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Abstract

Open-vocabulary object detection aims to detect novel
categories that are independent from the base categories
used during training. Most modern methods adhere to the
paradigm of learning vision-language space from a large-
scale multi-modal corpus and subsequently transferring the
acquired knowledge to off-the-shelf detectors like Faster-
RCNN. However, information attenuation or destruction
may occur during the process of knowledge transfer due
to the domain gap, hampering the generalization ability on
novel categories. To mitigate this predicament, in this pa-
per, we present a novel framework named BIND, standing
for Bulit-IN Detector, to eliminate the need for module re-
placement or knowledge transfer to off-the-shelf detectors.
Specically, we design a two-stage training framework with
an Encoder-Decoder structure. In the rst stage, an image-
text dual encoder is trained to learn region-word alignment
from a corpus of image-text pairs. In the second stage, a
DETR-style decoder is trained to perform detection on an-
notated object detection datasets. In contrast to conven-
tional manually designed non-adaptive anchors, which gen-
erate numerous redundant proposals, we develop an anchor
proposal network that generates anchor proposals with high
likelihood based on candidates adaptively, thereby substan-
tially improving detection efciency. Experimental results
on two public benchmarks, COCO and LVIS, demonstrate
that our method stands as a state-of-the-art approach for
open-vocabulary object detection.

1. Introduction
Object detection is a fundamental task in computer vi-
sion that involves object recognition and localization in im-
ages [16]. Traditional object detection methods, such as
RCNN [7], Faster-RCNN [24] and DETR [1], are primar-
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Figure 1. Comparison with the transfer-based framework and our
built-in detector framework. (a) Transfer-based methods learn
from VLM and information attenuation may occur during the pro-
cess of knowledge transfer. (b) Our built-in detector learns region-
word alignment directly where an anchor proposal network is de-
veloped for region localization, i.e., reliable positional recommen-
dations for efcient training and inference.

ily designed for close set scenarios, where the target cat-
egories to be detected remain consistent throughout both
the training and inference phases. When applying them in
real-world scenarios, the challenge arises of detecting novel
classes that have not been seen during the training phase. To
tackle this issue, a new paradigm, open vocabulary object
detection (OVD) [28, 32], has been proposed recently and
received much attention in the research community. The
core of this paradigm is to acquire semantic understand-
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ing in visual-language space through large-scale image-text
pairs, effectively serving as a bridge to extend traditional
detection models into the realm of OVD.

Many modern OVD methods [28] employ CLIP [22]
as the visual-language model (VLM) for its simplicity
and strong zero-shot generalization ability, and transfer the
vision-language alignment ability from CLIP to detection
models for open-set object classication and localization,
as shown in Figure 1(a). However, the direct utilization of
CLIP is less compatible with OVD due to its requirements
for region-word alignment [8], given that CLIP is trained to
globally align an image with its associated text. The follow-
ing two facts conrm this issue: (i) For two regions contain-
ing the same object, CLIP tends to assign a higher score to
the one with more backgrounds [34]. (ii) For classication
tasks, CLIP obtains 60% top-1 accuracy on ImageNet [25]
with whole classication, but only 19% on LVIS [9] with
region classication. To alleviate this problem, a series
of studies [18, 34] develop ne-tuning and/or adaptation-
based methods. Despite these efforts, the limitations of pre-
trained models hinder their ability to achieve satisfactory
performance. Another series of studies [27, 29, 30] exploit
region-word pre-training and/or distillation-based methods.
However, they depend on external detectors with manually
designed anchors which lack adaptive capabilities, result-
ing in excessive computational redundancy and suboptimal
performance.

To alleviate the above dilemmas, in this paper, we pro-
pose a novel architecture that can not only learn region-
word alignments from large-scale image-text pairs but also
directly apply the learned knowledge to the built-in de-
tectors. Specically, as shown in Figure 2, we adopt an
Encoder-Decoder structure and design the following two
training stages.
1) Region-word alignment. In this stage, the goal is to learn
a ne-grained visual-language alignment space with large-
scale image-text pairs by region-word matching. Given an
input image-text pair, an RPN is employed to obtain a set of
regions in the image and the corresponding text description
is segmented into a set of words. Then, the region-word
alignment can be formulated as a bipartite matching prob-
lem between image regions and word candidates which can
be solved by the Hungarian matching algorithm. Finally, the
focal loss [17] is calculated. Especially, we found that the
sensitivity of the trained visual-language model to image
regions is important in our method. Therefore, we employ
DINO-v2 [20] as the image encoder to extract the backbone
features of input images, which is able to generate segment-
level feature maps of instances and is proven benecial for
learning region-word alignment and locating objects.
2) Built-in detector training. In this stage, the goal is to
equip the model with the ability to locate and classify ob-
jects. Here, a DETR-style [1] decoder is trained which

receives the vision embeddings and language embeddings
output from the previous stage for predicting the target
bounding box and class.

In this way, as shown in Figure 1(b), the proposed
method does not require knowledge transfer from the pre-
trained VLMs to off-the-shelf detectors, alleviating the
overtting to base classes and improving the generalization
ability to novel classes. In addition, we also propose an
anchor proposal network that can adaptively provide sim-
plied proposals based on images and text queries, signi-
cantly reducing proposal redundancy and computations.

The main contributions are summarized as follows:

• We develop a novel architecture with built-in detectors for
open-vocabulary object detection through region-word
alignment and built-in detector training.

• We propose an anchor proposal network that can adap-
tively provide simplied proposals based on images and
queries, signicantly accelerating the inference process.

• Extensive experiments conducted on two public bench-
marks, COCO [16] and LVIS [9], demonstrate the effec-
tiveness of our method.

2. Related Works
Open-Vocabulary Object Detection. OVR-CNN [32]
proposed the concept of open vocabulary object detec-
tion (OVD). After observing that the Faster-RCNN [23]
trained in a zero-shot manner tends to overt to the base
classes in OVD, OVR-CNN proposed to utilize a large-
scale of external image-caption data to learn a rich vision-
language space, and then apply it to the prediction of ob-
ject categories during detection. Grad-OVD [6] proposed
to generate pseudo bounding-box annotations with vision-
language models for image-caption data, achieving region-
level image-text matching. Detic [35] introduced Ima-
geNet21K [4] source data without box annotations to train
classier branch and box prediction branch jointly, lever-
aging signicantly richer image-text data. OvarNet [2] de-
tected visual attributes with Faster-RCNN and CLIP-Attr,
mining more ne-grained image-text information. These
methods are designed based on frameworks with region lo-
calization ability, and then extend the close-set classica-
tion space to the open-vocabulary space by performing clas-
sication in vision-language space learned from a large-
scale image-text pairs. Despite numerous advancements,
the expansion from existing information in such methods
often leads to inaccurate proposal-concept pairs, thereby
constraining their ability to generalize to novel classes.
Transfering the Knowledge of Pre-Trained VLMs to De-
tection. Recent advancements in Vision-Language Mod-
els (VLMs), particularly CLIP [22], which is pre-trained
on extensive image-text pair datasets, showcase remark-
able zero-shot generalization aptitudes for vision-language
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tasks. Building upon this foundation, modern OVD meth-
ods try to transfer the vision-language alignment ability of
CLIP to detection models via knowledge distillation.

ViLD [8] trained RPN-based object detectors by distill-
ing visual features from a pretrained CLIP model to the
region-proposals. RegionCLIP [34] observed that CLIP
has poor recognition ability on regions, and trained CLIP
at region-word level with pseudo-labels generated from
captioning. PromptDet [5] proposed learnable regional
prompt to align regions-words embeddings extracted by
CLIP. OADP [27] designed object-level distillation to ob-
tain precise knowledge of objects as well as global and
block distillation for more comprehensive knowledge trans-
fer. BARON [29] grouped regions as a bag and aligned
with the cropped region embeddings distilled from CLIP.
CORA [30] proposed region prompting by designing a
region classier using RoIAlign and CLIP, followed by
an anchor pre-matching object localization mechanism.
VLDet [15] dened the extraction of region-word pairs
from image-text pairs as an element matching problem of
two sets which could be solved by binary matching.

OWL-ViT [18] designed DETR-based [1] framework,
where object category names are utilized as queries for each
image. It pretrained at image-text level, followed by ne-
tuning the detector to generalize at region-text level. RO-
ViT randomly cropped and resized regions of positional em-
beddings instead of using the whole image positional em-
beddings in the pretraining stage. OV-DETR [31] formu-
lated the learning objective as a binary matching between
input queries and the corresponding objects, which improve
class-aware regression by conditionally validating queries
against the text embedding. It uses conditional statements
to determine whether a detection box matches the object.
Specically, for each detection box, the model calculates
the matching score between it and the object, and uses
a conditional statement to determine whether the score is
above the threshold. If the score is above the threshold, the
detection box will be considered as a matching object. Oth-
erwise, consider it as the background.

OV-DETR is a model with high computational consump-
tion. When dealing with samples with multiple class objec-
tives, each class has to be processed separately, which fur-
ther increases computational cost and is not conducive to
model convergence. During training, the number of neg-
ative classes sampled in each iteration is limited due to
the memory constraint, which hinders convergence. In the
inference phase, repetitive per-class decoding is required,
leading to low inference efciency. Therefore, conditional
matching has limitations and may not be suitable for large-
scale models with a open vocabulary space. Different from
OV-DETR, we designe an anchor proposal network to avoid
redundant detection ports, thereby improving training and
inference efciency.

3. Method
3.1. Problem Denition

Given a corpus of image-text pairs that are associated with
an open vocabulary space CO, we rst learn the region-word
alignment with a dual-encoder that is pre-aligned across dif-
ferent modalities (image-caption level). Then, we learn ob-
ject localization and classication with a Transformer de-
coder under the supervision of categories and bounding box
annotations of a base dataset where the vocabulary is lim-
ited to a base class space CB . During the inference phase,
we aim to detect novel objects that belong to a novel class
space CN . CN is independent from CB , but may be explic-
itly or implicitly included in CO.

3.2. Region-word Alignment

Given an image-text pair ⟨I, T ⟩, we extract the feature maps
M of I with DINO-v2 [20] and obtain the region proposals
using an off-the-shelf region proposal network (RPN) [23]
simultaneously. Then, the proposed region embeddings are
extracted with the help of RoIAlign [10]. We denote the
region embeddings as R = {r1, r2, , rn} where n is the
number of regions. As for the corresponding caption T , we
embed each noun of the caption with a text encoder and get
a set of word embeddingsW = {w1, w2, , wm}.

Given R and W , we aim to nd the best matching be-
tween ri and wj , that is to say, the best match region for
a word, and vice versa. This can be formulated as a bipar-
tite matching problem where the cost matrix V is dened
as the inner products between the embeddings of regions
and words, i.e., V = RW T ∈ Rn×m. Therefore, the best
matching problem is formulated by solving:

min
S

n

i=1

m

j=1

Vi,jSi,j

s.t. Si,j ∈ {0, 1}
(1)

where S ∈ Rn×m is the matching relationship matrix be-
tween image regions and words. Concretely, Si,j = 1 rep-
resents the i-th region ri is matched with the j-th word wj .
The optimization problem 1 can be solved by the classical
Hungarian matching algorithm [14].

After obtaining the matching relationship matrix S, the
ne-grained visual-language alignment space (region-word
alignment) can be learned by classication loss. Further-
more, to alleviate the common problem of data imbalance
in open vocabulary datasets, we leverage the focal loss [14],
and the loss is calculated by:

Lfocal = − 1

n

n

i=1

m

j=1

(1− pi)
γ log(pi), (2)

where γ is the focusing parameter, pi is the probability of
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Figure 2. An overview of the proposed method. I. Region-word Alignment. We rst extract the feature map of the image with a DINO-based
ViT (pre-aligned in image-caption level). Then an off-the-shelf RPN is used to assist in getting region proposals ONLY at the region-word
alignment training phase. The region representations are extracted by RoIAlign [10]. Meanwhile, we embed each noun of the caption with
a text encoder, resulting in a set of word embeddings. We formulate the region-word alignment as a bipartite matching problem. II. Built-in
detector training. The decoder is trained using annotated data, where the global features of the image are utilized as key and value, while
the query embedding is augmented with positional embedding provided by the Anchor Proposal Network(Figure 3) to serve as a query.

true class:

pi =


σ(riwjτ) if Si,j = 1

1− σ(riwjτ) if Si,j = 0
, (3)

where σ is the sigmoid activation, τ is an adjustment pa-
rameter.

3.3. Built-in Detector Training

The alignment of region words described above serves as
a fundamental requirement for our method. In this sec-
tion, we introduce the construction of a built-in detector
that efciently locates objects by directly leveraging the
aligned embeddings of image regions and words. Our
detector adopts a DETR-style [1] Transformer structure,
which has the capability to predict a xed-size set of bound-
ing boxes (xi, yi, hi, wi). Previous OVD methods, like OV-
DETR [31], have also adopted the DETR-style structure.
OV-DETR designed a binary matching loss to transform
the category prediction in DETR into a binary classication
problem, extending DETR to the task of open vocabulary
object recognition.

However, this approach is hindered by high computa-
tional demands: the extensive set of bounding boxes leads
to a signicant amount of unnecessary calculations. Addi-
tionally, it struggles with processing multiple class queries
simultaneously. To alleviate this dilemma, we propose an
anchor proposal network, which can reduce computational
complexity and support parallel training of samples that
contain multiple classes of targets.

Anchor Proposal Network. Computational consumption
is mainly caused by blind prediction of the target box during
the training phase, which also leads to inefciency in the
inference phase. We propose an anchor proposal network to
provide pre-selected proposals for the decoder. Specically,
during the training phase, given a pending image x, we rst
use a visual encoder to extract the patch embedding of the
image:

C = fθ(x) ∈ Rn×d (4)

Then we use a query encoder to extract the global feature of
the query, where q represents the query, which can be text
or a prompt image.

Q = hθ(q) ∈ R1×d (5)

We obtain the matching possibility between each image
patch and query through the interaction of query embedding
and image patch embedding, and then use max pooling and
normalization operations to obtain the positional lter of the
anchor:

S = Normalize

MaxPool(QCT)


∈ [0, 1]n (6)

Finally, the anchor proposal is the non-zero vector in the
Hadamard product of the learned positional embeddings P
and the positional lter (We repeat d times for the feature
dimension of P and denote it as Ŝ).

A = ŜP  (7)

Anchor Matching Loss. After obtaining the anchor pro-
posal, we add the query embedding with each anchor pro-
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Figure 3. Anchor Proposal Network. We obtain the matching ma-
trix through the interaction of query and visual embedding. Then
max pooling and normalization operations are used to obtain the
lter for the position of anchors.

posal as input to the Transformer decoder zθ:

Q̂ = Q⊕A (8)

At the same time, the global features Ĉ of the image are
also input as keys and values to the decoder. Finally, a feed
forward network (FFN) is used to predict the corresponding
bounding box for each anchor proposal.

Ŷ = FFN (zθ(Ĉ, Q̂)), (9)

where FFN is a 3-layer perceptron with ReLU activation
function and a linear projection layer. Y is the bounding
box predictions and each set of predictions corresponds to
one anchor proposal. Following the prior methods, we add
a special class label to represent the ‘background’, which
means no object was detected. Now we have a set of predic-
tions to match with a set of ground truth boxes. Following
OV-DETR [31], we use a binary matching loss for annota-
tion assignment:

Lcost(Y , Ŷ ) = Lmatch(p, p̂) + Lbox(b, b̂), (10)

where Lmatch(p, p̂) is the binary classication loss be-
tween class prediction p and groud-truth p̂, which is imple-
mented by the focal loss [14]. Lbox(b, b̂) is the localiza-
tion loss between localization prediction b and groud-truth

b̂, which is implemented by the linear combination of L1
loss and a generalized IoU [33] loss for boxes. We optimize
our model with the following objective:

L = λfocalLfocal + λL1LL1 + λGIoULGIoU (11)

Comparison with Anchor Pre-Matching [30]. Anchor
pre-matching is also designed to provide accurate anchor
boxes, which refers to the early matching of prediction
boxes with ground truth boxes in the training of detection
networks, specifying a category and regression target for
each proposal, so that accurate category and position infor-
mation can be learned more quickly in subsequent training.
This process is usually achieved by calculating the IoU (In-
tersection over Union) of each proposal and all real target
boxes. If the IoU is greater than a preset threshold, the pro-
posal is matched with the corresponding real target box.

Despite the development, we argue it still has the follow-
ing limitations: pre-matching adheres to strong assumptions
that high embedding similarity means matching, which in-
evitably leads to incorrect matching and makes subsequent
training uncorrectable, resulting in a preference for embed-
ding similarity in the model and suboptimal performance.

In contrast, our method does not rely on strong assump-
tions but rather uses a specic network for position encod-
ing inference. This preserves all regions while adaptively
providing suitable proposals based on candidate images and
queries, reducing redundancy and improving accuracy.

4. Experiments
4.1. Experimental Settings

Datasets. We conduct evaluations on the two popular
Open-Vocabulary object detection datasets, i.e., LVIS [9]
and COCO [16]. For the LVIS dataset which contains a
large and diverse set of 1203 object categories, we follow
previous work [8] to set the 337 rare categories as novel
categories and leave the rest common and frequent cate-
gories into base categories. For the COCO dataset, we fol-
low OVR-CNN [32] to divide the object categories into 48
base categories and 17 novel categories. Besides, the CC3M
[26] dataset which contains 3 million image-text pairs is uti-
lized in the pre-trained stage.
Evaluation Metrics. We evaluate the detection perfor-
mance on both base and novel categories for completeness.
For COCO, we follow OVR-CNN [32] to report the box
AP at IoU threshold 0.5, noted as AP50. For OV-LVIS, we
report both the mask and box AP averaged on IoUs from
0.5 to 0.95, noted as mAP. The AP50 of novel categories
(APnovel50 ) and mAP of rare categories (APr) are the main
metrics that evaluate the open-vocabulary detection perfor-
mance on OV-COCO and OV-LVIS, respectively. In addi-
tion, we also use APc, APf , and AP for common, frequent,
and all categories in OV-LVIS.
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Method Backbone Supervision Built-in Detector Generalized (17 + 48)
Novel Base All

OVR-CNN [32] ViT-B/32 Base ✗ (F-RCNN) 27.5 46.8 39.9
ViLD [8] ViT-B/32 Base+Novel ✗ (F-RCNN) 27.6 59.5 51.3
Detic [35] RN50 Base ✗ (F-RCNN) 27.8 47.1 45.0
OV-DETR [31] ViT-B/32 Base+Novel ✓ 29.4 61.0 52.7
Ro-ViT [13] ViT-B/16 Base ✗ (OLN-RPN) 30.2 - 41.5
CFM-ViT [12] ViT-B/16 Base ✗ (OLN-RPN) 30.8 - 42.4
RegionCLIP [34] RN50 Base ✗ (F-RCNN) 31.4 57.1 50.4
MEDet [3] RN50 Base ✗ (F-RCNN) 32.6 54.0 49.4
BARON [29] RN50 Base ✗ (F-RCNN) 34.0 60.4 53.5
CORA [30] RN50 Base ✓ 35.1 35.5 35.4
OADP [27] ViT-B/32 Base ✗ (F-RCNN) 35.6 55.8 50.5

BIND (Ours) ViT-B/16 Base ✓ 36.3 54.7 50.2
BIND (Ours∗) ViT-L/16 Base ✓ 41.5 58.3 54.8

Table 1. Comparison with state-of-the-art methods on OV-COCO benchmark. F-RCNN reprsents Faster-RCNN [24]. OLN-RPN is [11].
Best and second best results are highlighted. Our method achieves state-of-the-art performance.

Method Backbone Supervision Built-in Detector APr APc APf AP

ViLD [8] ViT-B/32 Base+Novel ✗ (F-RCNN) 16.3 21.2 31.6 24.4
RegionCLIP [34] RN50 Base ✗ (F-RCNN) 17.1 27.4 34.0 28.2
Detic [35] RN50 Base ✗ (F-RCNN) 17.8 26.3 31.6 26.8
OV-DETR [31] RN50 Base+Novel ✓ 21.0 25.0 32.5 26.6
OADP [27] ViT-B/32 Base ✗ (F-RCNN) 21.9 28.4 32.0 28.7
RegionCLIP [34] RN50×4 Base ✗ (F-RCNN) 22.0 32.1 36.9 32.3
MEDet [13] RN50 Base ✗ (F-RCNN) 22.4 - - 34.4
BARON [29] RN50 Base ✗ (F-RCNN) 23.2 29.3 32.5 29.5
Ro-ViT [13] ViT-B/16 Base ✗ (OLN-RPN) 28.0 - - 30.2
CORA [30] RN50 Base ✓ 28.1 - - -
CFM-ViT [12] ViT-B/16 Base ✗ (OLN-RPN) 28.8 - - 32.0

BIND (Ours) ViT-B/16 Base ✓ 29.4 30.6 33.5 31.4
BIND (Ours∗) ViT-L/16 Base ✓ 32.5 33.4 35.3 33.2

Table 2. Comparison with state-of-the-art methods on OV-LVIS benchmark. F-RCNN reprsents Faster-RCNN [24]. OLN-RPN is [11].
Best and second best results are highlighted. Our method achieves state-of-the-art performance.

Method Backbone Novel AP50 Secs/Img ↓
CORA [30] RN50×4 41.7 0.50

BIND (Ours∗) ViT-L/16 41.5 0.33
BIND (Ours) ViT-B/16 36.3 0.21

Table 3. Efciency comparison with state-of-the-art methods on
OV-COCO benchmark. Our method achieves 0.17 seconds accel-
eration in the inference with similar accuracy.

Implementation Details. We use DINOv2 [20] ViT as the
image encoder and a pre-trained language model CLIP [21]
as our text encoder. We use a DETR-style Transformer de-

Method Backbone Novel AP50 Secs/Img ↓
OWL-ViT† [19] ViT-L/14 31.2 0.42

BIND (Ours∗) ViT-L/16 32.5 0.71
BIND (Ours) ViT-B/16 29.4 0.39

Table 4. Efciency comparison with state-of-the-art methods on
OV-LVIS benchmark.† indicates the method is implemented with
JAX framework.

coder, which has 6 layers of width 256 with 8 attention
heads. To prevent information leakage, RPN training is only
conducted on the base class data. We only use RPN in train-
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ing for stabilizing initial steps and DO NOT need it during
the inference phase.

We rst train the dual-encoder for cross-modal align-
ment using a CLIP [22]-style contrastive loss on pre train-
ing datasets for 12 epochs. Our cross modal alignment is
a ne-tuning process of the DINOv2 [20] ViT visual en-
coder where only the last two layers are optimized and a
pre-trained Transformer text encoder [21] where only an
adaptation layer is optimized by the above image-caption
level contrastive loss.

In region-word alignment training, the dual-encoder is
optimized by Adam with a learning rate of 1e-4 and a
weight decay of 1e-5. The parameters of the dual-encoder
are xed after region-word alignment pre-training, i.e., only
the decoder is optimized in the following object localizer
training phase. We implement the proposed method with
PyTorch and train the model for 50 epochs in the region-
word alignment pre-training phase and another 50 epochs
in the object localizer training phase. We set focusing pa-
rameter γ to 2, and adjustment parameter τ to 0.1 in the
experiments. The weights of Lfocal, LL1 and LGIoU is 1, 3
and 1 respectively.

4.2. Comparison with State-of-the-Art Methods

We compare with both common transfer-based methods and
prior built-in detector methods. a) External Detector Meth-
ods: including Fast-RCNN (RegionCLIP [34], MEDet [3],
BARON [29], OADP [27], etc.) based and OLN-RPN [11]
(Ro-ViT [13], CFM-ViT [12]) based methods. b) Built-in
Detector Methods: OV-DETR [31] and CORA [30].
COCO Benchmark. Table 1 shows the comparison results
with prior methods on the open-vocabulary COCO bench-
mark. Our method achieves 36.3% AP50 on novel classes,
which outperforms all prior methods in both external and
built-in tracks. In addition, our method achieves compara-
ble performance in both base and all class settings. It is
worth noting that our method gains signicant implementa-
tion in all metrics when using larger-scale backbones, indi-
cating that our method has good scalability in model size.
LVIS Benchmark. Table 2 shows the comparison results
with prior methods on the open-vocabulary LVIS bench-
mark. Our method achieves 29.4% AP50 on novel classes,
which outperforms all prior methods in both ViT-based and
ConvNet-based tracks. Furthermore, our method achieves
comparable performance in both base and all class settings.
We also tested the scalability of the model under this bench-
mark and larger models can bring performance gains.

4.3. Analysis

Efciency. To demonstrate the efciency of our method,
we tested the inference speed of the models on two bench-
mark datasets, using the metric of seconds per image to de-
tect an image. We conducted efciency experiments on an

Figure 4. Scalability study with the different number of pre-
training data pairs.

A100, with both CORA [30] and our method implemented
using Pytorch, while OWL-ViT [19] is implemented with
JAX, a recognized framework with speed advantages. Ta-
ble 3 and Table 4 shows the results of our comparison with
those methods. On the COCO benchmark., when using
the same larger model, we maintained close performance
while signicantly improving inference speed. When using
smaller models, the inference speed can be further acceler-
ated. On the LVIS benchmark, our inference speed is faster
than OWL-ViT [19] when using smaller models. This is
thanks to our designed anchor, which can provide reliable
proposals and avoid computational redundancy.
Scalability. To gure out how our method scales with the
size of the pre-training dataset, we pre-train the model with
0.5M, 1.5M, 2.5M, and 3.3M data pairs successively. We
report the AP50 of Novel classes on OV-COCO and mAP of
rare categories (APr) in Figure 4, As the amount of data in-
creases, the performance of the model continues to increase,
and the improvement is more signicant at the beginning,
which demonstrates its good scalability. It may be attributed
to the design of region-word alignment.
Visualization. To evaluate the quality of the proposed ob-
ject positions given by our anchor proposal network, we
randomly selected four images for visualization. Each im-
age is resized to 224×224, and the patch size is 16×16, re-
sulting in 14×14 patches per image. The proposed patches
are denoted with a translucent mask. From Figure 5, it can
be seen that our anchor proposal network can provide high-
quality object positions.

4.4. Ablation Study

We conduct ablation studies on the OV-COCO dataset to
reveal the effectiveness of each component in our proposed
framework.
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Figure 5. The visualization of regions generated by our anchor proposal network. The frames of the positional proposal are highlighted in
red. The image is resized to 224×224, the patch size is 16×16.

Pre-train Model Backbone Novel AP50 ALL AP50

CLIP RN50 33.8 45.4
CLIP ViT-B/16 34.2 46.6
DINOv2 ViT-B/16 36.3 50.2

Table 5. Ablation studies of DINOv2 [20] ViT visual encoder.
DINOv2 pre-train model achieves better performance.

RPN Backbone Novel AP50 Secs/Img ↓
Prediction Slot ViT-B/16 32.4 0.63
BIND (Ours) ViT-B/16 36.3 0.21

Table 6. Ablation studies of anchor proposal network. Prediction
Slot is an anchor proposal method in DETR [31]-style.

Pre-train Model R-W Novel AP50 ALL AP50

CLIP (R50) ✓ 33.8 45.4
✗ 24.5 27.6

CLIP (ViT-B/16) ✓ 34.2 46.6
✗ 25.1 28.5

DINOv2 (ViT-B/16) ✓ 36.3 50.2
✗ 28.4 31.7

Table 7. Ablation studies of DINOv2 [20] ViT visual encoder.
“R-W” represent region-word alignment. Removing region-word
alignment at different Pre-train Models result in a signicant de-
crease in performance.

Pre-train Model. In order to explore the impact of dif-
ferent pre-train models on our method, we employ CLIP
in our framework, which includes two types of back-
bones: ViT-based and ConvNet-based. As shown in Ta-
ble 5, We achieve better performance with DINOv2 [20]
ViT visual encoder. This conrms our motivation that self-
supervised trained DINOv2 may have mined intrinsic asso-

ciation within the image, which is more suitable for region
pre-training representations to align with word than VLM.
Region-word Alignment. To verify the importance of
region-word alignment, we use different pre-train models
while removing the training for Region word alignment. As
shown in Table 7, whether it is CLIP or our method, aban-
doning region-word alignment will result in signicant per-
formance degradation. It is worth noting that our method
has the smallest reduction. This ablation study demon-
strates that region word alignment is a crucial part for the
open-vocabulary object detection task.
Anchor Proposal Network. In order to evaluate the
effectiveness of the anchor proposal network, we used
a DETR [1] style during the inference phase, providing
prompt information for the object location by setting many
prediction slots (set to 100 following with DETR [1]). In
contrast, our anchor proposal network serves as a lter for
prediction slots and most meaningless proposals will be dis-
carded to reduce computational redundancy. As shown in
Table 6, our method not only achieves good accuracy but
also has signicant advantages in speed.

5. Conclusion
In this paper, we present a novel architecture for open-
vocabulary object detection that features a built-in detec-
tor, obviating the need for module replacement or knowl-
edge transfer. Our two-stage training framework, consisting
of an image-text dual-encoder and a DETR-style decoder,
demonstrates an Encoder-Decoder structure. The former
learns region-word alignment from a corpus of image-text
pairs, while the latter performs detection on annotated ob-
ject detection datasets. In contrast to traditional manually
designed non-adaptive anchors, our anchor proposal net-
work generates high-likelihood anchor proposals based on
candidates adaptively, signicantly improving detection ef-
ciency. Empirical evaluations on the COCO and LVIS
benchmarks attest to our method’s status as a state-of-the-
art approach to open-vocabulary object detection.
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