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Figure 1. LEFT: FastMAC can accelerate MAC [71] by 80 times, while preserving similarly high registration success rate (denoted by

registration recall). This is achieved by sampling 5% nodes on the correspondence graph, through a stochastic spectral formulation. Other

sampling ratios are also shown, and FastMAC achieves real-time when the ratio is lower than 20%. MIDDLE: Time profiling comparison

between vanilla MAC and FastMAC with different sampling ratios. FastMAC significantly accelerates all stages of MAC. RIGHT: A

detailed runtime breakdown for each component in MAC and FastMAC. Maximal clique search is no longer a bottleneck.

Abstract

3D correspondence, i.e., a pair of 3D points, is a fun-
damental concept in computer vision. A set of 3D corre-
spondences, when equipped with compatibility edges, forms
a correspondence graph. This graph is a critical com-
ponent in several state-of-the-art 3D point cloud registra-
tion approaches, e.g., the one based on maximal cliques
(MAC). However, its properties have not been well under-
stood. So we present the first study that introduces graph
signal processing into the domain of correspondence graph.
We exploit the generalized degree signal on correspondence
graph and pursue sampling strategies that preserve high-
frequency components of this signal. To address time-
consuming singular value decomposition in deterministic
sampling, we resort to a stochastic approximate sampling
strategy. As such, the core of our method is the stochastic
spectral sampling of correspondence graph. As an applica-
tion, we build a complete 3D registration algorithm termed
as FastMAC, that reaches real-time speed while leading to
little to none performance drop. Through extensive exper-
iments, we validate that FastMAC works for both indoor
and outdoor benchmarks. For example, FastMAC can ac-
celerate MAC by 80 times while maintaining high registra-

†Corresponding author.

tion success rate on KITTI. Codes are publicly available at
https://github.com/Forrest-110/FastMAC.

1. Introduction
Correspondence is one of the most fundamental computer

vision concepts, since it encodes important geometric rela-

tionships such as multi-view transformation (2D-2D [37] or

3D-3D [59][75][74] correspondence) or single-view projec-

tion (2D-3D correspondence [56][64]). 3D correspondence,

which is by definition a pair of matched 3D points, plays an

important role in 3D registration [72] and downstream ap-

plications like SLAM [8], 3D reconstruction [20][35] and

3D scene understanding [12][25][24][60]. While the com-

munity has studied 3D correspondence for a long time, 3D

correspondence graph is not yet well-understood.

In this graph, each vertex is a 3D correspondence, and

the edge connectivity is usually defined according to the

compatibility between two correspondences. For example,

if a certain compatibility metric is higher than a threshold,

an edge is active between two correspondences. This graph

is indeed a critical component in state-of-the-art 3D reg-

istration methods like MAC [71]. MAC, as our baseline,

searches for maximal cliques on this graph and estimates

relative poses using compatible correspondences.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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However, MAC can be quite slow with numerous input

correspondences, with a single registration can cost more

than one second, as shown in Figure. 1. This makes it far

from deployment for real-time applications such as SLAM.

A natural idea is to downsample this graph for efficiency.

We introduce the framework of graph signal processing [10]

to achieve this goal. Specifically, we use the generalized

degree, i.e., the weighted edge sum, of each node in the

graph as the graph signal and preserves its high frequency

component with a graph filter, which is the Laplacian matrix

in our work. We derive an optimal sampling strategy that

best preserves the filtered high-frequency signal of interest.

High-frequency. The principle is that we need to sam-

ple nodes with fast change of generalized degree over the

correspondence graph (short as high-frequency nodes for

brevity), since they are better suited for maximal clique

search. The intuition is three-fold: (1) Every maximal

clique must contain one high-frequency node; (2) Maximal

cliques tend to contain three or more high-frequency nodes;

(3) Cut-points, which are always high-frequency nodes, are

contained in more than one maximal clique.

Stochastic Sampling. There exist well-established de-

terministic sampling methods to recover a certain signal of

interest on a graph [10]. But they involve iterative singular

value decomposition operations which are time-consuming

thus contradict the goal of accelerating MAC. As such,

we derive a stochastic approximated sampling strategy that

takes constant time w.r.t. sample number.

To summarize, we make these contributions: (1) For the

first time, we introduce graph signal processing to 3D cor-

respondence graph. (2) We propose a stochastic sampling

strategy that selects high-frequency nodes on a correspon-

dence graph. (3) We develop a full registration pipeline

FastMAC upon the proposed sampling method, which is

suited for maximal clique search. (4) FastMAC achieves

trivial performance drop on indoor and outdoor datasets,

while achieving 80 times acceleration to a real-time level.

2. Related Works
3D point cloud registration is important to many real-world

problems, including pose estimation [42], SLAM [47], and

3D reconstruction [21]. However, globally optimal 3D

point cloud registration is very challenging and existing

works can be summarized into six primary categories:

Maximum Consensus (MC) is a widely used robust op-

timization objective in point cloud registration [41]. Com-

pared with other robust optimization objectives such as

Truncated-Least-Squares (TLS), MC has its advantage of

being superior under certain circumstances[15]. However,

MC may produce an error-prone estimate depending on the

input conditions [9]. Moreover, directly solving Maximum

Consensus entails an NP-hard computational complexity,

which has been confirmed by prior research [16].

Stochastic Techniques. To address the complex-

ity of solving the NP-hard Maximum Consensus prob-

lem, stochastic techniques have been proposed and Ran-

dom Sample Consensus (RANSAC) is a well-known one

among them. Numerous extensions and enhancements to

RANSAC have been devised, aiming to improve its effi-

ciency [61][19], accuracy [62], and robustness [32][58].

However, it is still essential to recognize that the conver-

gence speed of RANSAC exhibits an exponential relation-

ship with the rate of outliers in the dataset [7].

Branch-and-Bound. The Branch-and-Bound (BnB)

[4][43][73] algorithm stands as a fundamental technique in

optimization and search problems, for registration. It can

explore and assess all solution possibilities systematically

and intelligently remove less promising ones, ensuring an

optimal solution. Still, it is important to note that BnB ex-

hibits an exponential complexity concerning the problem

size and the presence of outliers within the dataset [7].

Mixed Integer Program. BnB has been extended with

Mixed-Integer Programming (MIP) [34] to speed up com-

putation. But MIP itself also demonstrates that the incorpo-

ration of Linear-Matrix-Inequality Constraints significantly

expedites computational processes [57]. Several avenues

of exploration has been done including TEASER++ [66],

Fast-Global-Registration (FGR) [76] and other works [65].

Nevertheless, it is noteworthy that the computational time

still exhibits sensitivity to both the outlier rate and problem

size, underscoring the need for further improvements.

Simultaneous Pose and Correspondence (SPC) meth-

ods represent another prominent paradigm within the field

of point cloud registration, with the pioneering work of the

Iterative Closest Point (ICP) algorithm as a cornerstone [5].

Over time, several robust extensions of the ICP method

have been introduced [27][31][14][39][54]. SPC methods

are often lauded for their swiftness and precision, yet they

do exhibit a notable vulnerability to local minima, a limita-

tion that has been acknowledged [47]. Though global SPC

methods like Go-ICP [67] have been proposed, it is impor-

tant to note that many global methods in the SPC paradigm

still rely on Branch-and-Bound (BnB) techniques [28][6].

Consistency Graph-based Methods. Recently, several

approaches based on consistency graph are proposed for

point cloud registration, emphasizing the encoding of con-

sistency among pairs of correspondences through the uti-

lization of invariants [22][40][33][68] structured within a

graph framework. Researchers have sought to enhance the

efficiency of the search for these maximum cliques through

the introduction of more efficient search algorithms [46]

and various relaxations to the maximum clique problem

[38][55]. Previous research [50] has explored sampling of

correspondences, but we address the problem from the per-

spective of graph signal processing for the first time.
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Figure 2. Pipeline of FastMAC. In the top-right panel, we show the the procedure of constructing a correspondence graph from input

correspondences. The graph is mathematically represented by an adjacency matrix. High values in this matrix mean high compatibility

between two correspondences. In the bottom panel, we define generalized degree signal on the graph as the aggregation of compatibility

scores on edges connecting with a node. We pass the signal through a Laplacian high-pass graph filter (constructed from the adjacency

matrix) to get its high-frequency component. As mentioned in the text, after filtering, nodes with high response are named as high-frequency
nodes. In the top-left panel, we derive a stochastic sampling strategy in which the sampling probability of a node is proportional to the

response magnitude. This sampling strategy is a fast approximation of the optimal (but slow) deterministic sampling strategy that recovers

a signal of interest. Lastly but not shown in this figure, we use the MAC registration algorithm on output correspondences.

3. Methods

Our goal is fast and accurate 3D point cloud registration and

our method is based upon the recently published maximal

clique (MAC) method [71]. It has four steps as shown in the

time profiling of Fig. 1 and Table. 1. (1) Graph Construc-
tion, which builds a correspondence graph on the input cor-

respondences. We inherit this step as shown in the top-right

panel of Fig. 2. (2) Maximal Clique Search, which finds

all maximal cliques in the graph as the name implies. (3)

Node-guided Clique Selection, which reduces the number

of maxmimal clique candidates and finally (4) Pose Esti-
mation, which evaluates pose hypothesis generated in each

clique and chooses the best one as the output pose.

The key intuition behind MAC is to loosen the previ-

ous maximum clique constraint [36], and use more maxi-

mal clique candidates to generate potentially accurate pose

hypotheses. However it is very slow when there are many

input correspondences and Maximal Clique Search is

the biggest bottleneck due to its exponential complexity.

Hence, we aim to design a sampling module that reduces

graph size without sacrificing the maximal clique registra-

tion performance. Our sampling module is shown in the

bottom and top-left panels of Fig. 2. It is inserted into

the first and second step of MAC, which means the output

correspondences are input into the remaining three steps of

MAC. That is the difference between MAC and FastMAC.

How to achieve this graph down sampling? There are

widely used modules like random sampling and farthest

point sampling [48]. But as shown later in Fig. 4, Fig. 5 and

Fig. 6, they perform poor for MAC acceleration. So we re-

sort to the graph signal processing theory [52][53][10][11].

Due to page limit, its basics are presented in Appendix A.1.

First, as shown in the top-right panel of Fig. 2, we con-

struct a correspondence graph Gcorr and the adjacency ma-

trix WSOG, in which SOG means second order graph, fol-

lowing MAC [71]. Due to page limit, the details are pre-

sented in Appendix A.4. It is noteworthy that the value in

WSOG means compatibility between two correspondences.

Generalized Degree Signal. In order to exploit the

graph signal processing theory, we need to define a signal

on the correspondence graph. The normal degree signal for
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Figure 3. Response of the degree signal to a high-pass filter on

connected-caveman graphs. Node size represents the response

magnitude. This shows why high-pass filter is suited for MAC.

a node is the number of edges it connects. In a weighted

graph, the generalized degree signal for a node is defined as

the sum of edge weight it connects. In the following sec-

tions, we will explain why this signal can help us construct

a graph filter that is suited for maximal clique search.

3.1. Graph Filtering: Key Insight

After constructing a correspondence graph, we go into the

second part of Fig. 2. Our objective is to extract the high-

frequency component of the generalized degree signal (de-

gree later for brevity), allowing us to sample the nodes in

the graph where the degree undergoes rapid changes. This

section will highlight the reasons for doing so. We start by

analysing the frequency of the degree distribution, and in

particular its relation to cliques, as shown in Fig. 3.

In order to explore the relationship between the degree

signal frequency and cliques, we investigated the response

of the degree signal to a high-pass filter, which is im-

plemented with Laplacian matrix as mentioned above, on

crafted (not generated from realistic data) connected cave-

man graphs[63]. Note that our focus is on the degree fre-

quency, a local feature determined solely by the neighbor-

ing nodes. By prioritizing this local feature, we can simplify

other types of graphs into the connected caveman graph,

which will be explained later.

As illustrated in Fig. 3, nodes with high response exhibit

certain properties. If we consider each clique as a commu-

nity, then: 1.In every community, there must exist a node

to generate strong response. 2.There are a sufficient num-

ber of nodes within a community that can elicit a strong re-

sponse. 3.Nodes with significant response lie on the periph-

ery of each community and are susceptible to consituting

cut points. They have links not only with nodes within their

respective community but also with nodes in other ones.

These properties prompt the idea of sampling the high-

frequency nodes. Maximal Clique registration process in-

volves searching all maximal cliques in the correspondence

graph, generating hypothesis for each maximal clique and

selecting the best one. Suppose the output samples con-

sist of high-frequency nodes, then: 1. since such nodes

must exist in every community, they can cover nearly ev-

ery maximal clique. 2. A sufficient number of samples in

each clique guarantees the ability to generate a hypothesis.

3. Considering link between nodes represents compatibil-

ity, the selected correspondences are not only compatible

with the correspondences within their own clique, but also

with some others, indicating that these correspondences are

more reliable and thus generating better hypotheses.

Now we explain why the features seen in the connected

caveman graph can apply to other graphs. In a typical graph,

cliques are either mutually connected or not. Mutually con-

nected cliques maintain similar local properties of a con-

nected caveman graph, whereas isolated cliques exhibit dis-

tinct features. Nevertheless, isolated cliques are rare and

often negligible in the scenario of graph-based registration.

3.2. Graph Filtering: Formulation

High-pass. Guided by the aforementioned insight, we pro-

pose to selectively sample the high-frequency nodes by first

formulating the graph filter. There are three typical graph

filters: high-pass, low-pass and all-pass. A simple design of

high-pass filter is a Haar-like high-pass graph filter:

H = I −A = V

⎡
⎢⎢⎢⎣
1− λ1 0 . . . 0

0 1− λ2 . . . 0
...

. . .

0 0 . . . 1− λN

⎤
⎥⎥⎥⎦V −1

(1)

where A is a normalized graph shift as defined in Ap-

pendix A.1., V and λi are the corresponding eigenvectors

and eigenvalues. Note that λmax = 1 and if we order λi in a

descending order, we have 1−λi ≤ 1−λi+1, indicating low

frequency response attenuates and high frequency response

amplifies. A detailed interpretation is given in [11].

Low-pass. The opposite of this is a the Haar-like low-

pass graph filter, that is

H = I +
1

|λmax|A

= V

⎡
⎢⎢⎢⎢⎣
1 + λ1

|λmax| 0 . . . 0

0 1 + λ2

|λmax| . . . 0
...

. . .

0 0 . . . 1 + λN

|λmax|

⎤
⎥⎥⎥⎥⎦V −1

(2)

All-pass. An all-pass graph filter is simple: H = I . The

all-pass filter keeps all information of the degree signal and

intuitively samples those nodes with large degrees.

For correspondence graph. When it comes to our fil-

ter, we first compute the generalized degree signal s =
[s1, s2, . . . , sN ]T ∈ C

N×1 where si =
∑

j WSOGij
, and

N is the size of correspondence set. Then a high-pass graph

filter is adopted to filter the high frequency information of

s. For Gcorr, we define the high-pass graph filter as:

H = Diag(s)−WSOG, (3)
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or the Laplacian Matrix of the correspondence graph. In

the graph vertex domain, the output for a signal X = (xi),
(HX)i = sixi −

∑
j∈Ni

WSOGij
xj reflects the difference

between a node and the combination of its neighbors.

Then we have the response of signal s corresponding to

H as f = Hs. We further compute the response magnitude:

πi = ||fi||22 which quantifies the energy of the signal on

each node after high-pass graph filtering. It reflects how

much information we know about a signal value on the node

from its neighbors in the graph.

3.3. Stochastic Sampling

Sampling operator definition. After obtaining the re-

sponse magnitude of each node to the graph filter as shown

in Fig. 2, we perform sampling based on this response mag-

nitude. Suppose we aim to sample m components of a

graph signal x = Hs ∈ C
n to produce a sampled signal

y = xM ∈ C
m, where M is the set of sampled indices. The

sampling operator Ψ is defined as a linear mapping from C
n

to C
m, Ψij = δj,Mi

and the interpolation operator Φ is de-

fined as a linear mapping from C
m to C

n:

y = xM = Ψx, (4a)

x′ = Φy = ΦΨx, (4b)

where x′ ∈ C
n is the recovery of the original signal. A

properly designed sampling operator Ψ aims to minimize

the reconstruction error ||x− x′||.
Non-stochastic methods attempt to create a well-

designed deterministic sampling operator Ψ. [10] finds the

optimal sampling operator:

Ψopt = argmax
Ψ

σmin(ΨV(K)), (5)

where σmin means the smallest singular value and V(K) rep-

resents the independent columns in the eigenvectors V of

the graph shift A. In practice, a greedy algorithm [10] is

used to find an approximate solution. It maintains M , a set

of rows of V(K), and loops to find another row r in V(K)

to maximize σmin of the matrix formed by M + {r} until

|M | meets the termination condition. However, it is ex-

tremely slow when processing large matrices, as it involves

a number of SVD decompositions with a total complexity

of O(MN3 +M3N) where M is the sample size and N is

the original size. Proof will be given in 5.2.

Stochastic sampling. By contrast, we adopt a stochastic

strategy. We consider πi fetched from Graph Filtering as

a sampling distribution and apply probability sampling on

the initial correspondence set, resulting in a sampled set de-

noted as Csampled. πi approximates the sampling operator

Ψ and it is optimal in terms of minimizing the reconstruc-

tion error, according to proof in [11], and is much faster,

which will be proved in 5.2. A detailed proof of optimality

is given in Appendix.A.5.

Figure 4. Sampling performance on KITTI. Each column repre-

sents a metric in TE,RE and RR and each row represents a setting

composed of datasets and descriptors. Shaded areas represent vari-

ance from multiple runs.

4. Experiments

For information about datasets, evaluation metrics and im-

plementation details, please refer to the Appendix A.6.

4.1. Time-Accuracy Trade-off Comparison

We perform an extensive comparison in Fig. 1. The cor-

respondence based registration methods are presented for

comparison. All methods are tested on the KITTI dataset

with FCGF as the correspondence generation descriptor.

Fig. 1 demonstrates RR performance of different meth-

ods. Our FastMAC can outperform all other methods
even with a sample ratio as low as 5%. It runs nearly

80 times faster than methods with comparable RR perfor-

mance, and achieves a 40% higher RR when compared to

methods that are almost as fast as it. Moreover, when sam-

pling ratio declines to 20%, our method runs at real-time
level, with a single registration requires less than 35ms.

4.2. Sampling Strategy Comparison

We also compare our method with different sampling strate-

gies. This demonstrates that the MAC itself is still sensitive

to the number of correspondences, thus showing that our

method is superior and suited for Maximal Clique regis-

tration. The sampling strategies for comparison are Ran-

dom Sampling and Furthest Point Sampling(FPS). Notably,

a correspondence is not a traditional 3D point and we define

their distance as the euclidean distance in 6D space. Both

FPFH and FCGF descriptor are tested.

Results on KITTI Dataset: Fig. 4 shows results of

FPFH and FCGF settings on KITTI Dataset. Our method

maintains a consistent RR, RE and TE when sampling ra-

tio declines from 100% to 5% and only becomes slightly
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Figure 5. Sampling performance on 3DMatch. Each column rep-

resents a metric in TE,RE and RR and each row represents a setting

composed of datasets and descriptors.

Figure 6. Sampling performance on 3DLoMatch. Each column

represents a metric in TE,RE and RR and each row represents a

setting composed of datasets and descriptors.

worse at the 1%. By comparison, Random Sampling and

FPS strategy show rapid deterioration in performance. It’s

worth noticing that FPS behaves even worse than Random

strategy, suggesting that a 6-dimensional vector space with

Euclidean distance is ill-suited for the correspondence set.

Another notable point is that the FPS performance shows

dramatic fluctuations, indicating lack of robustness.

Results on 3DMatch Dataset: As shown in Fig. 5,

our method still works well. Though the Random Strategy

performs closely to our method on RE and TE, it has a much

lower success rate. This means Random Strategy has a high

performance on only a few point cloud pairs, which limits

its usage in challenging real-world problems.

Results on 3DLoMatch Dataset: As in Fig. 6, RR of

3DLoMatch drops faster than 3DMatch when the sample

method ratio Sampling GC MCS NCS PE Total

MAC 100 0 749.057 61.390 132.809 18.056 961.312

FastMAC

50 15.13 129.404 26.845 2.225 5.039 178.643

20 15.02 14.945 4.794 0.408 0.903 36.070

10 14.97 3.369 1.113 0.070 0.256 19.778

5 14.99 0.971 0.267 0.005 0.067 16.300

1 15.06 0.056 0.001 0.001 0.019 15.137

Table 1. Time profiling for 3DMatch Dataset with FCGF descrip-

tor. Vanilla MAC is compared with our FastMAC. Time consump-

tion is measured in milliseconds. GC: Graph Construction; MCS:

Maximal Clique Search; NCS: Node-guided Clique Selection; PE:

Pose Estimation

FPFH FCGF
Time(s)

RR(%) RE(◦) TE(cm) RR(%) RE(◦) TE(cm)

FGR[76] 5.23 0.86 43.84 89.54 0.46 25.72 9.350

TEASER++[66] 91.17 1.03 17.98 94.96 0.38 13.69 0.070

RANSAC-4M[23] 74.41 1.55 30.20 80.36 0.73 26.79 52.40

CG-SAC[68] 74.23 0.73 14.02 83.24 0.56 22.96 2.140

SC2-PCR[13] 96.40 0.41 8.00 97.12 0.41 9.71 0.850

DGR[18] 77.12 1.64 33.10 94.90 0.34 21.70 0.330

PointDSC[2] 96.40 0.38 8.35 96.40 0.61 13.42 0.130

MAC[71] 97.66 0.41 8.61 97.25 0.36 8.00 0.570

FastMAC@50 97.84 0.41 8.61 97.84 0.36 7.98 0.114

FastMAC@20

(real-time)
98.02 0.41 8.64 97.48 0.38 8.20 0.028

Table 2. Comparison with baseline methods on KITTI Dataset.

The best and second-to-best results of baseline methods are repec-

tively marked in bold and underlined. FastMAC@x refers to our

method sampling at x% ratio.

ratio decreases for all three methods, due to low-overlap of

this dataset. Still, our method significantly surpasses the

performance of the other two methods, considering their

almost-zero success rate at 1% sample ratio.

4.3. Time Profiling

To demonstrate FastMAC’s time efficiency, we study on-

device time profiling to report time consumption. The orig-

inal MAC is used for comparison.

Fig. 1 depicts our results on KITTI Dataset with FPFH

descriptor. On the right side, we demonstrate time profiling

of MAC and FastMAC with a 5% sample ratio . For MAC,

Graph Construction and Maximal Cliques Search occupy a

major part of time consumption, pushing the total time to

over 1 second. Whilst for FastMAC, they are no longer bot-

tlenecks. Middle shows variation of time taken versus the

sample ratio. Sampling gradually became the dominatant

factor, with rest parts being barely time-consuming.

Table 1 further presents our findings on 3DMatch. Ac-

celeration from Sampling negates the time spent during the

process itself. And its time decrease is essentially consistent

across various sample rates, proving its efficiency.

4.4. Comparison to State-of-the-arts

Our method is compared with baseline approaches on the

3DMatch, 3DLomatch, and KITTI datasets, and the out-

comes can be found in Tables 2, 3 and 4. When sampling
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FPFH FCGF
Time(s)

RR(%) RE(◦) TE(cm) RR(%) RE(◦) TE(cm)

RANSAC-1M[23] 64.20 4.05 11.35 88.42 3.05 9.42 23.30

RANSAC-4M[23] 66.10 3.95 11.03 91.44 2.69 8.38 95.80

GC-RANSAC[3] 67.65 2.33 6.87 92.05 2.33 7.11 0.450

TEASER++[66] 75.48 2.48 7.31 85.77 2.73 8.66 0.030

SC2-PCR[13] 83.73 2.18 6.70 93.16 2.09 6.51 0.920

3DRegNet[44] 26.31 3.75 9.60 77.76 2.74 8.13 0.050

DGR[18] 32.84 2.45 7.53 88.85 2.28 7.02 1.260

PointDSC[2] 72.95 2.18 6.45 91.87 2.10 6.54 0.140

MAC[71] 83.90 2.11 6.80 93.72 2.02 6.54 0.914

FastMAC@50 82.87 2.15 6.73 92.67 2.00 6.47 0.203

FastMAC@20

(real-time)
80.71 2.17 6.81 92.30 2.02 6.52 0.038

Table 3. Comparison with baseline methods on 3DMatch Dataset.

The best and second-to-best results of baseline methods are repec-

tively marked in bold and underlined. FastMAC@x refers to our

method sampling at x% ratio.

FPFH FCGF
Time(s)

RR(%) RE(◦) TE(cm) RR(%) RE(◦) TE(cm)

RANSAC-1M[23] 0.67 10.27 15.06 9.77 7.01 14.87 19.60

RANSAC-4M[23] 0.45 10.39 20.03 10.44 6.91 15.14 86.30

TEASER++[66] 35.15 4.38 10.96 46.76 4.12 12.89 0.030

SC2-PCR[13] 38.57 4.03 10.31 58.73 3.80 10.44 0.720

DGR[18] 19.88 5.07 13.53 43.80 4.17 10.82 1.220

PointDSC[2] 20.38 4.04 10.25 56.20 3.87 10.48 0.140

MAC[71] 40.88 3.66 9.45 59.85 3.50 9.75 1.181

FastMAC@50 38.46 4.04 10.47 58.23 3.80 10.81 0.271

FastMAC@20

(real-time)
34.31 4.12 10.82 55.25 3.84 10.71 0.051

Table 4. Comparison with baseline methods on 3DLoMatch

Dataset. The best and second-to-best results of baseline methods

are repectively marked in bold and underlined.

at various ratios, FastMAC reports no significant decrease

in performance, remaining competitive with other state-of-

the-art methods. This showcases the efficacy of our sam-

pling technique, which accelerates the state-of-the-art MAC

method whilst maintaining accuracy.

4.5. Descriptor Robustness

Since our method accepts correspondences as input, it

is crucial to demonstrate its ability to work with corre-

spondences generated by different descriptors. We per-

form extensive experiments with various descriptors, in-

cluding FPFH[51], FCGF[17], Predator[30], Spinnet[1],

Cofinet[69] and Geotransformer[49]. These descriptors are

used to generate point-wise features which are subsequently

used to obtain correspondences. We adopt KITTI as the

dataset and the results are presented in Fig. 7.

For RR metric, stronger descriptors like Geotransformer,

Cofinet, Spinnet and Predator exhibit amazing excellence,

with their RR remaining unaffected by the sample ratio,

while FCGF and FPFH perform slightly worse when sam-

ple ratio comes to 1%. For RE and TE, most descriptors be-

have similarly. These metrics first stabilize and then slowly

increase as the sampling rate decreases. It can therefore be

concluded that our method is highly robust to the correspon-

dences produced by different descriptors.

Figure 7. Performance on KITTI with various descriptors.

Ratio
High-pass All-pass Low-pass

RR(%) RE (◦) TE(cm) RR(%) RE (◦) TE(cm) RR(%) RE (◦) TE(cm)

50 97.66 0.368 8.016 97.12 0.368 8.098 97.48 0.368 8.135

20 97.66 0.391 8.457 96.58 0.395 8.672 97.30 0.403 8.648

10 96.94 0.446 9.201 96.94 0.480 9.329 94.96 0.468 9.417

5 96.04 0.525 10.038 93.33 0.583 10.907 90.09 0.616 11.182

1 71.89 0.997 14.899 28.11 1.058 15.217 13.33 3.516 106.211

Table 5. Registration results on KITTI FCGF dataset for compari-

son between the High-pass, Low-pass and All-pass filters.

5. Ablation Study

In this section, we mainly focus on the analysis of the core

parts of our method, i.e, High-pass Graph Filtering and

Stochastically Sampling. Since xyz coordinates of the point

cloud can also be a graph signal and has been widely used

before [11], we further compare xyz signal with our gener-

alized degree signal to demonstrate our superiority.

5.1. High-pass, Low-pass and All-pass Filter

In this part, we compare our high-pass filter with a low-pass

filter and an all-pass filter to demonstrate its efficacy. The

filters are implemented as described in 3. For the Haar-like

low-pass filter, we choose the graph shift A to be D−1W
where D is the generalized degree matrix and W is the

adjacency matrix. Then we have the sample distribution

πi = ||((I + D−1W )s)i||2 in which s is the generalized

degree signal. For the all-pass filter, the corresponding sam-

pling strategy is πi = ||si||2.

We use these types of filters to sample the correspon-

dences and feed the output into the MAC module. The re-
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consistently 15ms

56 hour
293.03s

0.57s0.015s

0.002s

Figure 8. Left figure shows how time increases with number of

samples on KITTI FCGF dataset. Right is time profiling when

sampling 50 from 5000 correspondences. Preparation: Compu-

tation of the graph shift and the degree score. Sampling: For

stochastic method, only 50 selection operations are required ac-

cording to the given distribution. For non-stochastic method, it in-

cludes an eigendecomposition and 50 loops of ∼5000-scale SVD.

sult is shown in Table. 5. The high-pass filter is more effec-

tive , providing evidence to support our intuition. In fact, an

all-pass filter solely samples out nodes with high degrees,

whereas a low-pass filter samples nodes which lie within a

clique. If the clique is big in size, low-pass and all-pass fil-

ters function in a manner similar to random sampling. That

is why these two filters do not function well.

5.2. Stochastic v.s. Non-stochastic

To clarify the efficiency of our stochastic method, we will

give both theoretical analysis and experimental analysis.

Theoretical Analysis Since both stochastic and non-

stochastic methods involve computing the signal after filter-

ing, we only analyze operations after the computation. Sup-

pose we are sampling M nodes from the original N nodes.

Non-stochastic: V(K) is first required for the graph shift

A, which is O(N3) complexity [45]. Then we enter the

greedy algorithm which loops for M times. In loop i,
N − i times of computing the smallest singular value is per-

formed, each using O(N3+(i+1)2N) [29]. After summing

them all, we get the final computation complexity

O(N3) +

M−1∑
i=0

O(N3 + (i+ 1)2N)

=O(MN3 +M3N)

(6)

Stochastic: Our stochastic method simply use the norm

of the filtered signal y as a distribution and samples M times

from it. The time complexity is O(M) +O(N).

Experimental Analysis We present our experimental re-

sults in Fig. 8. The time taken by the stochastic method

Figure 9. Sampling performance on KITTI FCGF with different

degree signal settings. 000: random sampling. 110: sample guided

by xyz signals from source and target pointcloud. 001: sample

guided by our generalized degree signal. 111: sample guided by

simply adding both signals.

remains consistently stable at 15 ms as the sample rate in-

creases. By contrast, the non-stochastic method’s time con-

sumption increases in a polynomial trend, necessitating two

days to obtain 2500 samples! This is largely caused by the

frequent, multiple large matrix SVD decompositions.

5.3. XYZ Signal v.s. Generalized Degree Signal

In this section, we compare our generalized degree signal

with xyz signal which are commonly used in point cloud

sampling. As we accept correspondences as input, we de-

note the source point cloud formed by source points as

Qs ∈ C
N×3 and target point cloud Qt ∈ C

N×3. They

are considered as graph signals and pass through a high-

pass filter which is created by KNN adjacency matrix fol-

lowing [11] to detect their contour points. The response are

denoted as qs ∈ C
N×3 and qt ∈ C

N×3. The response mag-

nitude ||qs||2 ∈ C
N and ||qt||2 ∈ C

N are then scaled to 0-1

to form the sampling distribution π1, π2.

Fig. 9 demonstrates the results of four settings. The sig-

nal of the generalized degree performs the best, while xyz

signal does not differ significantly from random sampling.

When combined with xyz signal, the performance of gener-

alized degree signal gets worse, indicating that the informa-

tion within the generalized degree signal is contaminated by

xyz signal.

6. Conclusion

In this paper, we propose a stochastic spectral correspon-

dence graph sampling method to discover high-frequency

nodes, boosting Maximal Clique Registration to real-time

level with little performance loss. Moreover, it’s robust

to various descriptors, showing its potential for usage in

real-time complex applications. Still we have limitations.

As shown in Fig. 1, when sample ratio decreases, graph

construction gradually becomes a bottleneck. In the future

we plan to solve this issue by learning graph prior without

building a graph, thus eliminating this cost.
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