporal disen-
tangling in the textual side with detailed descriptions of
motions, with further gains of +1.2%/+1.0%. This result
reveals that disentangling textual encoder is equally effec-
tive w.r.t. disentangling visual encoder for vision-language
transfer learning.

4.4. Zero-shot Experiments

Zero-shot generalization is an attractive characteristic of
CLIP-extended models, making them more practical in real
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Method Pre-train Architecture Input Size TFLOPs×Cr.×Cl. Param (M) Frozen Top-1 Top-5

SlowFast [17] - R101+NL 16× 2242 0.4× 3× 10 60 ✗ 79.8 93.9
TimeSformer [2] ImageNet-21K ViT-L 96× 2242 8.4× 3× 1 430 ✗ 80.7 94.7

MViT [16] - MViT-B 64× 2242 0.5× 1× 5 37 ✗ 81.2 95.1
ViViT FE [1] ImageNet-21K ViT-L 128× 2242 4.0× 3× 1 N/A ✗ 81.7 93.8

Video Swin [42] ImageNet-21K Swin-L 32× 2242 0.6× 3× 4 197 ✗ 83.1 95.9
TAdaConvNeXtV2 [22] ImageNet-21K ConvNeXt-B 32× 2242 0.3× 3× 4 146 ✗ 83.7 -

X-CLIP [49] CLIP-400M ViT-B 16× 2242 0.28× 3× 4 128 ✗ 84.7 96.8
ST-Adapter [52] CLIP-400M ViT-B 32× 2242 0.61× 1× 3 93 ✓ 82.7 96.2

EVL [40] CLIP-400M ViT-B 32× 2242 0.59× 1× 3 115 ✓ 84.2 -
DiST CLIP-400M ViT-B 32× 2242 0.65× 1× 3 112 ✓ 85.0 97.0

MoTED CLIP-400M ViT-B 8× 2242 0.18× 1× 3 116 ✓ 85.1 97.0
MoTED CLIP-400M ViT-B 16× 2242 0.34× 1× 3 116 ✓ 85.4 97.2
MoTED CLIP-400M ViT-B 32× 2242 0.68× 1× 3 116 ✓ 86.2 97.5

UnifromerV2 [32] CLIP-400M+K710 ViT-L 32× 2242 2.66× 2× 3 354 ✗ 89.3 98.2
TAdaFormer [22] CLIP-400M+K710 ViT-L 32× 2242 1.41× 4× 3 364 ✗ 89.5 -
ST-Adapter [52] CLIP-400M ViT-L 32× 2242 2.75× 1× 3 347 ✓ 87.2 97.6

EVL [40] CLIP-400M ViT-L 32× 2242 2.70× 1× 3 363 ✓ 87.3 -
DiST CLIP-400M ViT-L 32× 2242 2.83× 1× 3 343 ✓ 88.0 97.9

MoTED CLIP-400M ViT-L 8× 2242 0.78× 1× 3 349 ✓ 87.4 97.8
MoTED CLIP-400M ViT-L 16× 2242 1.49× 1× 3 349 ✓ 88.0 98.0
MoTED CLIP-400M ViT-L 32× 2242 2.89× 1× 3 349 ✓ 88.8 98.2

Table 6. Comparison with state-of-the-arts on Kinetics-400. “Cr.” and “Cl.” are the abbreviation for “spatial crops” and “temporal clips”.
“Frozen” indicates freezing the CLIP pre-trained parameters.

Method Model HMDB51 UCF101 K600
ActionCLIP [75] B/16 40.8±5.4 58.3±3.4 -

X-CLIP [49] B/16 44.6±5.2 72.0±2.3 65.2±0.4
Vita-CLIP [78] B/16 48.6±0.6 75.0±0.6 67.4±0.5

DiST B/16 55.4±1.2 72.3±0.6 -
MoTED B/16 58.2±1.1 78.3±0.6 69.9 ± 0.5

Table 7. Comparison of zero-shot accuracy with the state-of-the-
art CLIP-based methods on three datasets (e.g., HMDB51 [24],
UCF101 [65], and K600 [12]). “ ”: frozen backbone.

world applications. For zero-shot settings, we evaluate
MoTED on three widely used benchmarks. Following prior
work [49], we train the networks on the K400 training
set, then conduct the zero-shot evaluation on three unseen
datasets (i.e., UCF101, HMDB51 and K600), as shown in
Tab. 7. All models share the same architecture of “ViT-
B”, with 32 frames during inference. Compared with other
vison-language methods, MoTED achieves the better zero-
shot performances with a significant margin on HMDB51
(+3.8%), UCF101 (+6.0%) and K600 (+2.5%). Different
from X-CLIP [49], DiST [58], Vita-CLIP [78] that learns
motion representation with the supervision of action cate-
gory names solely, the proposed MoTED makes full use of
conceptual and discriminative descriptions and learn gen-
eral motion representations with the aid of language super-
vision. In addition, our method also has a relatively small

variance, only about 1%. We assume this is due to the ben-
efits brought by the rich content of the text, as detailed de-
scriptions can promote stable dynamic feature learning.

5. Conclusion

In this study, we aim to overcome the limitations of exist-
ing methods in extending large image-text pre-trained mod-
els for video understanding. The proposed MoTED frame-
work introduces Motion-Enhanced Descriptions, which are
applied to facilitate the extraction of unique temporal fea-
tures in videos. By generating motion-related descriptions
and incorporating perception modules, MoTED aligns vi-
sual and textual motion features using a contrastive loss.
Experimental results on five benchmarks demonstrate that
MoTED provides a strong basis for enhancing CLIP with
robust temporal modeling. In future works, we hope to fur-
ther dedicate to exploring the potential of language super-
vision and combining it with more powerful dynamic infor-
mation perception modules to achieve higher performance
in video recognition and make it truly practical.
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