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Abstract

CLIP has demonstrated marked progress in visual recog-
nition due to its powerful pre-training on large-scale image-
text pairs. However, it still remains a critical challenge:
how to transfer image-level knowledge into pixel-level un-
derstanding tasks such as semantic segmentation. In this
paper, to solve the mentioned challenge, we analyze the
gap between the capability of the CLIP model and the
requirement of the zero-shot semantic segmentation task.
Based on our analysis and observations, we propose a novel
method for zero-shot semantic segmentation, dubbed CLIP-
RC (CLIP with Regional Clues), bringing two main in-
sights. On the one hand, a region-level bridge is necessary
to provide fine-grained semantics. On the other hand, over-
fitting should be mitigated during the training stage. Bene-
fiting from the above discoveries, CLIP-RC achieves state-
of-the-art performance on various zero-shot semantic seg-
mentation benchmarks, including PASCAL VOC, PASCAL
Context, and COCO-Stuff 164K. Code will be available at
https://github.com/Jittor/JSeg.

1. Introduction

As a foundation task in computer vision, semantic segmen-
tation [4, 8, 11–13, 26, 36, 40, 44, 50, 51] aims to assign
each pixel with a semantic class. Limited by technical meth-
ods and labeling costs, traditional segmenters can only pro-
cess scenarios with a limited number of classes. In other
words, it can only handle the seen classes in the training set.
When it comes to unseen classes, traditional methods seem
powerless. However, in practical situations, encountering
classes that are not previously seen is unavoidable, which
brings challenges to the segmenter. To solve this problem,
researchers propose a new research paradigm, called zero-
shot semantic segmentation (ZS3) [1, 2, 43], which requires
the model trained on seen classes to generalize well to un-
seen classes. In this paper, we focus on the ZS3 settings.

The rapid development of ZS3 tasks benefits from the
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Figure 1. By employing a region-level bridge, the CLIP-RC ex-
tends zero-shot capabilities from the image level to the pixel level,
thus bridging the gap between image-level recognition and pixel-
level semantic segmentation.

progress of the foundation models, especially the CLIP [34]
model. The CLIP model is trained on large-scale image-
text pairs and shows powerful zero-shot image recognition
capability, which is the foundation of ZS3 tasks. In addi-
tion to the capability for zero-shot recognition, the ability
to localize at the pixel level is also crucial for accomplish-
ing the ZS3 tasks which is an attribute that CLIP lacks.
In order to make up for the shortcomings of CLIP in lo-
calization, researchers have proposed two streams of ap-
proaches: one-stage methods [47, 55] and two-stage meth-
ods [7, 14, 33, 46, 52].

Two-stage methods, first, generate initial mask propos-
als using class-agnostic mask generators. Then, it provides
them with semantic information by using the CLIP model.
Due to the introduction of an additional class-agnostic seg-
mentation model, these methods have a heavy computation
cost. In this paper, we focus on the one-stage methods.
One-stage approaches avoid extra computing overhead and
finetune the CLIP model for ZS3 directly. There are two
critical factors during the fine-tuning process. Firstly, trans-
ferring image-level understanding features to pixel-level un-
derstanding features are the key to finishing the segmenta-
tion task. Secondly, during the fine-tuning process, models
will tend to only recognize the classes they see in the tun-
ing process (a.k.a., catastrophic forgetting), which will un-
dermine the model’s zero-shot recognition capability. The
differences highlighted above are the gaps between the ca-
pabilities of the CLIP model and the requirements of ZS3
tasks. Aiming to bridge the above gaps, we present a new
method CLIP-RC.

CLIP-RC is motivated by an important observation. As
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demonstrated in Fig. 2, we simply test the CLIP’s capacity
on region-level classification. We find CLIP has a strong
performance in regional recognition. Region-level recogni-
tion capability is a finer-grained recognition capability than
the image-level, which is closer to the pixel-level segmen-
tation task. Thus, we believe it can be a suitable bridge to
connect CLIP and ZS3 tasks. Building on this, we introduce
a new approach for ZS3 named CLIP-RC (CLIP with Re-
gional Clues). This method leverages regional clues, bridg-
ing the gap between image-level and pixel-level understand-
ing as illustrated in Fig. 1.

Furthermore, we explored ways to solve the overfitting
challenge by adding extra constraints during the tuning pro-
cess. In detail, we proposed the recovery decoder with
recovery loss. It allows CLIP-RC to adapt to ZS3 while
minimizing the loss of its inherent generalization abilities.
That is, it’s designed to strike a delicate balance between
task-specific tuning and preserving broad knowledge. This
ensures reliable performance across both seen and unseen
classes.

Our contributions can be summarized as follows:
• We have introduced a novel framework for ZS3, called

CLIP-RC (CLIP with Regional Clues), which can re-
duce the gap between image-level classification and
pixel-level semantic segmentation by introducing a
region-level bridge, providing a better solution for ZS3
tasks.

• We introduce a recovery decoder and corresponding
recovery loss to mitigate overfitting. This approach
effectively balances task-specific knowledge with the
model’s inherent generalization capabilities.

• By employing CLIP-RC, we’ve established a new
benchmark for state-of-the-art performance in ZS3
across various benchmarks. This achievement sur-
passes previous methods by large margins.

2. Related Work
Vision-Language Pre-training Model. Vision-language
models, like those in [19, 34, 49], are designed to under-
stand the complex connections between visual elements and
their textual explanations. A key example of such models
is CLIP [34], which uses a large dataset of 400 million
internet-sourced image-text pairs to link language with im-
ages. CLIP employs contrastive learning to align images
and text in a shared feature space. This capability equips
CLIP to undertake a variety of computer vision tasks, as in-
dicated in studies like [9, 29, 38, 52], and extends to other
areas as well [15, 30, 35, 37, 39]. CLIP’s wide-ranging
ability to apply its knowledge to various fields and formats
highlights its strength, particularly in executing tasks with
zero-shot. In this work, we explore how to bridge the gap
between the CLIP model pre-trained for image-level classi-
fication and the ZS3 task for pixel-level classification. Thus
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Figure 2. The left side of the figure presents the original CLIP’s
classification results for a 4×4 grid of regions, demonstrating that
CLIP can capture more granular classification information within
the image. The right side shows the results of the trained CLIP-
RC encoder for classifying the same 4 × 4 grid of regions. By
our design, both seen and unseen classes achieve more accurate
classification. Note, the red tags indicate unseen classes.

further unleashing the potential of CLIP in the ZS3.
Model Tuning. Model tuning refines pre-trained models
for specific tasks with targeted data, traditionally adjusting
all parameters but now focusing on efficiency to avoid over-
fitting and excessive compute use. The field of Natural Lan-
guage Processing (NLP) has recently advanced in parame-
ter efficient fine tuning [16, 17, 27], and similar progress is
seen in computer vision. Instead of using full fine-tuning as
previously done, VPT [20] introduces prompt tuning tokens
into transformer layers. At the same time, CoOp [54] trans-
forms the fixed text encoder prompts in the original CLIP
model into flexible, trainable vectors. However, CoOp ini-
tially tended to overfit the training classes. To solve this,
CoCoOp [53] creates unique, condition-based tokens for
each image, reducing overfitting. Furthermore, Prompt-
SRC [23] introduces a self-regulation method, further ad-
dressing the overfitting issue. CLIP-RC integrates the exist-
ing VPT [20] and proposes the use of a region-level bridge
to extract region category features, aiming to achieve more
suitable tuning for semantic segmentation.
Zero Shot Semantic Segmentation. ZS3 [1, 2, 22, 28,
43, 48] differs from traditional semantic segmentation as
it focuses on identifying and segmenting classes that are
not labeled or seen during training. The rise of pre-trained
vision-language models has greatly impacted this field,
making completing zero-shot tasks much easier. Models
like ZSSeg [46] and ZegFormer [7] have proposed a two-
stage approach for ZS3. The first stage extracts mask pro-
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Figure 3. The framework of our proposed CLIP-RC. (a) The image is input into the image encoder, which then yields the image feature I,
the region category information feature R extracted via region-level bridging, and the global feature G. Subsequently, these three feature
sets are aligned and combined with the text embedding T to generate the regional relationship descriptors. Finally, a decoder for semantic
segmentation then utilizes these features to infer and generate a segmentation map. To prevent overfitting during training, the recovery
decoder and recovery loss are employed. (b) The region alignment module. (c) Detail of the decoder architecture.

posals with a class-agnostic mask generator, and the sec-
ond stage employs the CLIP model for zero-shot classi-
fication of the masked image sections. MaskCLIP+ [52]
improves upon previous ZS3 methods significantly by in-
corporating pseudo-labeling and self-training. However,
these two-stage methods can be computationally expensive.
To avoid this, ZegCLIP [55] innovates further by combin-
ing visual prompt tuning with relationship descriptors for
a one-stage ZS3 inference process. In addition, the task
of open vocabulary semantic segmentation, similar to the
ZS3 task, also has been explored through various meth-
ods [3, 21, 24, 25, 41, 42, 45, 47]. It is worth mentioning
that CLIPSelf [42] has a similar motivation as ours. The
difference is that it transfers regional features to the student
model through knowledge distillation. In this paper, we ex-
plore the ZS3 approach from two distinct perspectives, aim-
ing to identify and bridge the existing gap between current
single-stage methods and ZS3.

3. Method

3.1. Method Overview

As illustrated in Fig. 3(a), the CLIP-RC has three key com-
ponents: the Region-Level Bridge (RLB), Region Align-

ment Module (RAM), and Recovery Decoder with Recov-
ery Loss (RDL). First, as detailed in Sec. 3.2, the image is
fed into the encoder to obtain global features, image fea-
tures, and region category features extracted by RLB. In
Sec. 3.3, we use RAM to align these feature sets and create
image features with finer-grained categorical features. The
features are also merged with the text embedding to obtain
regional relationship descriptors. Following this, a decoder
for semantic segmentation uses these features to predict and
create a segmentation map. To minimize overfitting during
training, the RDL, discussed in Sec. 3.4, is used to ensure a
balance between learning task-specific features and general
knowledge.

3.2. Region-Level Bridge

In our approach, the Region-Level Bridge (RLB) is a key
element to connect image-level and pixel-level representa-
tions. Specifically, as illustrated in Fig. 4. RLB captures
the regional category features of the image and facilitates
classification at a regional granularity.

Formally, we construct the input for the first ViT layer of
CLIP’s visual encoder as shown in Eq. (1). Each element
represents distinct aspects of the input data,

X0 = [G0,P0, I0,R0], (1)
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Figure 4. This illustrates the RLB within the image encoder lay-
ers. The input consists of a [CLS] token, deep prompt tokens,
image features, and RLB (from top to bottom). Each token in
RLB is responsible for a distinct image region, thereby yielding
finer-grained categorical features about image regions. Upon com-
pletion of the inference process, the image features are obtained,
along with the [CLS] token that contains global image features and
regional category features.

where G0 ∈ R1×D represents the [CLS] token for the vi-
sual encoder, which is designed to capture the global image
feature, where D represents the dimension of the features.
The P0 ∈ RK×D represents the K deep prompt tuning to-
kens [20] for the first layer, selected from the deep prompt
tuning token set P ∈ RL×K×D that are task-specific learn-
able parameters into the input space. I0 ∈ RN×D denotes
the image features with added positional encoding. Lastly,
R0 ∈ RM×D symbolizes the initial RLB with M tokens.
Each token in R0 adopts the weights of G0 as its initial
weights, serving as a bridge between image-level and pixel-
level features.

Following the construction of the input, we proceed
with the extraction of image features. For a sequence of
image features with a length of N , the original size is√
N ×

√
N ×D. We utilize mask attention to accomplish

the extraction of regional category features of image regions
through the RLB. As illustrated in Fig. 5, the attention mask
Mask ∈ RE×E defines the computational direction of the
RLB, where E = 1 + K + N + M . Each token in the
RLB is responsible for extracting features from

√
N√
M

×
√
N√
M

patches. In this way, each token in RLB is responsible for
one region in the original whole feature, which is an in-
termediate granularity between image-level and pixel-level.
This feature extraction method is almost the same as the fea-
ture extraction when CLIP does classification on images.

After obtaining the attention mask, the masked attention
operations within the visual encoder can be formulated as:

Xl+1 = V l+1
MHSA(X

l)

= softmax(
QKT

√
dv

+Mask)V,
(2)

where, Xl and Xl+1 are the input and output of the trans-
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𝐆

(a)

(b) (c)
Figure 5. Visualization of attention mask in CLIP. (a) Each token
in the RLB is responsible for a 2 × 2 region within the 4 × 4 im-
age features. (b) For [CLS] token and deep prompt tuning tokens,
each token interacts with all image features, including interactions
among themselves. (c) Visualization of the attention mask dur-
ing self-attention, where the white blocks indicate masking and no
interaction.

former l + 1 layer V l+1
MHSA respectively. It is important to

note that to ensure the generalizability of the RLB for un-
seen classes, its gradient is not updated.

The final outputs of the visual encoders, denoted as XL,
are given by:

XL = [G, , I,R], (3)

where, G signifies the global category feature of an image
by the [CLS] token, I denotes the features of the image ex-
tracted by the visual encoder and R contains the region cat-
egory features by the RLB.

3.3. Region Alignment Module

Building upon the outputs of the CLIP visual encoder, we
introduce the Region Alignment Module (RAM), as illus-
trated in Fig. 3(b). This module is specifically designed
to further align different feature sets. By aligning the G
that gathers the global image context with the R that are
specific to the region and image features I, the multi-scale
spatial features and fine-grained category features present
in the input data can be fully utilized.

To align the feature sets, we reshape R back to a dimen-
sion of

√
M ×

√
M ×D, representing the category features

of regions in the image. We then upsample both G, con-
taining global image category features, and R to the size of
image features, and concatenate them with I:

Î = Concat(Upsample(G),Upsample(R), I). (4)

Further, to generate text embeddings with generalized
capabilities for unseen classes, we employ the Relationship
Descriptor [55]. This involves integrating the priors of the
RLB and the global [CLS] token into the text embeddings,
resulting in multiple, robust text embeddings with different
regional priors, i.e. regional relationship descriptors. We
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first fuse the RLB with the global [CLS] token:

Ra = (Upsample(G) +R), (5)

Ra is shaped as M ×D, and then:

R̂ = Concat[Rt,T] = Concat[T⊙Ra,T], (6)

T ∈ RC×D represents the original text embeddings ex-
tracted via CLIP’s text encoder, and C is the number of
classes. The R̂ ∈ RM×C×2×D are the regional relation-
ship descriptors.

3.4. Recovery Decoder With Recovery Loss

To mitigate overfitting in zero-shot learning with a CLIP-
based model, we introduce the training-only Recovery De-
coder with Recovery Loss (RDL). This RDL focuses on bal-
ancing task-specific adaptation with the retention of general
knowledge by adding extra constraints during the tuning
process

Initially, we deploy a decoder for semantic segmentation,
as shown in Fig. 3(c). The aligned image features Î and
region-specific text queries R̂, derived from Sec. 3.3, pass
through a linear layer, aligning them in dimension D. They
are then processed as follows:

Îd, R̂d = DMHCA(̂I, R̂),D′
MHCA(R̂, Î), (7)

where, DMHCA and D′
MHCA denotes the decoder for se-

mantic segmentation with multi-head cross attention, and
Îd ∈ RN×D and R̂d ∈ RM×C×D are the image features
and region-specific text queries respectively, used for seg-
mentation. The segmentation map Output ∈ RC×N is
obtained by averaging the outputs:

Outputi = R̂dÎ
T
d for all i ∈ {1, . . . ,M}. (8)

Then, during training, a recovery decoder recovers the
features extracted by the decoder into features with strong
generalization. The network architecture of the recovery
decoder is completely identical to that of the semantic seg-
mentation decoder. They are recovered as follows:

Îr, R̂r = RDMHCA(̂Id, R̂d),RD′
MHCA(R̂d, Îd), (9)

Îr ∈ RN×D and R̂r ∈ RM×C×D represent features af-
ter recovery of I and R̂ respectively. To ensure that the
outputs of the recovery decoder composed of RDMHCA

and RD′
MHCA align well with the original features from

the backbone network, we propose a recovery loss for use
with the recovery decoder. This recovery loss is designed
to help the decoder for semantic segmentation strike a bal-
ance between learning the specifics of the task at hand and
maintaining a broad base of general knowledge, thereby al-
leviating the problem of overfitting to unseen classes. The
equation for this loss is:

Lrecovery =

n∑
i=1

|̂Iri − Ii|+
n∑

i=1

|R̂ri − R̂i|. (10)

3.5. Loss Function

To further reduce overfitting during our training, we use a
method called Non-mutually Exclusive Loss (NEL) [55].
This method combines Sigmoid activation with Binary
Cross Entropy (BCE) loss, allowing for the independent
prediction of probabilities for different classes.

Additionally, we incorporate a recovery loss as discussed
in Section Sec. 3.4. The total loss our model aims to min-
imize is a combination of these two types of losses, repre-
sented by the equation:

L = α · LNEL + β · Lrecovery, (11)

where, α and β are weights that balance the contributions
of NEL and recovery loss, respectively.

4. Experiments
4.1. Dataset

PASCAL VOC 2012 Dataset provides an augmented train-
ing set of 10,582 images, alongside a validation set consist-
ing of 1,449 images. In our work, we exclude the back-
ground class and categorize the 20 available classes into 15
seen classes and 5 unseen classes.
COCO-Stuff164K Dataset covers 80 thing classes, 91
stuff classes, and a single class designated for unlabeled el-
ements. It comprises a training subset featuring 118,287
images, alongside a validation subset consisting of 5,000
images. The entire dataset is further divided into 156 seen
classes and 15 unseen classes.
PASCAL Context Dataset contains 59 foreground classes
and a ”background” class. The training set and valida-
tion set contain 4,996 and 5,104 images, respectively. The
dataset is divided into 50 seen classes (including ”back-
ground”) and 10 unseen classes.

4.2. Implementation Details

Our experiments were conducted using the Jittor [18] and
PyTorch [32] frameworks, with code based on the MMSeg-
mentation library [6]. We used the ViT-B/16 model from
CLIP, training on 8 NVIDIA RTX 3090 GPUs. The batch
size was set at 16 for all datasets, using an input image size
of 512 × 512. In the inductive setting, we trained on the
Pascal VOC 2012, Pascal Context, and COCO-Stuff 164K
datasets for 40K, 40K, and 80K iterations, respectively. For
the transductive setting, we loaded the weight of the check-
point from the middle of the inductive training for each
dataset, then trained each from scratch for 20K, 20K, and
40K iterations, respectively.

4.3. Evaluation Protocol

Continuing from the established methodology for ZS3 [43,
52, 55], all classes C of a dataset are divided into a group
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Methods PASCAL VOC 2012 PASCAL Context COCO-Stuff 164K
pAcc hIoU mIoU(S) mIoU(U) pAcc hIoU mIoU(S) mIoU(U) pAcc hIoU mIoU(S) mIoU(U)

SPNet [43] - 26.1 78.0 15.6 - - - - - 14.0 35.2 8.7
ZS3 [2] - 28.7 77.3 17.7 52.8 15.8 20.8 12.7 - 15.0 34.7 9.5

CaGNet [10] 80.7 39.7 78.4 26.6 - 21.2 24.1 18.5 65.6 18.2 33.5 12.2
SIGN [5] - 41.7 75.4 28.9 - - - - - 20.9 32.3 15.5
Joint [1] - 45.9 77.7 32.5 - 20.5 33.0 14.9 - - - -

ZegFormer [7] - 73.3 86.4 63.6 - - - - - 34.8 36.6 33.2
zsseg [46] 90.0 77.5 83.5 72.5 - - - - 60.3 37.8 39.3 36.3
DeOP [14] - 80.8 88.2 74.6 - - - - - 38.2 38.0 38.4

ZegCLIP [55] 94.6 84.3 91.9 77.8 76.2 49.9 46.0 54.6 62.0 40.8 40.2 41.4
CLIP-RC (Ours) 95.8 88.4 92.8 84.4 76.2 51.9 47.5 57.3 63.1 41.2 40.9 41.6

Table 1. Comparison with the SOTA methods in the inductive setting.

Methods PASCAL VOC 2012 PASCAL Context COCO-Stuff 164K
pAcc hIoU mIoU(S) mIoU(U) pAcc hIoU mIoU(S) mIoU(U) pAcc hIoU mIoU(S) mIoU(U)

SPNet+ST [43] - 38.8 77.8 25.8 - - - - - 30.3 34.6 26.9
ZS5 [2] - 33.3 78.0 21.2 49.5 23.4 27.0 20.7 - 16.2 34.9 10.6

CaGNet+ST [10] 81.6 43.7 78.6 30.3 - - - - 56.8 19.5 35.6 13.4
STRICT [31] - 49.8 82.7 35.6 - - - - - 34.8 35.3 30.3
zsseg+ST [46] 88.7 79.3 79.2 78.1 - - - - 63.8 41.5 39.6 43.6

MaskCLIP+ [52] - 87.4 88.8 86.1 - 53.3 44.4 66.7 - 45.0 38.1 54.7
FreeSeg [33] - 86.9 82.6 91.8 - - - - - 45.3 42.2 49.1

ZegCLIP+ST∗ [55] 96.2 91.1 92.3 89.9 77.4 54.0 47.2 63.2 69.2 48.5 40.7 59.9
CLIP-RC(Ours) 97.0 93.0 93.9 92.2 77.2 55.1 48.1 64.5 69.9 49.7 42.0 60.8

Table 2. Comparison with the SOTA methods in the transductive setting. ST represents Self-Training. ∗ denotes the results obtained from
our retraining of the method on the Pascal Context dataset.

of seen classes CS and a group of unseen classes CU , with
CS ∩ CU = ∅. During training, only the seen classes (CS)
have labels. Furthermore, in the inductive setting of ZS3,
the model is trained without any knowledge of the unseen
classes CU , including their labels, and names. This set-
ting closely mirrors practical inference scenarios, where the
model may be tested on classes not seen during the training.
Contrastingly, in the transductive setting of ZS3, the names
of unseen classes are known before testing. This setting can
enhance the performance of these unseen classes and reduce
the dependence on data annotation for practical scenarios.

For the evaluation metric, we evaluate our model’s per-
formance using standard metrics in segmentation: Mean
Intersection-over-Union (mIoU) and pixel-wise classifica-
tion accuracy (pAcc). mIoU is separately reported for seen
(mIoU(S)) and unseen (mIoU(U)) classes. Additionally,
the Harmonic Mean IoU (hIoU) ensures a balanced eval-
uation of the model’s performance on both seen and unseen
classes, computed using the formula:

hIoU =
2×mIoU(S)×mIoU(U)

mIoU(S) + mIoU(U)
(12)

4.4. Comparison with the State-of-the-art

Our proposed method, CLIP-RC, has been extensively eval-
uated on various benchmarks, displaying outstanding per-
formance in both inductive and transductive settings. Its

ability to effectively transfer segmentation capabilities to
unseen classes proves its effectiveness for ZS3 tasks.

In the inductive setting, detailed in Tab. 1, CLIP-RC out-
performs the current SOTA model, ZegCLIP [55], by a sig-
nificant margin. This is particularly true in handling unseen
classes in the PASCAL VOC 2012 dataset, where our hIoU
reaches 88.4%, a notable 4.1% improvement. This enhance-
ment is most apparent in the recognition of unseen classes,
underlining the improved segmentation capability of our
method. Similar superiority is observed in the PASCAL
Context and COCO-Stuff 164K datasets. We also show-
case visual results in Fig. 6 from the COCO-Stuff 164K
dataset, where CLIP-RC accurately distinguishes between
various unseen classes, such as ‘playing field’ and ‘cloud’,
and ‘cardboard’, among others.

In the transductive setting, as detailed in Tab. 2, CLIP-
RC uses self-training to achieve groundbreaking results. It
attained an hIoU of 93.0% on the PASCAL VOC 2012
dataset, surpassing the previous best model by 1.9%. This
strong performance is also evident in the PASCAL Con-
text and COCO-Stuff 164K datasets. Notably, in the trans-
ductive setting, CLIP-RC outperforms the SOTA trained in
fully supervised environments through self-training. This
highlights the effectiveness of our method in accurately
identifying seen classes and successfully generalizing them
to unseen classes.

To demonstrate the upper limit of our model’s capabil-
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Figure 6. Visualization results on the COCO-Stuff 164K dataset. Columns from left to right: (1) the test images, (2) results using the
current SOTA method [55], (3) results using CLIP-RC (Ours), and (4) ground truth. The red tags indicate unseen classes.

Methods PASCAL VOC 2012 PASCAL Context COCO-Stuff 164K
pAcc hIoU mIoU(S) mIoU(U) pAcc hIoU mIoU(S) mIoU(U) pAcc hIoU mIoU(S) mIoU(U)

ZegCLIP∗ 96.3 91.6 92.4 90.9 77.4 56.2 46.9 70.0 69.9 49.6 40.7 63.2
CLIP-RC (Ours) 97.1 93.7 94.1 93.4 76.9 56.7 47.1 71.3 70.8 51.4 42.9 64.1

Table 3. Comparison with the SOTA methods in the fully supervised setting, ∗ denotes the results obtained from our retraining of the
method on the Pascal Context dataset

Method Pascal Context Pascal Context59
pAcc mIoU mAcc pAcc mIoU mAcc

Zegformer [7] 42.3 29.3 56.6 - - -
ZegCLIP [55] 60.9 41.2 68.4 68.4 47.5 69.7

CLIP-RC (ours) 62.1 42.3 68.8 70.9 49.2 69.9

Table 4. Cross-dataset generalization efficacy from COCO-Stuff
164K to PASCAL Context.

ities, Tab. 3 presents our fully supervised training results.
The CLIP-RC consistently exhibits a higher ceiling com-
pared to the former SOTA, substantiating its versatility be-
yond the zero-shot setting.

Moreover, we delved into the cross-dataset generaliza-

tion capabilities of our model. In additional experiments
presented in Tab. 4, we train on the seen classes from
COCO-Stuff 164K and test on PASCAL Context and Con-
text59 (without ‘background’), illustrating our approach’s
adaptability and cross-dataset generalization ability.

4.5. Ablation Study

In our ablation study on the PASCAL VOC 2012 dataset
within an inductive setting, we thoroughly assessed the
unique contributions of each component in our proposed
design. Initially, we conducted a broad evaluation of each
component’s effectiveness, followed by detailed ablation
tests for each specific module.
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RLB RAM RDL PASCAL VOC 2012
pAcc hIoU mIoU(S) mIoU(U)

✗ ✗ ✗ 94.6 84.3 91.9 77.8
✓ ✗ ✗ 95.2 85.4 91.5 80.0
✓ ✓ ✗ 95.4 87.4 92.5 82.9
✓ ✓ ✓ 95.8 88.4 92.8 84.4

Table 5. Ablation Studies of Key Components: RLB signifies
Region-Level Bridge, RAM denotes Region Alignment Module,
and RDL represents the Recovery Decoder with Recovery Loss.

Tokens
Number Update GFLOPs PASCAL VOC 2012

pAcc hIoU mIoU(S) mIoU(U)
16 ✓ 126.7 95.8 87.9 93.3 83.1
1 ✗ 119.8 95.3 86.9 92.5 82.0
4 ✗ 121.2 95.6 87.3 92.6 82.6

16 ✗ 126.7 95.8 88.4 92.8 84.4
64 ✗ 148.9 96.0 89.1 93.0 85.6
256 ✗ 238.2 96.0 89.2 92.7 86.0

1024 ✗ 609.2 OOM

Table 6. Ablation studies of the region-level bridge

In Tab. 5, we benchmarked our model against the previ-
ous SOTA [55], to measure the impact of each module on
our model’s overall effectiveness. The results demonstrate
that each component significantly enhances our model’s
performance in ZS3 tasks.

Region-Level Bridge (RLB). Our ablation study in
Tab. 6 examined whether updating the RLB improves per-
formance and what the ideal number of these tokens is.
We found that updating the RLB can lead to overfitting on
seen classes, negatively affecting the performance of un-
seen classes. The study also investigated how changing the
number of tokens affects the RLB. Generally, increasing the
number of tokens enhances the model’s performance up to
a certain point. Beyond this computational limit, issues like
out-of-memory (OOM) errors can occur, as we noted with
1024 tokens. To balance effectiveness and computational
efficiency, we decided to use 16 tokens.

Region Alignment Module (RAM). Our investigation
into the RAM scrutinizes which features should be pre-
served during fusion as specified in Eq. (4). Results in
Tab. 7 indicate that aligning and fusing both the [CLS] to-
ken and the RLB with the image’s original features is most
effective. The combined use of these tokens yields the best
results, optimizing the performance of our model.

Recovery Decoder with Recovery Loss (RDL). In our
exploration of the RD, we evaluated the impact of differ-
ent recovery loss types and the number of decoder lay-
ers on model performance in Tab. 8. Among various loss
functions, L1 loss emerged as the most effective. As for
the number of layers in the RD, we found that increasing
layers does not necessarily improve results; a balance be-
tween task-specific knowledge and general knowledge must
be reached. Additionally, we considered removing the Re-
covery decoder entirely, computing the L1 loss directly be-
tween features used for segmentation and the original fea-
tures. However, this direct application impacted the model’s

[CLS] token RLB PASCAL VOC 2012
pAcc hIoU mIoU(S) mIoU(U)

✗ ✗ 94.9 85.6 91.5 80.5
✓ ✗ 95.4 86.6 92.1 82.0
✗ ✓ 95.7 87.0 92.9 81.8
✓ ✓ 95.8 88.4 92.8 84.4

Table 7. Ablation studies of region alignment module

Loss Type Number
of Layer

PASCAL VOC 2012
pAcc hIoU mIoU(S) mIoU(U)

L1 Loss 1 95.8 88.4 92.8 84.4
L2 Loss 1 95.2 86.7 91.8 81.9
KD Loss 1 95.4 86.4 92.2 81.2
L1 Loss 0 95.0 86.6 91.3 82.1
L1 Loss 2 95.4 87.1 92.4 82.4
L1 Loss 3 95.3 87.0 91.6 82.8

Table 8. Ablation studies of the recovery decoder and recovery
loss

fitting ability and led to decreased performance.

5. Conclusion

In this work, we presented CLIP-RC, a novel one-stage
method for ZS3. Our approach successfully bridges the gap
between image-level classification and pixel-level segmen-
tation by introducing regional clues. This method demon-
strates the potential of leveraging finer-grained recognition
capabilities by CLIP for ZS3 tasks. By integrating a recov-
ery decoder and recovery loss, we addressed the issue of
overfitting, striking a balance between maintaining the in-
herent generalization abilities of the CLIP model and adapt-
ing it for the ZS3 task. Our experimental results have shown
that CLIP-RC not only performs robustly on seen classes
but also exhibits remarkable performance on unseen classes.
This dual capability is crucial for real-world applications
where encountering novel classes is common. We hope this
work paves the way for more efficient and effective solu-
tions in the rapidly growing fields of ZS3.

Limitations. CLIP-RC can refine the granularity of re-
gions, as shown in Tab. 6. Finer granularity can improve
IoU to some extent, but it also increases computational load.
Furthermore, since this work is based on CLIP, the perfor-
mance of the method also depends on the effectiveness of
the pre-training of CLIP in visual-language alignment.
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