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Abstract

As an important pillar of underwater intelligence, Ma-
rine Animal Segmentation (MAS) involves segmenting ani-
mals within marine environments. Previous methods don’t
excel in extracting long-range contextual features and over-
look the connectivity between discrete pixels. Recently,
Segment Anything Model (SAM) offers a universal frame-
work for general segmentation tasks. Unfortunately, trained
with natural images, SAM does not obtain the prior knowl-
edge from marine images. In addition, the single-position
prompt of SAM is very insufficient for prior guidance. To
address these issues, we propose a novel feature learning
framework, named Dual-SAM for high-performance MAS.
To this end, we first introduce a dual structure with SAM’s
paradigm to enhance feature learning of marine images.
Then, we propose a Multi-level Coupled Prompt (MCP)
strategy to instruct comprehensive underwater prior infor-
mation, and enhance the multi-level features of SAM’s en-
coder with adapters. Subsequently, we design a Dilated
Fusion Attention Module (DFAM) to progressively inte-
grate multi-level features from SAM’s encoder. Finally, in-
stead of directly predicting the masks of marine animals,
we propose a Criss-Cross Connectivity Prediction (C3P)
paradigm to capture the inter-connectivity between discrete
pixels. With dual decoders, it generates pseudo-labels and
achieves mutual supervision for complementary feature rep-
resentations, resulting in considerable improvements over
previous techniques. Extensive experiments verify that our
proposed method achieves state-of-the-art performances on
five widely-used MAS datasets. The code is available at
https://github.com/Drchip61/Dual SAM.

1. Introduction
Underwater ecosystems contain a wide variety of marine
life, from microscopic plankton to colossal whales. These
ecosystems are crucial roles for the earth’s environmental
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Figure 1. Our inspirations and advantages. (a) Single-position
prompt of SAM. (b) Our multi-level prompt. (c) Mutual supervi-
sion for our Dual-SAM’s decoders. (d) Our Dual-SAM delivers
high performances on multiple datasets.

balance. Accurate and efficient Marine Animal Segmenta-
tion (MAS) is vital for understanding species’ distributions,
behaviors, and interactions within the submerged world.
However, unlike conventional terrestrial images, underwa-
ter images include variable lighting conditions, water tur-
bidity, color distortion, and the movement of both cameras
and subjects. Traditional segmentation techniques, devel-
oped primarily for terrestrial settings, often fall short when
applied to the underwater domain. Consequently, methods
designed to tackle the unique aspects of the marine environ-
ment are urgently required for underwater intelligence.

With the advent of deep learning, Convolutional Neu-
ral Networks (CNNs) [15, 20] lead to a new era for im-
age segmentation. In fact, CNNs demonstrate a remarkable
ability to extract intricate features, which makes them suit-
able for marine animal segmentation. Nonetheless, CNNs
have inherent limitations in capturing long-range dependen-
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cies and contextual information within an image. Recently,
Transformers [8] offer enhanced performance in capturing
the long-range features of complex images. This ability
is particularly appealing for underwater image segmenta-
tion, where the contextual information is often crucial to
discern a marine organism from its background. However,
one significant challenge for Transformers is the need of
vast amounts of training data. Building on this evolution,
the Segment Anything Model (SAM) [26] utilizes one bil-
lion natural images for model training. However, since the
pre-training of SAM is primarily conducted under natural
lighting conditions, its performance in marine environments
is not optimal. In addition, the simplicity of SAM’s decoder
limits its ability to capture complex details of marine organ-
isms. Moreover, SAM introduces external prompts for in-
structing object priors. However, the single-position prompt
is very insufficient for prior guidance.

To overcome the aforementioned issues, in this work we
propose a novel feature learning framework, named Dual-
SAM for high-performance MAS. Fig. 1 shows our inspi-
rations and advantages. Technically, we first introduce a
dual structure with SAM’s paradigm to enhance feature
learning of marine images with gamma correction opera-
tions. Meanwhile, we enhance the multi-level features of
SAM’s encoder with adapters. Then, we propose a Multi-
level Coupled Prompt (MCP) strategy to instruct compre-
hensive underwater prior information with auto-prompts.
Subsequently, we design a Dilated Fusion Attention Module
(DFAM) to progressively integrate multi-level features from
SAM’s encoder. Finally, instead of directly predicting the
masks of marine animals, we propose a Criss-Cross Con-
nectivity Prediction (C3P) paradigm to capture the inter-
connectivity between discrete pixels. With dual decoders,
it generates pseudo-labels and achieves mutual supervision
for complementary feature representations. The proposed
vectorized representation delivers significant improvements
over previous scalar prediction techniques. Extensive ex-
periments show that our proposed method achieves state-
of-the-art performances on five widely-used MAS datasets.

In summary, our contributions are listed as follows:
• We propose a novel feature learning framework, named

Dual-SAM for Marine Animal Segmentation (MAS). The
framework inherits the ability of SAM and adaptively in-
corporates prior knowledge of underwater scenarios.

• We propose a Multi-level Coupled Prompt (MCP) strat-
egy to instruct comprehensive underwater prior informa-
tion with auto-prompts.

• We propose a Dilated Fusion Attention Module (DFAM)
and a Criss-Cross Connectivity Prediction (C3P) to im-
prove the localization perception of marine animals.

• We perform extensive experiments to verify the effective-
ness of the proposed modules. Our approach achieves a
new state-of-the-art performance on five MAS datasets.

2. Related Work
2.1. Marine Animal Segmentation

MAS suffers from great challenges, such as variable light-
ing, particulate matter, water turbidity, etc. In past decades,
most of existing methods primarily utilize handcrafted fea-
tures [1, 43, 47]. Technically, energy-based models [28, 46,
50] are usually employed to predict the binary masks of ma-
rine animals. Although they achieve great success, there
are still some key limitations, such as low robustness to the
blurriness, unclear boundaries, etc.

With the rise of deep learning, CNNs become the pre-
ferred models for MAS. Various network architectures have
been proposed to achieve performance improvements. For
example, Li et al. [32] propose a feature-interactive encoder
and a cascade decoder to extract more comprehensive in-
formation. Liu et al. [35] incorporate channel and spatial
attention modules to refine the feature map for better object
boundaries. Furthermore, Chen et al. [5] extract multi-scale
features and introduce attention fusion blocks to highlight
marine animals. Fu et al. [12] design a data augmentation
strategy and use a Siamese structure to learn shared seman-
tic information. Although effective, these CNN-based mod-
els lack the ability to capture long-range dependencies and
intricate details for complex marine images.

Recently, Vision Transformer (ViT) [8] presents an ex-
cellent global understanding ability for multiple data types.
With structural modifications, it delivers remarkable per-
formances in various segmentation tasks [48, 54, 55, 64].
As for MAS, Hong et al. [17] adapt Transformer-based en-
coders to underwater images and show promising animal
segmentation results. However, one significant challenge
for Transformers is the need of vast amounts of training
data. Currently, there are no very large-scale MAS datasets
for the training of Transformers.

2.2. Segment Anything Model for Customized Tasks

Recently, SAM [26] is proposed to achieve universal image
segmentation. It is trained on a large-scale segmentation
dataset and exhibits zero-shot transfer capabilities [29, 58,
60]. With various types of prompts, it is efficiently deployed
for a multitude of applications [24, 49, 62]. However, it
exhibits performance limitations in transfer scenarios. In
addition, the simplicity of SAM’s decoder is a hindrance
when dealing with detail-aware segmentation tasks.

To address these limitations, various approaches have
been proposed. Some works adopt adapters [6, 27, 59] to
infuse SAM with domain-specific information. Others have
opted for more specific decoder structures [13] to improve
the domain perception. There are also efforts to automate
the generation of prompts [3] for a better adaptability. De-
spite these advancements, since trained with natural images,
SAM does not obtain enough prior knowledge from specific
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Figure 2. The whole framework of our proposed approach. It contains five main components: Dual-SAM Encoder (DSE), Multi-level
Coupled Prompt (MCP), Dilated Fusion Attention Module (DFAM), Criss-Cross Connectivity Prediction (C3P) and Pseudo-label Mutual
Supervision (PMS). Our framework can significantly improve the Marine Animal Segmentation (MAS) with SAM.

domains. In addition, the single-position prompt of SAM is
very insufficient for prior guidance. As for MAS, we find
that there is only one work [53] involving fine-tuning SAM
for underwater scenes. Therefore, in this work, we delve
deeply into SAM for improving the customized tasks.

3. Proposed Approach
As shown in Fig. 2, our method contains five main com-
ponents: Dual-SAM Encoder (DSE), Multi-level Coupled
Prompt (MCP), Dilated Fusion Attention Module (DFAM),
Criss-Cross Connectivity Prediction (C3P) and Pseudo-
label Mutual Supervision (PMS). These components will be
elaborated in the following subsections.

3.1. Dual-SAM Encoder

As previously mentioned, it is imperative to enhance marine
images with characteristics of natural images. To this end,
we utilize the gamma correction for illumination compen-
sation. Given the marine image Iα, the corrected image Iβ

can be expressed as:

Iβ =
γ
√
Iα, γ = lg(0.5)− lg(meangrayI /255), (1)

where γ is the gamma coefficient andmeangrayI is the mean
value of the image’s gray-scale intensities.

Afterwards, we inject marine domain information into
SAM’s encoder for a better marine feature extraction. In-
spired by [6, 59], we employ low-rank trainable matri-
ces [19] to the Query and Value portion of the Multi-Head
Self-Attention (MHSA) block. In addition, we incorporate

an Adapter [18] to the Feed-Forward Network (FFN). With-
out loss of generality, let Xj ∈ RN×D be the output feature
in the j-th layer of SAM’s encoder, the feature in the j+1-th
layer can be represented as follows:

Qj = XjWq + (XjW
down
q )Wup

q , (2)

Kj = XjWk, (3)

Vj = XjWv + (XjW
down
v )Wup

v , (4)

Hj = MHSA (Qj ,Kj , Vj) +Xj , (5)

Xj+1 = ψ
(
FFN (ϕ (Hj))W

down
)
Wup +Hj , (6)

where N is the total number of tokens. D is the di-
mension of the token embedding. W down

q/v ∈ RD×r and
Wup

q/v ∈ Rr×D are linear projection matrices that reduce
and subsequently restore the dimension of features, re-
spectively. r stands for the dimension to which the fea-
tures are reduced. Hi is the intermediate features within
the Transformer block. Similarly, W down ∈ RD×R and
Wup ∈ RR×D are the compressed and excited operation,
respectively. R stands for the compressed dimension. ψ is
the GELU [16] activation function. ϕ is the layer normal-
ization. Since we only update the linear projection matrices,
it significantly reduces the number of trainable parameters
for subsequent MAS tasks. With an additional branch, it
can enhance animal-related features for better localizing.
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Figure 3. Our proposed Multi-level Coupled Prompt (MCP).

3.2. Multi-level Coupled Prompt

In SAM, object-related prompts (e.g., mask, box, point)
are encoded and added to the feature maps. However, the
single-position prompt is very insufficient for prior guid-
ance. To improve the prompt ability, we propose a Multi-
level Coupled Prompt (MCP) strategy to instruct compre-
hensive underwater prior information with auto-prompts.

To this end, we first concatenate the original image Iα

and the corrected image Iβ . Then, we partition them into
patches and use convolutions to obtain feature embeddings:

Iω0 = PatchEmbed([Iα, Iβ ]), (7)

where Iω0 ∈ RN×D is the tokenized features, which can be
served as the start point. As shown in Fig. 3, it undergoes
several Transformer layers and iteratively generate features:

Iωi = Trans(Iωi−1), i = 1, 2, 3, 4. (8)

Then, we treat the DSE’s output features Xα
j and Xβ

j as the
Query and Key, respectively. By using Iωi as Value, we can
obtain the coupled prompts as follows:

Hτ
i = MHCA

(
Xα

j , X
β
j , I

ω
i

)
+ Iωi , (9)

Pω
i = FFN (ϕ (Hτ

i )) +Hτ
i , (10)

Pα
i = FCα(Pω

i ), (11)

Pβ
i = FCβ(Pω

i ), (12)

where MHCA is the Multi-Head Cross-Attention block and
FC is a fully-connected layer. The generated prompts (Pβ

i

and Pβ
i ) are coupled and can be used as auto-prompts for

a better instruction and prior guidance. As a result, we can
obtain prompted features by:

Eα
i = Xα

j + gαi Pα
i , (13)

Eβ
i = Xβ

j + gβi P
β
i , (14)

where gαi and gβi are learnable weights for balancing the
input features and prompts.
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Figure 4. Our Dilated Fusion Attention Module (DFAM).

3.3. Dilated Fusion Attention Module

The simple decoder of SAM is a hindrance when dealing
with complex segmentation tasks. Inspired by [33], we in-
troduce feature pyramid structures as decoders to fuse the
prompted features for MAS. To improve the receptive field,
we propose the Dilated Fusion Attention Module (DFAM)
with dilated convolution [4] and channel attention. It can be
inserted in adjacent features (Gi and Gi+1). As shown in
Fig. 4, the DFAM can be represented as follows:

F r
i = ψ (Θ1×1 ([Ei, Gi])) , (15)

W g = σ
(
ψ
(
GAP (F r

i )W
down

)
Wup

)
, (16)

Fi =W gF r
i + F r

i , (17)

Gi+1 = ψ
(
Θ2

3,3 (Fi)
)
, (18)

where σ is the sigmoid function. Θ1,1 is a 1×1 convolution,
and Θ2

3,3 is a 3×3 convolution with dilation rate=2. To build
the feature pyramid, we graft an up-sampling layer after the
resulted features. With the above DFAM, our framework
can improve the contextual perceptions of marine animals.

3.4. Criss-Cross Connectivity Prediction

Traditional image segmentation methods predict the class
for each pixel. As a result, they overlook the connectiv-
ity between discrete pixels, showing irregular structures and
boundaries of objects. To address this issue, we propose a
Criss-Cross Connectivity Prediction (C3P) paradigm to cap-
ture the inter-connectivity between discrete pixels. Our ap-
proach draws inspiration from [25], which emphasizes con-
nectivity predictions between adjacent pixels. In contrast,
we extend the sampling to a criss-cross range, considering
various shapes and sizes of marine animals. Specifically,
our method first transforms the single-channel mask label
into an 8-channel label. Fig. 5 illustrates these eight chan-
nels. They represent the connectivity between their posi-
tions and the central pixel. Given a central pixel (w, h), we
identify criss-cross pixels based on the following criteria:

Ω1
w,h = {(u, v)∥|u− w|+ |v − h| = 1}, (19)

Ω2
w,h = {(u, v)∥|u− w|+ |v − h| = 2

∩Max(|u− w|, |v − h|) = 2},
(20)
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Figure 5. Our Criss-Cross Connectivity Prediction (C3P).

where Ω1
w,h and Ω2

w,hare neighboring pixel sets with dis-
tances of 1 and 2, respectively. Based on above definitions,
our framework directly predict connectivity maps, which
provide a more comprehensive and structured representa-
tion of segmentation masks. The training loss function is:

Lα/β
l = −

W∑
w=1

H∑
h=1

C∑
c=1

[Yl(w, h, c) ln(P
α/β
l (w, h, c))

+(1− Yl(w, h, c)) ln(1− P
α/β
l (w, h, c))].

(21)
Here, Pα/β

l are predicted connectivity maps at the l-th level
from two decoders. It is processed after the sigmoid func-
tion. Yl is the corresponding ground-truth. (w, h) is the spa-
tial location of a predicted pixel. c is the channel number.
As can be observed, our proposed C3P takes the criss-cross
nature of pixels and achieves vectored predictions for the
animal segmentation masks.

3.5. Pseudo-label Mutual Supervision

To further ensure the comprehensive complementarity of
dual branches, we employ the Pseudo-label Mutual Super-
vision (PMS) for the two decoders. It works like a mutual
learning and enables the model to optimize its parameters
from a different perspective. Specifically, we first thresh-
old the predicted output of each level within each decoder
branch. It can be represented as follows:

P̂
α/β
l =

{
1,P

α/β
l (w, h, c) > ξ,

0,otherwise.
(22)

where P̂
α/β
l are the pseudo-labels at the l-th level after

thresholding. ξ is the used threshold for pseudo-labels. The
above pseudo-labels are then employed to supervise the pre-
diction of the other branch. To this end, we use the follow-
ing binary cross-entropy loss functions for training:

L̈α
l = −

W∑
w=1

H∑
h=1

C∑
c=1

[P̂α
l (w, h, c) ln(P̂

β
l (w, h, c))

+(1− P̂α
l (w, h, c)) ln(1− P̂ β

l (w, h, c))],

(23)

L̈β
l = −

W∑
w=1

H∑
h=1

C∑
c=1

[P̂ β
l (w, h, c) ln(P̂

α
l (w, h, c))

+(1− P̂ β
l (w, h, c)) ln(1− P̂α

l (w, h, c))].

(24)

Through the mutual supervision, we can foster a synergis-
tic enhancement between the two branches, optimizing the
extraction and integration of prompted features.

During the early stages of training, the connectivity pre-
dictions are very coarse and suboptimal. Thus, we introduce
a dynamic update coefficient for the pseudo-label supervi-
sion. It starts at a small value, then gradually increases in
an exponential manner:

µ = 0.1× e−5×(1− t
T )

2

, (25)

where t is the current epoch number during training. T is
the total epochs. Finally, the overall loss is expressed as:

L =

4∑
l=1

((Lα
l + Lβ

l ) + µ(L̈α
l + L̈β

l )). (26)

For inference, we convert the connectivity maps into the
binary masks. To ensure a valid and reliable prediction, we
adopt the following mutual confirmation:

Pw,h,c = 1∩Pu,v,9−c = 1 → Pw,h = 1∩Pu,v = 1. (27)

Thus, P is the final prediction for MAS.

4. Experiments
4.1. Datasets and Evaluation Metrics

To thoroughly validate the performance, we adopt five pub-
lic datasets and five evaluation metrics.

For the datasets, MAS3K [31] contains 3,103 images
with high-quality annotations. We follow the default split
and use 1,769 images for training and 1,141 images for
testing. We exclude 193 images that only have a back-
ground. RMAS [12] includes 3,014 marine images. We
use 2,514 images for training and 500 images for testing.
UFO120 [21] contains a total of 1,620 marine images. We
use 1,500 images for training and 120 images for testing.
RUWI [9] contains 700 marine images. We use 525 im-
ages for training and 175 images for testing. In addition,
to verify the generalization, we adopt the USOD10K [17]
dataset. It is the largest underwater salient object detection
dataset with a total of 10,255 images, splitting 9,229 images
for training and 1,026 images for testing.

To evaluate the model’s performance, we utilize the fol-
lowing five metrics: Mean Intersection over Union (mIoU ),
Structural Similarity Measure (Sα), Weighted F-measure
(Fw

β ), Mean Enhanced-Alignment Measure (mEϕ), Mean
Absolute Error (MAE). These metrics offer a comprehen-
sive evaluation, capturing various aspects of segmentation
quality. For more details on these metrics, please refer to
the supplementary material.
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Table 1. Performance comparison on MAS3K and RMAS. The best and second results are in red and blue, respectively.

MAS3K RMAS
Method mIoU Sα Fw

β mEϕ MAE mIoU Sα Fw
β mEϕ MAE

SINet [10] 0.658 0.820 0.725 0.884 0.039 0.684 0.835 0.780 0.908 0.025
PFNet [42] 0.695 0.839 0.746 0.890 0.039 0.694 0.843 0.771 0.922 0.026

RankNet [40] 0.658 0.812 0.722 0.867 0.043 0.704 0.846 0.772 0.927 0.026
C2FNet [51] 0.717 0.851 0.761 0.894 0.038 0.721 0.858 0.788 0.923 0.026
ECDNet [32] 0.711 0.850 0.766 0.901 0.036 0.664 0.823 0.689 0.854 0.036
OCENet [34] 0.667 0.824 0.703 0.868 0.052 0.680 0.836 0.752 0.900 0.030
ZoomNet [44] 0.736 0.862 0.780 0.898 0.032 0.728 0.855 0.795 0.915 0.022
MASNet [12] 0.742 0.864 0.788 0.906 0.032 0.731 0.862 0.801 0.920 0.024

SETR [64] 0.715 0.855 0.789 0.917 0.030 0.654 0.818 0.747 0.933 0.028
TransUNet [2] 0.739 0.861 0.805 0.919 0.029 0.688 0.832 0.776 0.941 0.025
H2Former [14] 0.748 0.865 0.810 0.925 0.028 0.717 0.844 0.799 0.931 0.023

SAM [26] 0.566 0.763 0.656 0.807 0.059 0.445 0.697 0.534 0.790 0.053
SAM-Ad[6] 0.714 0.847 0.782 0.914 0.033 0.656 0.816 0.752 0.927 0.027

SAM-DA [27] 0.742 0.866 0.806 0.925 0.028 0.686 0.833 0.780 0.926 0.024
Dual-SAM 0.789 0.884 0.838 0.933 0.023 0.735 0.860 0.812 0.944 0.022

Table 2. Performance comparison on UFO120 and RUWI. The best and second results are in red and blue, respectively.

UFO120 RUWI
Method mIoU Sα Fw

β mEϕ MAE mIoU Sα Fw
β mEϕ MAE

SINet [10] 0.767 0.837 0.834 0.890 0.079 0.785 0.789 0.825 0.872 0.096
PFNet [42] 0.570 0.708 0.550 0.683 0.216 0.864 0.883 0.870 0.790 0.062

RankNet [40] 0.739 0.823 0.772 0.828 0.101 0.865 0.886 0.889 0.759 0.056
C2FNet [51] 0.747 0.826 0.806 0.878 0.083 0.840 0.830 0.883 0.924 0.060
ECDNet [32] 0.693 0.783 0.768 0.848 0.103 0.829 0.812 0.871 0.917 0.064
OCENet [34] 0.605 0.725 0.668 0.773 0.161 0.763 0.791 0.798 0.863 0.115
ZoomNet [44] 0.616 0.702 0.670 0.815 0.174 0.739 0.753 0.771 0.817 0.137
MASNet [12] 0.754 0.827 0.820 0.879 0.083 0.865 0.880 0.913 0.944 0.047

SETR [64] 0.711 0.811 0.796 0.871 0.089 0.832 0.864 0.895 0.924 0.055
TransUNet [2] 0.752 0.825 0.827 0.888 0.079 0.854 0.872 0.910 0.940 0.048
H2Former [14] 0.780 0.844 0.845 0.901 0.070 0.871 0.884 0.919 0.945 0.045

SAM [26] 0.681 0.768 0.745 0.827 0.121 0.849 0.855 0.907 0.929 0.057
SAM-Ad [6] 0.757 0.829 0.834 0.884 0.081 0.867 0.878 0.913 0.946 0.046

SAM-DA [27] 0.768 0.841 0.836 0.893 0.073 0.881 0.889 0.925 0.940 0.044
Dual-SAM 0.810 0.856 0.864 0.914 0.064 0.904 0.903 0.939 0.959 0.035

4.2. Implementation Details

We implement our model with the PyTorch toolbox and
conduct experiments with one RTX 3090 GPU. In our
model, the SAM’s encoder is initialized from the pre-
trained SAM-B [26], while the rest are randomly initialized.
During the training process, we freeze the SAM’s encoder
and only fine-tune the remaining modules. To reduce the
computation, we set j = 3 × i for the MCP. The thresh-
old ξ is set to 0.5. The AdamW optimizer [39] is used to
update the parameters. The initial learning rate and weight
decay are set to 0.001 and 0.1, respectively. We reduce the
learning rate by a factor of 10 at every 20 epochs. The total

number of training epochs T is set to 50. The mini-batch
size is set to 8 due to the memory limitation. All the input
images are resized to 512× 512× 3. For the evaluation, we
resize the predicted masks back to the original image size
by the bilinear interpolation.

4.3. Comparisons with the State-of-the-arts

In this part, we compare our method with other methods.
The quantitative and qualitative results clearly show the no-
table advantage of our proposed method.

Quantitative Comparisons. Tab. 1 and Tab. 2 show
quantitative comparisons on typical MAS datasets. When
compared with CNN-based methods, our method notably
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Figure 6. Visual comparison of predicted segmentation masks with different methods.

Table 3. Performance comparison on USOD10k. The best and
second results are in red and blue, respectively.

USOD10K
Method Sα mEϕ maxF MAE

S2MA [36] .8664 .9208 .8530 .0558
SGL-KRN [52] .9214 .9633 .9245 .0237

DCF [23] .9116 .9541 .9045 .0312
SPNet [65] .9075 .9554 .9069 .0280

HAINet [30] .9123 .9552 .9116 .0279
VST [37] .9136 .9614 .9108 .0267

TriTransNet [38] .7889 .8479 .7501 .0659
CSNet [7] .8595 .9178 .8462 .0548
D3Net [11] .8931 .9413 .8807 .0374

SVAM-Net [22] .7465 .7649 .6451 .0915
BTS-Net [61] .9093 .9542 .9104 .0291
CDINet [57] .7049 .8644 .7362 .0904
CTDNet [63] .9085 .9531 .9073 .0285
MFNet [45] .8425 .9146 .8193 .0512
PFSNet [41] .8983 .9421 .8966 .0370

PSGLoss [56] .8640 .9078 .8508 .0417
TC-USOD [17] .9215 .9683 .9236 .0201

SAM [26] .8543 .9095 .8812 .0380
SAM-Ad [6] .8952 .9533 .9153 .0276

SAM-DA [27] .9051 .9552 .9154 .0250
Dual-SAM .9238 .9684 .9311 .0185

improves the performance. On the challenging MAS3K
dataset, our method achieves the highest scores across all
metrics. It delivers a 3-5% improvement in various met-
rics. Meanwhile, our method consistently performs better

on other MAS datasets. When compared with Transformer-
based methods, our method delivers a 2-3% improvement
on the MAS3K dataset. When compared with other SAM-
based methods, our method shows a 3-4% boost in perfor-
mance. Besides, in Tab. 3, we compare our method with
other methods for underwater salient object detection. Our
proposed method still achieves excellent results.

Qualitative Comparisons. Fig. 6 shows some visual ex-
amples to further verify the effectiveness of our method.
As can be observed, our method can obtain better results
in terms of whole structures (the 1st-2nd rows), multiple
animals (the 3rd row), camouflage animals (the 4th row)
and fine-grained boundaries (the 5th-6th rows). When com-
pared with other SAM-based methods, our method can con-
sistently improve the performance. The main reason is that
our method introduces effective prompts and decoders.

4.4. Ablation Study

In this subsection, we conduct experiments to analyse the
effect of different modules. The results are reported on the
MAS3K dataset. Similar trends appear on other datasets.

Effect of Different Mask Prediction Paradigms.
Tab. 4 shows the segmentation performance with differ-
ent mask prediction paradigms. Clearly, the connectiv-
ity prediction delivers superior performance than the pixel-
wise prediction. in predicting both pixel-level connectivity
and vector-level connectivity. Our proposed C3P consis-
tently shows better results than the connectivity prediction
method [25] and pixel-wise prediction. It indicates a more
comprehensive understanding of marine animals.
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Table 4. Performance comparison of different prediction methods.

Method mIoU Sα Fw
β mEϕ MAE

Pixel-wise 0.772 0.875 0.825 0.923 0.027
Nearby [25] 0.781 0.879 0.829 0.929 0.026
C3P (Ours) 0.789 0.884 0.838 0.933 0.023

Figure 7. Complementary effects of PMS on dual branch results.

Effect of Dual Branches. In this work, we introduce
dual branches to improve the ability of SAM for MAS.
Tab. 5 shows the performance comparison. As can be ob-
served, the model with dual branches achieves better re-
sults than the single branch across all the metrics. It clearly
demonstrates the effectiveness of our dual structures for ma-
rine feature extraction.

Effect of PMS. In this work, we employ PMS to fur-
ther ensure the comprehensive complementarity of dual
branches. Tab. 5 shows the performance comparison. In
addition, Fig. 7 illustrates effects of the PMS. As can be ob-
served, the performance is significantly improved by incor-
porating the PMS. The PMS can achieve a complementary
effect in predicting segmentation masks.

Table 5. Performance comparison of dual branches and PMS.

Method mIoU Sα Fw
β mEϕ MAE

Single Branch 0.767 0.872 0.816 0.922 0.028
Dual w/o PMS 0.771 0.874 0.820 0.923 0.029
Dual w PMS 0.789 0.884 0.838 0.933 0.023

Effect of MCP. In this work, we inject multi-level
prompt information into SAM’s encoder for prior guidance.
Tab. 6 shows the performance effect of MCP. With the pro-
posed MCP, the model can improve the performances across
all the metrics. The main reason is that the MCP helps
SAM’encoder incorporate more fine-grained information.

Effect of DFAM. In this work, we propose DFAM to
fuse the prompted features. Tab. 7 provides the performance
effect of DFAM. With the proposed MCP, the model can im-

Table 6. Performance effect of MCP.

Method mIoU Sα Fw
β mEϕ MAE

w/o MCP 0.778 0.877 0.825 0.929 0.026
w MCP 0.789 0.884 0.838 0.933 0.023

prove the performances across all the metrics, especially in
mIoU and MAE In fact, the improved results mainly come
from the dilated convolution and channel attention, which
aggregate both semantic and detail information.

Table 7. Performance effect of DFAM.

Method mIoU Sα Fw
β mEϕ MAE

w/o DFAM 0.769 0.873 0.821 0.921 0.028
w DFAM 0.789 0.884 0.838 0.933 0.023

Effect of Adapters. In this work, we introduce multi-
ple adapters into the SAM’s encoder for model adaptation.
Tab. 8 shows the effectiveness of different adapter mecha-
nisms. As can be observed, the performance shows a con-
siderable decrease when removing these adapters. These
adapters play a crucial role for extracting domain-specific
features. The adapters have a significant impact on each
subsequent module. From the experimental results, it is evi-
dent that both types of adapters we employ can substantially
and efficiently enhance the model’s performance.

Table 8. Performance comparison with different adapters.

Method mIoU Sα Fw
β mEϕ MAE

Baseline 0.751 0.866 0.812 0.924 0.029
w/o LoRA [19] 0.768 0.872 0.816 0.921 0.028
w/o Adapter [18] 0.774 0.875 0.822 0.924 0.028
Full 0.789 0.884 0.838 0.933 0.023

5. Conclusion
In this paper, we propose a novel feature learning frame-
work named Dual-SAM for MAS. The framework includes
a dual structure with SAM’s paradigm to enhance feature
learning of marine images. To instruct comprehensive un-
derwater prior information, we propose a Multi-level Cou-
pled Prompt (MCP) strategy. In addition, we design a Di-
lated Fusion Attention Module (DFAM) and a Criss-Cross
Connectivity Prediction (C3P) to improve the localization
perception of marine animals. Extensive experiments show
that our proposed method achieve state-of-the-art perfor-
mances on five widely-used MAS datasets.
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