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Abstract

Although Multimodal Large Language Models (MLLMs)
have demonstrated promising versatile capabilities, their
performance is still inferior to specialized models on down-
stream tasks, which makes adaptation necessary to enhance
their utility. However, fine-tuning methods require indepen-
dent training for every model, leading to huge computation
and memory overheads. In this paper, we propose a novel
setting where we aim to improve the performance of diverse
MLLMs with a group of shared parameters optimized for a
downstream task. To achieve this, we propose Transferable
Visual Prompting (TVP), a simple and effective approach to
generate visual prompts that can transfer to different models
and improve their performance on downstream tasks after
trained on only one model. We introduce two strategies to
address the issue of cross-model feature corruption of exist-
ing visual prompting methods and enhance the transferabil-
ity of the learned prompts, including 1) Feature Consistency
Alignment: which imposes constraints to the prompted fea-
ture changes to maintain task-agnostic knowledge; 2) Task
Semantics Enrichment: which encourages the prompted im-
ages to contain richer task-specific semantics with language
guidance. We validate the effectiveness of TVP through ex-
tensive experiments with 6 modern MLLMs on a wide vari-
ety of tasks ranging from object recognition and counting to
multimodal reasoning and hallucination correction.

1. Introduction

The recent success of Large Language Models (LLMs) [45,
49, 50] has motivated researchers to explore their capabili-
ties in solving multimodal tasks. Tremendous efforts have
been made to develop Multimodal Large Language Models
(MLLMs) [2, 9, 34, 37, 69], which seamlessly integrate vi-
sual input into LLMs by aligning image features with text
embeddings. These models have achieved remarkable per-
formance in image understanding and reasoning [15, 32, 59]
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Figure 1. (a) Illustration of problem setting: We aim to improve
the performance of different MLLMs on a specific task with a set
of shared parameters. This is achieved by exploiting the transfer-
ability of the visual prompts trained on one model and using them
on other models. (b) Demonstration of the effect: We show the
partial results on SVHN [42] with the visual prompt trained on
MiniGPT-4 [69] and tested on InstructBLIP [9], BLIP2 [34] and
BLIVA [21]. Compared with the existing visual prompting meth-
ods [3, 56], the proposed Transferable Visual Prompting (TVP)
improves different models with larger margins. Detailed results
are in Sec. 4.2. ZS is for zero-shot inference when non-prompted.

and serve as “foundation models” [5] for a variety of tasks.
Despite their excellent generalization performance, existing
MLLMs usually lag behind the specialized state-of-the-art
models on downstream tasks (e.g., image classification), es-
pecially when evaluated in zero-shot manner [59, 62]. This
is because MLLMs are primarily pre-trained on massive
data and fine-tuned on a small amount of modality align-
ment and instruction data [9, 37, 69], while lacking special-
ized training on certain tasks. Consequently, when users
aim to employ MLLMs for downstream tasks, their perfor-
mance is far from satisfactory, making it necessary to de-
velop effective and efficient strategies to bridge this gap and
enhance the utility of MLLMs in task-specific applications.
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Adapting MLLMs for downstream tasks conventionally
requires fine-tuning on task-specific data. Though effec-
tive in various fields, such as science [37] and biomedicine
[33], full-parameter fine-tuning (FFT) is computationally
demanding and storage-intensive, particularly for models
with billions of parameters. To address these problems, var-
ious parameter-efficient fine-tuning (PEFT) techniques have
been proposed, including Adapters [18], LoRA [20], and
prompt tuning [24, 38]. These methods perform gradient-
based optimization of additional model-specific parameters
for a downstream task. Nevertheless, they require a pro-
hibitive amount of memory for optimization and the resul-
tant parameters lack generalizability across different mod-
els. In a practical scenario, users with no prior knowledge of
PEFT and limited computation resources would prefer aux-
iliary parameters (e.g., prompts) that can improve their own
models on downstream tasks without further fine-tuning.
This leads to a novel and challenging setting that we aim to
develop a set of shared parameters that can benefit numer-
ous MLLMs on the same task, while only optimized on one
or few of them, as shown in Fig. 1. This pathway is hope-
ful to be resource-friendly and flexible, making it easier to
adapt different models for a given task simultaneously, even
when model weights are not accessible. Moreover, it aligns
with the “Prompt as a Service” (PaaS) paradigm [58], where
users can request a prompt for a downstream task from the
PaaS provider while keeping the local models confidential.

As MLLMs take images as input, the image pixel space
is a promising shared space for parameter learning. Previ-
ous methods have explored visual prompting (VP) [3, 56] to
adapt pre-trained models for downstream tasks. VP learns
parameters in pixel space around clean images as a frame,
known as visual prompts. Inspired by the transferability of
adversarial examples [11, 68], we take transferring visual
prompts to boost the performance of other models as a fea-
sible solution for our problem. However, the transferability
of the learned visual prompts for other models is yet to be
studied. We find that, though VP can effectively elevate the
performance of models used for prompt training, it can lead
to limited performance improvement or significant degrada-
tion for other models. We attribute this to the fact that the
trained prompts lead to notable changes in visual features
across different models, defined as cross-model feature cor-
ruption. This indicates that the visual prompts overfit the
model for their training and invalidate the plenty knowledge
acquired from large-scale pre-training when transferred to
other models, thus impacting their performance.

In this paper, we propose Transferable Visual Prompt-
ing (TVP) to enhance the transferability of visual prompts
across MLLMs and improve these models simultaneously.
To achieve this, we formulate a unified framework of VP on
different tasks for MLLMs. We propose two key strategies
to fortify both general knowledge and task-specific repre-

sentations. First, we propose Feature Consistency Align-
ment (FCA) to mitigate the issue of feature corruption that
highly suppresses the transferability. FCA facilitates model
adaptation to downstream tasks by imposing constraints on
visual features after applying prompts, preserving essential
inner knowledge. Consequently, it helps models better re-
tain and leverage task-agnostic representations for improve-
ment. Second, we introduce Task Semantics Enrichment
(TSE) to further embed task information explicitly into vi-
sual prompts. By leveraging CLIP [44], TSE encourages
the prompted images to exhibit semantic similarity with text
features tailored for specific tasks, rather than simply utiliz-
ing task-specific objectives for end-to-end prompt learning.
This enables models to extract better shareable task-specific
semantics and get improved on the target tasks.

We examine the performance of TVP through substantial
experiments. The visual prompts trained with one single
model can facilitate the overall performance of 6 modern
MLLMs on 10 datasets ranging from visual tasks like recog-
nition and counting to multimodal reasoning and hallucina-
tion correction, which significantly surpasses the existing
visual prompting baselines. The performance is further im-
proved with model ensembling. We demonstrate that TVP
can enhance different models with diverse data scales, gen-
eralize to different datasets, and resist image corruptions,
emphasizing the practicality of our method in real scenar-
ios. Comparisons with existing fine-tuning methods suggest
the feasibility of improving different models with shared pa-
rameters and the effectiveness of our TVP.

2. Related Works

In this section, we briefly review the related works in the
context of Multimodal Large Language Models and adapta-
tion methods for large-scale pre-trained models.

2.1. Multimodal Large Language Models

The significant advancements in LLMs for language-centric
tasks have spurred investigations into their potential appli-
cations in diverse multimodal contexts [60]. This exploita-
tion is primarily manifested in works focusing on modality
alignment and instruction tuning [2, 9, 34, 37, 69]. These
proposed models lay the foundation for MLLMs and many
subsequent works have been proposed to improve perfor-
mance concerning the issues of in-context learning [64], ef-
ficient training [63], richer modalities [48], etc.

Several benchmarks [15, 32, 59] have demonstrated that
MLLM:s show versatile capabilities in visual perception and
comprehension. However, their performance falls short of
specialized models on specific tasks, limiting their appli-
cability in certain scenarios [59]. Moreover, MLLMs face
challenges related to safety and reliability, including issues
of value alignment [39] and hallucination [16, 35]. MLLMs
need further tuning to address these challenges.
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Figure 2. Overview of our proposed Transferable Visual Prompting (TVP) method for adapting MLLMs. TVP optimizes a visual prompt
on a single MLLM towards a downstream task. Feature Consistency Alignment (FCA) and Task Semantic Enrichment (TSE) are proposed
to make learned visual prompts more transferable and benefit more unseen MLLMs to improve on the same task.

2.2. Adaptation for Large-Scale Pre-trained Models

Adapting MLLMs mainly follows methods for large models
(e.g., LLMs [49], CLIP [44]). Fine-tuning for a downstream
task is straightforward but costly in computation and stor-
age. Parameter-efficient fine-tuning (PEFT) methods, such
as Adapters [18], LoRA [20], and prompt tuning [24, 38],
have emerged to ease these challenges. Some recent ad-
vanced works also focus on efficient modality bridging and
adaptation via routing and skipping with adapters [40, 57].
However, they are inherently model-specific and require ac-
cess to the inner structure of models, diverging from our
goal of optimizing a single set of parameters to adapt mul-
tiple models in a resource-friendly and flexible manner.

Recent developments in visual prompting [3], inspired
by adversarial reprogramming [14, 51], offer a promising
solution for model adaptation by introducing learnable per-
turbations in the pixel space of images. As the pixel space is
a shared domain for different models, it becomes a natural
choice for parameter tuning. Many follow-up works have
explored topics like performance refinement [56] and data
generalization [22, 28], but none has studied the generaliza-
tion of visual prompts across models, or their transferabil-
ity as defined in adversarial attacks [10, 68]. While popular
works of prompt tuning like CoOp [65, 66], VPT [24] and
MaPLe [27] operate soft prompts for both modalities at the
early layers of the model, even at the embedding space, they
are invalid under complete black-box conditions where only
discrete texts and images are accessible for input.

In this paper, we investigate the direct transfer of trained
visual prompts to other MLLMs for adaptation. This re-
duces the computation and storage overloads, and also of-
fers a more convenient and flexible solution in diverse ap-

plication scenarios like “Prompt as a Service” (PaaS) [58],
where users can directly request a visual prompt towards a
certain task for their local models from the PaaS provider
with a guarantee of the model confidentiality.

3. Methods

Visual prompting offers an effective means to adapt vision-
language models, such as CLIP [44], to downstream visual
tasks without resorting to fine-tuning. In this study, we ex-
tend the application of VP to MLLMs and investigate its
potential for enhancing performance across a range of mod-
els. Although existing methods can enhance model perfor-
mance through prompt training, these trained prompts often
fall short when applied to other models due to issues related
to feature corruption. To this end, we introduce the method
of Transferable Visual Prompting (TVP), aiming to enhance
the transferability of visual prompts across diverse MLLMs.

In this section, we will first briefly present some prelim-
inaries about MLLMs and VP, then formulate our problem
of transferring visual prompts across MLLMs, and finally
introduce our proposed TVP approach. The overview of
our method is depicted in Fig. 2.

3.1. Preliminaries

Multimodal Large Language Models. MLLMs primarily
use an architecture that projects visual features to the text
embedding space to integrate images with LLMs [9, 21, 69].
To be specific, assume that we have a visual encoder fy,
an LLM P, and a projector h,. The textual response r of
an MLLM given image input X and text input t is decided
autoregressively according to the likelihood

r; ~ Py(rilhy(fo(X)), t, 1<), (1)
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where X € R3>*H>*W i an RGB image and t € V¥ is
a text with N tokens from vocabulary V. Image features
fo(X) are mapped by a projector hy; (e.g., MLP [9, 37, 69])
to align with the text and further concatenated with text to-
kens as unified input for the downstream LLM.

Visual Prompting. As proposed in [14] and [3], a train-
able visual prompt § € R3*#*W ig learned in the pixel
space and imposed to the clean images with different trans-
formations 7 (e.g., global perturbations [43], padding [3])
to adapt models to a certain downstream task.

In this paper, we follow the common practice of VP [3]
by adding universal pixel-level prompt around resized input
images. Mathematically, we describe the process of visual
prompting as

7;,(X, (S) = ResizeHXw%H/XW/ (X) + Mp ®© o ; (2)
——

visual prompt

where p is the width of the visual prompt and M, is a
binary mask with a border of width p taking values of
1. The original image X of size H x W is resized to
H' x W' = (H —2p) x (W —2p), so that the prompted im-
age is of the same size as the original without overlapping
with . We take H = W = 224 and p = 30 by default.

3.2. Problem Formulation

We extend VP [3, 56] to adapt MLLMs for downstream
tasks while avoiding heavy computations in massive param-
eter fine-tuning. To make it more general, we unify differ-
ent visual tasks into the form of text completion and take
the autoregressive loss (i.e., cross-entropy loss over the vo-
cabulary) as the training objective for VP. For a task with
dataset D, this is formulated as minimizing Ly m(d) =

N,

3 —log Py(rilhy(fo(To(X, ).t r<;)

(X,t,r)~D Pt

3)

Here, (t,r) is the prompt-target text pair for a task, with V,.

denoting the length of r. Prompts and targets for different
tasks are introduced in Appendix A.1.

In this work, we exploit the transferability of visual
prompts, inspired by transfer attacks in the field of adver-
sarial robustness [68]. We transfer the one-time trained
prompts to other models to improve their performance.
Specifically, we optimize a prompt § on an MLLM mini-
mizing its loss £y m and expect it can lower the loss L]
of an arbitrary different MLLM, i.e., to improve its perfor-
mance when we apply this trained prompt on it without any
further fine-tuning on the target task.

After examining existing VP methods [3, 56] on differ-
ent models, we find that the transferability of the generated
visual prompts is poor, resulting in modest improvement or

"
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Figure 3. t-SNE visualization of visual features from InstructBLIP
and BLIVA on CIFAR-10 with and without the visual prompt,
which is trained on MiniGPT-4 using VP [3]. When the images
are prompted, the visual features of different categories get mixed
together, leading to performance degradation.

even remarkable performance decline, as shown in Fig. 1.
We identify the reason for this phenomenon as “cross-model
feature corruption” given visual prompts trained on one
model. We can observe significant changes in visual fea-
tures triggered on different models by the visual prompts.
As shown in Fig. 3, by plotting the t-SNE [53] of prompted
visual features extracted by different models on CIFAR-
10, we find that for models with performance degradation,
the features of prompted images get mixed up compared to
clean images. It indicates that when training visual prompts,
they primarily amplify task-specific features that are only
useful for the current model, i.e., overfitting to the model for
training. However, the feature changes on other models ren-
der the knowledge from pre-training ineffective and disrupt
the predictions for those models without prompt learning.

3.3. Transferable Visual Prompting

To alleviate the issue of feature corruption and further im-
prove the transferability, we present Transferable Visual
Prompting (TVP) by integrating two novel strategies with
traditional VP techniques. We introduce them as follows.

3.3.1 Feature Consistency Alignment

The above analysis reveals that visual prompts significantly
alter image features, leading to a loss of the general knowl-
edge gained from pre-training and a reduction of perfor-
mance when transferring across models. To counter this,
we propose to impose a specific constraint on the divergence
between the prompted features and non-prompted features.
This is intended to avoid exceptional feature corruption and
guide the prompted features to maintain the task-agnostic
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general knowledge during prompt learning.

We encourage the prompted features to be consistent
with original features by a loss of feature consistency align-
ment (FCA), so that the task-agnostic features and inher-
ent knowledge can be aligned. Given a white-box model
(Pg, fo, hy) and an input tuple (X, t,r), we will get a fea-
ture of the plain image from the visual encoder fy(X) and
a prompted feature fy(7,(X,d)) accordingly. The ¢5 dis-
tance between these features are adopted to measure the di-
vergence and the FCA loss can be computed as Lgca(d) =

1
B o [T X0) I3[ @
Here, we condition the prompted features with original fea-
tures to depress changes in features and preserve effective
task-agnostic semantic information. It is expected to make
the learned visual prompts more transferable because the
prompts are more mild to exploit useful visual representa-
tions from unseen models.

From another perspective, the FCA loss can be consid-
ered as a form of regularization applied to the prompted
feature space, serving as a means of enhancing generaliza-
tion. Regularization techniques have been commonly used
to prevent overfitting and guarantee the model’s general-
ization to unseen data. The main difference is that previ-
ous works [28, 30, 54, 67] primarily focus on the gener-
alization across data (e.g., base-to-novel, domain general-
ization), while our research is centered around the general-
ization across models. By employing regularization to the
prompted features, we seek a balance between maximizing
the performance on supervised tasks and maintaining the
inherent knowledge embedded in various models.

3.3.2 Task Semantic Enrichment

Besides end-to-end supervised training, we want to explic-
itly make visual prompts contain richer task-specific seman-
tic information to further boost the performance of visual
prompts. This is expected to enhance the performance of
diverse models on the target tasks by fostering a shared se-
mantic enhancement across them. CLIP [44] is a vision-
language foundation model and has abundant knowledge
by image-text alignment. Based on this, many studies have
taken CLIP as a bridge to introduce language as additional
supervision and guidance for visual tasks [26, 47]. Yet, in
the context of prompt learning, it has not been widely stud-
ied to use CLIP as a guidance rather than the target model.
We propose another loss of task semantic enrichment
(TSE) to explicitly enhance the task-related semantics of
prompted images by leveraging CLIP. CLIP consists of a
visual encoder gimage and a text encoder gy, mapping im-
age input X € R3*XW and text input t € V¥ to a
shared embedding space R? respectively. The correspon-

dence between images and texts can be obtained by com-
puting the distance between their features. By designing
task-specific descriptions according to the images, we can
maximize their similarity to better embed the task seman-
tics into the prompted images. Referring to the contrastive
loss of CLIP, we present an auxiliary loss as L1sg(d) =
E [eXp(TSim(gimage(,];(X> 6))7 gtext<tX)))]7 (5)

(X,tx)~D
where sim(+, -) is the cosine similarity and 7 is the tempera-
ture. tx is the text description of image X under the target
task. Descriptions for different tasks are in Appendix A.1.

By integrating FCA loss and TSE loss along with super-
vised loss of L1y in Eq. (3), we guide the visual prompt to
consolidate and strengthen task-agnostic and task-specific
representations while improving the model performance.
The overall training objective is in the form of

L(6) = Lrim(6) + M Lrca(0) — AaLse(d),  (6)

where A\; and )\, are hyperparameters. For this training ob-
jective, we follow EVP [56], which introduces the concepts
of input diversity and gradient normalization to improve the
performance, and update the learnable prompt at step ¢ by
S — 5t _ ~y Véfﬁ(‘stt) 7 (7
IV £(87)] 2

where 7 is the learning rate.

4. Experiments

In this section, we conduct substantial experiments to ver-
ify the effectiveness of the proposed TVP in boosting the
transferability of visual prompts.

4.1. Experimental Settings

Here, we briefly list the basic settings for the following ex-
periments. More details are provided in Appendix A.

Datasets and Metrics. We consider 10 datasets involv-
ing diverse visual or multimodal tasks. For visual tasks, we
take 8 datasets of object recognition (e.g., CIFAR-10 [31],
ImageNette [19] and SVHN [42]) and object counting (e.g.,
CLEVR [25]) for illustration. We further focus on two chal-
lenging multimodal problems including multimodal reason-
ing (Hatefulmemes [29]) and hallucination (POPE [35]), to
better demonstrate the effectiveness of our methods in the
realm of MLLM. AUC score is taken as the metric for Hate-
fulmemes while top-1 accuracy is used for the rest.

Models. We select 6 modern MLLMs with diverse ca-
pabilities as evaluated by [15] to demonstrate that the gen-
erated visual prompts by our method can universally ele-
vate their performance. To be specific, we take MiniGPT-
4 [69] and InstructBLIP [9] for training visual prompts re-
spectively and transfer the prompts to BLIP2 [34], VPG-
Trans [63], BLIVA [21] and VisualGLM [1].
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TVP (ours) | 55.65 62.54" 5552 61.61 62.77 59.01 +1.55 TVP (ours) | 54.53 77.80* 50.20 64.93 7520 70.47 +1.48
VP [3] 54.81* 61.88" 5551 61.54 62.39 57.66 +1.00 VP [3] 58.33* 76.73* 50.60 64.87 72.13 71.07 +1.57
Ensemble EVP [56] |58.85" 62.26" 54.09 59.21 62.10 5822 +1.16 Ensemble EVP [56] | 64.67* 75.87* 50.00 64.07 71.80 62.13 +0.71
TVP (ours) | 62.33" 62.77° 58.77 62.23 64.67 58.47 +3.57 TVP (ours) | 59.13* 77.53* 5240 64.93 7527 7240 +2.90

Table 1. Results on 6 datasets of different tasks from object recognition and counting to multimodal reasoning and hallucination. Visual
prompts are trained on MiniGPT-4 [69], InstructBLIP [9] and their ensemble with different methods, and further tested on 6 modern
MLLMs. We display the average improvements over all models on the last column and * denotes the results of the model for prompt
training. AUC score is the metric for Hatefulmemes (HM) and top-1 accuracy (%) is used for the rest. Besides highlighting the best overall

average improvement, we mark the best result in bold for each model.

Baselines. We mainly focus on the transferability of vi-
sual prompting across diverse models and compare the pro-
posed TVP method with VP [3] and EVP [56], which are
general methods of visual prompting, rather than those fo-
cusing on generalization across different data distributions.

Implementations. Hyperparameters for TVP include
two balance weights for the proposed loss terms. Follow-
ing [24, 43], we set them optimal by grid-search within
small ranges on validation sets. The search ranges and other
details are introduced in Appendix A.3.

4.2. Main Results

We train visual prompts on either MiniGPT-4 or Instruct-
BLIP for target downstream tasks using different methods
and examine their performance on the 6 selected models.
The results are displayed in Tab. 1. Several findings are
summarized in the following context.

First of all, this is the first time that visual prompting
technique [3] is proved to be effective for MLLMs on mul-
timodal tasks involving reasoning besides recognition. Be-
yond that, VP [3] yields the least favorable outcomes, of-
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ten leading to an overall performance degradation, indicat-
ing poorer transferability. EVP brings more significant im-
provements for the models training visual prompts due to
the stable optimization with normalized gradients, which is
aligned with [56], but its benefits for other models are lim-
ited. In contrast, while the proposed TVP achieves similar
effectiveness on models for training, it also boosts the per-
formance of other models with larger margins. The over-
all effectiveness is manifested as the highest average delta
in growth across 6 models on all downstream tasks, which
better achieves our goal of enhancing different models with
a single set of shared external parameters.

Moreover, we have some more in-depth findings regard-
ing the results of TVP. The improvements of VisualGLM [1]
are relatively modest compared to other models. This sug-
gests that the visual prompts are more challenging to trans-
fer to VisualGLM. The language model of VisualGLM is
GLM [13] while the language models for the rest models
are based on the LLaMA architecture [49]. This differ-
ence in language models can raise the difficulty of effective
prompt transferring. Also, we notice that the transferability
of visual prompts generated by InstructBLIP is better than
those from MiniGPT-4 in general. Though sharing simi-
lar architecture, InstructBLIP is tuned systematically on 13
vision-language datasets [9], which is far more plentiful
than MiniGPT-4 [69]. This means that InstructBLIP pos-
sesses more internal knowledge concerning visual-language
tasks, which should help the learning of visual prompts and
benefit other models with more improvements.

Similar conclusions are drawn on more practical
datasets like CIFAR-100 [31], Oxford-Pets [23], FGVC-
Aircraft [41] and Food101 [6], in Tab. 6, Appendix B.

4.3. Model Ensemble

Ensembling methods have been proven effective to enhance
model generalization [4, 52] and transfer attack [7, 10, 12].
The idea of ensemble can also be applied to transferable vi-
sual prompting. The intuition is that if the visual prompts
are effective for multiple models, it is more likely that they
contain more shareable informative semantics and trans-
fer better to other models. We simply optimize the visual
prompts by averaging over losses of different models, and
here take MiniGPT-4 and InstructBLIP for ensemble.

The results of ensemble prompt learning are presented
in Tab. 1. We can see that model ensembling is a gen-
eral technique that can enhance the transferability of vi-
sual prompts trained with different methods. Meanwhile,
the trend that TVP has the best performance remains un-
changed and with the aid of ensemble, it achieves the best
overall improvements on four tasks. However, more models
bring more computational and storage overheads for ensem-
ble. A balance between training cost and prompt transfer-
ability needs to be sought when adopting this technique.

Recognition
(ImageNette) RS

Counting
(CLEVR)

Hallucination™" -
(POPE)

Figure 4. GradCAM [46] of VPGTrans [63] on 3 different tasks.
TVP encourages the model to attend to task-related objects.

FCA TSE CIFAR-10 IN SVHN CLEVR HM POPE
X X 0.28 0.81 1745 864 0.09 090
v X 3.81 273 2084 10.83 099 2.33
X v 1.91 336 24.68  10.14 031  2.15
 / 3.83 580 2472 1151 169 3.19

Table 2. The average performance improvements with different
combinations of FCA and TSE.

Prompt Width 5 10 20 30 40 50 80

MiniGPT-4 +2.84 +3.23 +397 +383 4271 +193 -3.03
InstructBLIP ~ +3.71 4542 +5.06 +6.69 +3.15 +291 -2.12
Ensemble +4.66 +3.38 +545 +7.75 +5.87 +5.12 +2.67

Table 3. The average improvements on CIFAR-10 with prompts
of different widths by TVP using different training models.

4.4. Ablation Studies

We conduct ablation studies on TVP to further verify our
design. In the rest context, we only report average perfor-
mance for analysis and detailed results are in Appendix B.

4.4.1 Strategies of FCA and TSE

We first examine the impacts of the proposed strategies,
FCA and TSE, on the performance of visual prompts trained
with MiniGPT-4. As shown in Tab. 2, individually apply-
ing either strategy can improve the average performance to
some extent. When they are combined together, it can max-
imize the assistance of visual prompts for diverse models.
This indicates that both task-agnostic prior knowledge moti-
vating FCA and task-related feature extraction enhanced by
TSE can contribute to the transferability of visual prompts.
Visualization in Fig. 4 also suggests that TVP can help mod-
els better locate the objects beneficial for task completion.

4.4.2 Prompt Width

Prompt width, defining the number of parameters, could be
critical for TVP’s performance. The results on CIFAR-10
in Tab. 3 show that there is a trade-off between the number
of learnable parameters and the scaled image size, and the
performance of TVP reaches the peak at a moderate prompt
width around 20-30, which validates our choice of 30.
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Figure 5. Curves of average performance as the training data scale
changes. TVP can effectively enhance the performance of differ-
ent models even with only 1% of the data, and its overall perfor-
mance improves as the data size increases.

4.5. In-depth Analyses

We present several in-depth analyses below, to demonstrate
the effectiveness of TVP under different conditions and val-
idate its practicality in real scenarios.

4.5.1 Data Scale

Considering that the data available for adaptation is some-
times limited in practical scenarios, it’s essential to study
the impact of the training data size on the performance of
the learned visual prompts. Following [24, 56], we examine
the varying trends of different methods within a larger range
from 1% to 100%. We plot the curves of the average perfor-
mance of different models armed with the visual prompts
trained using MiniGPT-4 as the amount of data changes
in Fig. 5. As expected, the performance of TVP tends to
improve as the data scale increases in general. The over-
all conclusion in Sec. 4.2 that TVP performs better than VP
and EVP remains consistent regardless of data sizes. It is
worth noting that TVP can enhance the overall performance
of multiple models even when the data amount is only 1%,
and the effect of visual prompts is sometimes close to that
trained with the complete datasets. This further illustrates
the effectiveness of our method and makes its application in
real-world scenarios more promising.

4.5.2 Generalization across Datasets

It is worth investigating the generalization of trained visual
prompts to further confirm the practicality of TVP in real
scenarios. We take object recognition as an example. Fol-
lowing the common practice in prompt learning [27, 65], we
apply the visual prompts generated with ensemble method
on CIFAR-100, which has the most categories for common
objects, to other datasets of the recognition task. As shown
in Tab. 4, besides the best transferability on source dataset,
TVP also gets the most or comparable improvements on
other datasets, showing good generalization across diverse
datasets within the same task.

Avg. A'| C-100 | C-10 IN SVHN  Pet Air  Food

VP +2.87 | +1.57 +1.24  -029 4287 +0.97 -1.04
EVP +6.21 | -0.11 +0.14 -2.84 +121 +0.75 -1.05
TVP +7.57 | +4.10 +2.33 +1.57 +3.87 +0.35 +1.89

Table 4. Cross-dataset generalization with visual prompts using
the ensemble of MiniGPT-4 and InstructBLIP on CIFAR-100.

4.5.3 Robustness to Corruptions

We also test the robustness of visual prompts to common
image corruptions [17]. The visual prompt generated by
TVP on MiniGPT-4 gets an average improvement of 2.30%
on CIFAR-10-C while both VP and EVP result in perfor-
mance degradation of -6.62% and -3.87%. Results on cor-
rupted datasets are in Appendix B.2 due to space limit.

4.6. Discussion on Computational Efficiency

We further compare the performance and efficiency of TVP
with those of other fine-tuning methods and visual prompt-
ing methods, to support the motivation of the proposed
problem and the corresponding solution of TVP. Due to the
page limit, we present detailed discussion in Appendix C.

5. Conclusion

In this paper, we propose to optimize a set of shared param-
eters for diverse MLLMs to adapt them to downstream tasks
in a resource-friendly and flexible manner, which can avoid
the computation and storage overheads with model-specific
fine-tuning. Concretely, we introduce Transferable Visual
Prompting to boost the performance of a group of mod-
els by adopting visual prompts as the shared parameters
and improving their transferability with one-time training
on only one model. Existing methods of visual prompting
usually fail to enhance unseen models by satisfying mar-
gins due to feature corruption. We address this with two
key strategies, Feature Consistency Alignment and Task Se-
mantics Enrichment, which maintain the inner prior knowl-
edge of large-scale pre-trained models and strengthen the
task-related features extracted by models. Through exten-
sive experiments on 10 datasets of diverse tasks from recog-
nition and counting to multimodal reasoning and hallucina-
tion correction, we demonstrate the effectiveness of the pro-
posed TVP to promote different models simultaneously.

Acknowledgement

This work was supported by the National Key Research and
Development Program of China (No. 2020AAA0106302),
NSFC Projects (Nos. 92370124, 62350080, 92248303,
62276149, U2341228, 62061136001, 62076147), BNRist
(BNR2022RC01006), Tsinghua Institute for Guo Qiang, and
the High Performance Computing Center, Tsinghua University.
J. Zhu was also supported by the XPlorer Prize. Y. Dong was
also supported by the China National Postdoctoral Program for
Innovative Talents and Shuimu Tsinghua Scholar Program.

26569



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

Visualglm-6b. https://github . com/ THUDM /
VisualGLM-6B/,2023.5,7,1

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katherine Millican, Malcolm Reynolds, et al. Flamingo: a
visual language model for few-shot learning. In Advances
in Neural Information Processing Systems, pages 23716—
23736, 2022. 1,2

Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and
Phillip Isola. Exploring visual prompts for adapting large-
scale models. arXiv preprint arXiv:2203.17274, 2022. 1, 2,
3,4,6,5

Yijun Bian and Huanhuan Chen. When does diversity help
generalization in classification ensembles? IEEE Transac-
tions on Cybernetics, 52(9):9059-9075, 2021. 7

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 1

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101 — mining discriminative components with random
forests. In Computer Vision — ECCV 2014, pages 446461,
2014. 7,1

Huanran Chen, Yichi Zhang, Yinpeng Dong, and Jun Zhu.
Rethinking model ensemble in transfer-based adversarial at-
tacks. arXiv preprint arXiv:2303.09105, 2023. 7

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhang-
hao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yong-
hao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
Xing. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality, 2023. 1

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven C. H. Hoi. Instructblip: Towards general-
purpose vision-language models with instruction tuning.
arXiv preprint arXiv:2305.06500, 2023. 1,2, 3,4,5,6, 7
Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9185-9193, 2018. 3, 7

Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu.
Evading defenses to transferable adversarial examples
by translation-invariant attacks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 43124321, 2019. 2

Yinpeng Dong, Huanran Chen, Jiawei Chen, Zhengwei
Fang, Xiao Yang, Yichi Zhang, Yu Tian, Hang Su, and Jun
Zhu. How robust is google’s bard to adversarial image at-
tacks? arXiv preprint arXiv:2309.11751, 2023. 7
Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong
Qiu, Zhilin Yang, and Jie Tang. GLM: General language
model pretraining with autoregressive blank infilling. In Pro-
ceedings of the 60th Annual Meeting of the Association for

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

26570

Computational Linguistics (Volume 1: Long Papers), pages
320-335,2022. 7

Gamaleldin F. Elsayed, Ian Goodfellow, and Jascha Sohl-
Dickstein. Adversarial reprogramming of neural networks.
In International Conference on Learning Representations,
2019. 3,4

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,
Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jinrui Yang,
Xiawu Zheng, et al. Mme: A comprehensive evaluation
benchmark for multimodal large language models. arXiv
preprint arXiv:2306.13394,2023. 1,2, 5

Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and
preventing hallucinations in large vision language models.
arXiv preprint arXiv:2308.06394, 2023. 2

Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. In International Conference on Learning Representa-
tions, 2019. 8, 2, 4

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In Proceedings of the 36th International
Conference on Machine Learning, pages 2790-2799, 2019.
2,3

Jeremy Howard. imagenette. "https://github.com/
fastai/imagenette/". 5, 1

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 2, 3

Wenbo Hu, Yifan Xu, Y Li, W Li, Z Chen, and Z Tu. Bliva:
A simple multimodal 1lm for better handling of text-rich vi-
sual questions. arXiv preprint arXiv:2308.09936, 2023. 1, 3,
5

Qidong Huang, Xiaoyi Dong, Dongdong Chen, Weim-
ing Zhang, Feifei Wang, Gang Hua, and Nenghai Yu.
Diversity-aware meta visual prompting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10878-10887, 2023. 3

C. V. Jawahar, A. Zisserman, A. Vedaldi, and O. M. Parkhi.
Cats and dogs. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3498-3505,
2012. 7, 1

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In Computer Vision — ECCV 2022, pages
709-727,2022. 2, 3, 6, 8

Justin  Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross
Girshick. Clevr: A diagnostic dataset for compositional
language and elementary visual reasoning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2901-2910, 2017. 5, 1
Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and
Aniruddha Kembhavi. Simple but effective: Clip embed-
dings for embodied ai. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14829-14838, 2022. 5



[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

[39]

Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad
Maaz, Salman Khan, and Fahad Shahbaz Khan. Maple:
Multi-modal prompt learning.  In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 19113-19122, 2023. 3, 8
Muhammad Uzair Khattak, Syed Talal Wasim, Muzam-
mal Naseer, Salman Khan, Ming-Hsuan Yang, and Fa-
had Shahbaz Khan. Self-regulating prompts: Foundational
model adaptation without forgetting. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 15190-15200, 2023. 3, 5

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj
Goswami, Amanpreet Singh, Pratik Ringshia, and Davide
Testuggine. The hateful memes challenge: Detecting hate
speech in multimodal memes. In Advances in Neural Infor-
mation Processing Systems, pages 2611-2624, 2020. 5, 1
Dachee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim,
and Jaekoo Lee. Selfreg: Self-supervised contrastive reg-
ularization for domain generalization. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 9619-9628, 2021. 5

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5,7, 1

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. Seed-bench: Benchmarking mul-
timodal 1lms with generative comprehension. arXiv preprint
arXiv:2307.16125,2023. 1,2

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama,
Haotian Liu, Jianwei Yang, Tristan Naumann, Hoifung Poon,
and Jianfeng Gao. Llava-med: Training a large language-
and-vision assistant for biomedicine in one day. arXiv
preprint arXiv:2306.00890, 2023. 2

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. arXiv
preprint arXiv:2301.12597,2023. 1,2, 5

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin
Zhao, and Ji-Rong Wen. Evaluating object hallucina-
tion in large vision-language models.  arXiv preprint
arXiv:2305.10355,2023. 2, 5, 1

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dolldr, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision — ECCV 2014, pages 740-755, 2014. 1
Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. In Advances in Neural Information
Processing Systems, 2023. 1,2, 4

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao
Du, Zhilin Yang, and Jie Tang. P-tuning: Prompt tuning can
be comparable to fine-tuning across scales and tasks. In Pro-
ceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages
61-68,2022. 2,3

Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoy-
ing Zhang, Ruocheng Guo Hao Cheng, Yegor Klochkov,
Muhammad Faaiz Taufiq, and Hang Li. Trustworthy llms:
a survey and guideline for evaluating large language models’
alignment. arXiv preprint arXiv:2308.05374, 2023. 2

(40]

[41]

(42]

[43]

(44]

(45]

[46]

[47]

(48]

[49]

[50]

(51]

26571

Gen Luo, Yiyi Zhou, Tianhe Ren, Shengxin Chen, Xiaoshuai
Sun, and Rongrong Ji. Cheap and quick: Efficient vision-
language instruction tuning for large language models. In
Advances in Neural Information Processing Systems, pages
29615-29627,2023. 3

S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical re-
port, 2013. 7, 1

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural
images with unsupervised feature learning. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning
2011,2011. 1,5

Changdae Oh, Hyeji Hwang, Hee-young Lee, YongTaek
Lim, Geunyoung Jung, Jiyoung Jung, Hosik Choi, and
Kyungwoo Song. Blackvip: Black-box visual prompting for
robust transfer learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 24224-24235, 2023. 4,6

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In Proceedings of the 38th International Conference
on Machine Learning, pages 8748-8763, 2021. 2,3, 5
Konstantinos I Roumeliotis and Nikolaos D Tselikas. Chat-
gpt and open-ai models: A preliminary review. Future Inter-
net, 15(6):192, 2023. 1

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), 2017.
7

Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal,
Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, and Kurt
Keutzer. How much can clip benefit vision-and-language
tasks? In International Conference on Learning Representa-
tions, 2022. 5

Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and
Deng Cai. Pandagpt: One model to instruction-follow them
all. arXiv preprint arXiv:2305.16355, 2023. 2

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziére, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971,2023. 1, 3,7

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023. 1

Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. Transfer
learning without knowing: Reprogramming black-box ma-
chine learning models with scarce data and limited resources.
In Proceedings of the 37th International Conference on Ma-
chine Learning, pages 9614-9624, 2020. 3



[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Naonori Ueda and Ryohei Nakano. Generalization error of
ensemble estimators. In Proceedings of International Con-
ference on Neural Networks (ICNN’96), pages 90-95. IEEE,
1996. 7

Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008. 4

Twan Van Laarhoven. L2 regularization versus batch and
weight normalization. arXiv preprint arXiv:1706.05350,
2017. 5

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and
Quoc V Le. Finetuned language models are zero-shot learn-
ers. In International Conference on Learning Representa-
tions, 2022. 1

Junyang Wu, Xianhang Li, Chen Wei, Huiyu Wang, Alan
Yuille, Yuyin Zhou, and Cihang Xie. Unleashing the power
of visual prompting at the pixel level. arXiv preprint
arXiv:2212.10556,2022. 1,2,3,4,5,6,7,8

Qiong Wu, Wei Yu, Yiyi Zhou, Shubin Huang, Xiaoshuai
Sun, and Rongrong Ji. Parameter and computation efficient
transfer learning for vision-language pre-trained models. In
Advances in Neural Information Processing Systems, pages
41034-41050, 2023. 3

Yixin Wu, Rui Wen, Michael Backes, Pascal Berrang, Math-
ias Humbert, Yun Shen, and Yang Zhang. Quantifying pri-
vacy risks of prompts in visual prompt learning. arXiv
preprint arXiv:2310.11970, 2023. 2, 3

Peng Xu, Wengi Shao, Kaipeng Zhang, Peng Gao, Shuo
Liu, Meng Lei, Fanqing Meng, Siyuan Huang, Yu Qiao,
and Ping Luo. Lvlm-ehub: A comprehensive evaluation
benchmark for large vision-language models. arXiv preprint
arXiv:2306.09265,2023. 1,2

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun,
Tong Xu, and Enhong Chen. A survey on multimodal large
language models. arXiv preprint arXiv:2306.13549,2023. 2
Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu
Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao
Xia, et al. GIm-130b: An open bilingual pre-trained model.
arXiv preprint arXiv:2210.02414,2022. 1

Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing Qu,
Yong Jae Lee, and Yi Ma. Investigating the catastrophic for-
getting in multimodal large language models. arXiv preprint
arXiv:2309.10313,2023. 1

Ao Zhang, Hao Fei, Yuan Yao, Wei Ji, Li Li, Zhiyuan Liu,
and Tat-Seng Chua. Transfer visual prompt generator across
Ilms. In Advances in Neural Information Processing Sys-
tems, 2023. 2,5,7, 1

Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai
An, Liang Chen, Zixuan Liu, Sheng Wang, Wenjuan Han,
and Baobao Chang. Mmicl: Empowering vision-language
model with multi-modal in-context learning. arXiv preprint
arXiv:2309.07915, 2023. 2

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Conditional prompt learning for vision-language mod-
els. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 16816—
16825, 2022. 3, 8

[66]

[67]

(68]

[69]

26572

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to prompt for vision-language models. In-
ternational Journal of Computer Vision, 130(9):2337-2348,
2022. 3

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. Domain generalization: A survey. /[EEE
Transactions on Pattern Analysis and Machine Intelligence,
45(4):4396-4415, 2023. 5

Wen Zhou, Xin Hou, Yongjun Chen, Mengyun Tang, Xi-
angqi Huang, Xiang Gan, and Yong Yang. Transferable ad-
versarial perturbations. In Computer Vision — ECCV 2018,
pages 452-467, 2018. 2,3, 4

Deyao Zhu, Jun Chen, Xiaogian Shen, Xiang Li, and Mo-
hamed Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. arXiv
preprint arXiv:2304.10592,2023. 1,2,3,4,5,6,7



