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Abstract

This paper studies the problem of semi-supervised 2D-
3D retrieval, which aims to align both labeled and unla-
beled 2D and 3D data into the same embedding space. The
problem is challenging due to the complicated heteroge-
neous relationships between 2D and 3D data. Moreover,
label scarcity in real-world applications hinders from gen-
erating discriminative representations. In this paper, we
propose a semi-supervised approach named Fine-grained
Prototypcical Voting with Heterogeneous Mixup (FIVE),
which maps both 2D and 3D data into a common embed-
ding space for cross-modal retrieval. Specifically, we gen-
erate fine-grained prototypes to model intra-class variation
for both 2D and 3D data. Then, considering each unlabeled
sample as a query, we retrieve relevant prototypes to vote
for reliable and robust pseudo-labels, which serve as guid-
ance for discriminative learning under label scarcity. Fur-
thermore, to bridge the semantic gap between two modali-
ties, we mix cross-modal pairs with similar semantics in the
embedding space and then perform similarity learning for
cross-modal discrepancy reduction in a soft manner. The
whole FIVE is optimized with the consideration of sharp-
ness to mitigate the impact of potential label noise. Exten-
sive experiments on benchmark datasets validate the supe-
riority of FIVE compared with a range of baselines in differ-
ent settings. On average, FIVE outperforms the second-best
approach by 4.74% on 3D MNIST, 12.94% on ModelNet10,
and 22.10% on ModelNet40.

1. Introduction

3D visual understanding has received growing interest in
computer vision and graphics. Among various 3D visual
problems, 3D retrieval [12, 52] aims to return similar 3D
shapes given a query. Early approaches usually concentrate
on single-modal 3D retrieval, which transfers 3D data into

†Corresponding author.

(a) Single Centroid (b) Prototypical Voting

Embedding of Class A

Embedding of Class B

Embedding of Class C

Prototype of Class A

Prototype of Class B

Prototype of Class C

Figure 1. Compared with a single centroid for each class (a),
our prototypical voting (b) can provide more reliable and robust
pseudo-labels at the distribution boundaries.

an embedding space while maintaining the similarity struc-
ture [63]. Recently, due to the massive 2D and 3D data from
artificial intelligence generated content, a more challenging
problem of 2D-3D cross-modal retrieval has gained popu-
larity, which aims to return data from one modality given a
query from the other modality [35, 44].

In literature, researchers have proposed a variety of 2D-
3D cross-modal retrieval approaches, which generally map
both 2D and 3D samples into a single low-dimensional
space with heterogeneous gaps reduced [12, 25, 36, 46,
60, 62]. A portion of these approaches generate ground-
truth similarity structures which are then used to match the
similarity relationships of deep representations using pair-
wise or triplet objectives [46, 62]. Another line of the re-
search is to generate anchors for different classes, which
can directly guide the optimization process using a point-
wise objective [12, 25]. These approaches have also been
expanded to address more circumstances including 3D ob-
ject retrieval [17, 37] and CAD model retrieval [2, 15].

Despite their great success, current cross-modal retrieval
approaches [12, 25, 34] usually require large amounts of la-
beled 2D and 3D data for end-to-end training. However,
in practice, annotating a huge number of samples is pro-
hibitively costly or even impossible. For instance, we can-
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not appropriately annotate shape data when the color and
textual information are missing [22, 23]. A practice so-
lution to the problem is to make use of extensive 2D and
3D unlabeled data at hand. Towards this end, in this pa-
per, we investigate an underexplored but practical problem
of semi-supervised 2D-3D cross-modal retrieval, which uti-
lizes both labeled and unlabeled 2D and 3D data to learn
joint representations with similarity embedded.

In reality, designing an effective semi-supervised frame-
work for 2D-3D retrieval remains non-trivial since it entails
resolving two fundamental challenges as follows. (1) How
to effectively make use of rich 2D and 3D unlabeled data?
Although semi-supervised learning has been studied exten-
sively in classification problems [4, 20], semi-supervised
retrieval models are still underexplored with inferior perfor-
mance in reality. Moreover, existing approaches [56] could
generate biased and noisy pseudo-labels when semantic dis-
tributions are complicated [3, 55, 69]. (2) How to align mul-
timodal data in a common embedding space? Previous ap-
proaches [12, 25, 34] usually map 2D and 3D data into the
embedding space using different encoders. However, due
to the heterogeneous gap, there may be a significant distri-
bution disparity between the two modalities, which would
hinder from effective cross-modal retrieval.

To tackle the aforementioned issues, in this pa-
per, we propose a novel approach named Fine-grained
Prototypcical Voting with Heterogeneous Mixup (FIVE)
for semi-supervised 2D-3D cross-modal retrieval. In par-
ticular, our FIVE projects 2D and 3D into a common em-
bedding space using separate encoders and proposes two
mechanisms to solve the aforementioned problems. Firstly,
we model fine-grained prototypes for each class to illus-
trate intra-class variance. Then, to overcome label scarcity,
we consider each unlabeled sample as a query and then re-
trieve relevant prototypes, which serve as multiple experts
voting for the pseudo-label to guide discriminative learn-
ing. Compared with using a single centroid for each class,
our voting-based pseudo-labeling strategy characterizes the
semantic distribution using a large number of prototypes,
which is more robust to perturbation, especially for sam-
ples at the distribution boundary (see Figure 1). Secondly,
to enhance the modality alignment, we introduce heteroge-
neous Mixup, which generates composite virtual samples
by linearly fusing deep representations with comparable se-
mantics from different modalities. Due to the uncertainty
in the quality of prototypes, the generated pseudo-labels
often contain noise. To mitigate potential label noise, we
propose a soft learning strategy, which maps these fused
representations into a new shared embedding space where
similarity learning is conducted for sufficient cross-modal
discrepancy reduction. We integrate both mechanisms into
a bi-level optimization framework [13, 28, 45], which con-
siders the sharpness of the loss objective for robustness and

generalization. Extensive experiments on a range of bench-
mark datasets validate the superiority of the proposed FIVE
in comparison to various competing baselines. In brief, the
contribution of this paper can be summarized as:
• This paper investigates a less-explored yet practical prob-

lem named semi-supervised 2D-3D cross-modal retrieval
and develops a novel approach FIVE for the problem.

• On the one hand, FIVE introduces fine-grained proto-
types to depict intra-class variance and then votes us-
ing retrieved prototypes to generate robust and reliable
pseudo-labels. On the other hand, FIVE fuses deep rep-
resentations from different modalities and conducts simi-
larity learning softly for modality discrepancy reduction.

• Comprehensively experiments on a range of datasets
demonstrate the superiority of our proposed FIVE in com-
parison to various competing baselines.

2. Related Work

Cross-modal Retrieval. With a query from one modality,
cross-modal retrieval [5, 19, 25, 27, 48, 70, 71], seeks to
return comparable samples from another modality with the
goal of generating accurate similarity scores. Existing ap-
proaches can be roughly divided into global [10, 32, 38, 39,
50, 65] and fine-grained approaches [11, 19, 29, 31, 40].
Global approaches produce similarity scores by individu-
ally encoding input from each modality into a common em-
bedding space. These approaches enjoy high computational
efficiency with linear complexity. For example, CLF [25]
introduces a cross-modal center loss for modality-invariant
representations. RONO [12] further investigates the solu-
tion under noisy labels. In contrast, fine-grained approaches
concentrate on semantic relationships at the token and patch
levels, which can provide a fine-grained understanding of
paired semantics [8]. Nevertheless, these approaches often
demand a large amount of labeled data, which can be prob-
lematic for real-world applications [12]. To address this,
this paper introduces a global approach for semi-supervised
2D-3D cross-modal retrieval.
Semi-supervised Learning. To reduce the expense of la-
bel annotation, semi-supervised learning has received ever-
increasing interest [1, 57] by training a machine learn-
ing model using both labeled and unlabeled data, which
has been applied to a range of computer vision applica-
tions such as image segmentation [6, 49], object detec-
tion [21, 68] and image-to-image translation [24, 43]. Cur-
rent semi-supervised learning approaches can be roughly
categorized into pseudo-labeling [3, 4, 20], consistency reg-
ularization [41, 59] and hybrid approaches [14, 30, 51, 66].
Pseudo-labeling approaches annotate unlabeled using the
model itself to expand the labeled datasets. Consistency
regularization aims to promote consistency in predictions
under various perturbations including network, input, and
feature perturbations. Hybrid approaches combine both
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Figure 2. An overview of our FIVE. FIVE utilizes separate encoders to map multimodal input into a common embedding space. For
unlabeled samples, FIVE retrieves relevant prototypes to vote for reliable pseudo-labels, which guide robust discriminative learning. In
addition, FIVE conducts heterogeneous Mixup for virtual samples and then performs soft similarity learning for modality alignment. The
whole FIVE is optimized in a bi-level paradigm for robustness and generalization.

worlds to improve optimization by incorporating data aug-
mentations into consistency learning frameworks. Here,
our study focuses on a more complex cross-modal retrieval
problem and introduces fine-grained prototypes that serve
as experts in generating robust and trustworthy pseudo-
labels as guidance.

3. Methodology
3.1. Problem Definition

We first provide formal definitions of the problem. D2d =
D2d,l ∪ D2d,u represents a 2D dataset with labeled sam-
ples D2d,l = {(x2d,l

i , y2d,li )}N2d,l

i=1 and unlabeled sam-
ples D2d,u = {(x2d,u

i )}N2d,u

i=1 . y2d,li ∈ {1, 2, · · · , C}
denotes the corresponding label of x2d,l

i . D3d =
D3d,l ∪ D3d,u represents a 3D dataset with labeled sam-
ples D3d,l = {(x3d,l

j , y3d,lj )}N3d,l

i=1 and unlabeled samples

D3d,u = {(x3d,u
j )}N3d,u

j=1 }. To facilitate effective cross-
modal retrieval, we aim to project 2D and 3D samples into a
common embedding space with semantics preserved. Dur-
ing evaluation, relevant 2D (3D) examples from a database
should be returned given a 3D (2D) query.

3.2. Framework Overview

This work explores the problem of semi-supervised 2D-3D
retrieval, which is challenging due to label scarcity and the

semantics gap of heterogeneous data. We propose a new
approach named FIVE for this problem, which includes
two separate encoders ϕ2d(·) and ϕ3d(·) to transform mul-
timodal data into a common embedding space, i.e.,

h2d
i = ϕ2d(x2d

i ),h3d
i = ϕ3d(x3d

i ), (1)

where x2d
i and x3d

i denote 2D and 3D samples, respec-
tively. As shown in Figure 2, our proposed FIVE is mainly
comprised of two essential components: (1) Fine-grained
Prototypical Voting, which models fine-grained prototypes
to depict intra-class variance and then votes by retrieved
prototypes to generate pseudo-labels for unlabeled sam-
ples, achieving robust discriminative learning under label
scarcity. (2) Heterogeneous Mixup, which fuses deep rep-
resentations of cross-modal pairs and conducts similarity
learning in a new space for cross-modal discrepancy reduc-
tion. The whole framework is optimized using a bi-level
paradigm, which includes the sharpness of loss for robust
updating. Then, we elaborate on the details of FIVE.

3.3. Fine-grained Prototypical Voting for Robust
Discriminative Learning

The pivot goal of semi-supervised 2D-3D retrieval is to
make full use of abundant unlabeled data. Previous semi-
supervised learning approaches [3, 4, 20] usually lever-
age the model itself to produce the predictions for unla-
beled data and then compare the confidence scores to the
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threshold. However, the similarity learning framework does
not allow us to directly generate pseudo-labels as in previ-
ous approaches. Furthermore, these pseudo-labels could be
noisy and overconfident due to the class competition nature
of the softmax layer [7, 55], which would prevent them from
accurately capturing fine-grained semantics needed for ef-
fective cross-modal retrieval [33, 42, 69]. To tackle these
issues, we provide fine-grained prototypical voting which
generates a variety of fine-grained prototypes to character-
ize intra-class variance and votes by retrieving relevant pro-
totypes for reliable pseudo-labels for successful discrimina-
tive learning.

In particular, we first learn from labeled samples for pro-
totype generation. Here, the centroid of every class is sum-
marized using the average of corresponding labeled samples
as follows:

zc =

∑N2d,l

i=1 1{y2d,l
i =c}h

2d,l
i +

∑N3d,l

j=1 1{y3d,l
j =c}h

3d,l
j∑N2d,l

i=1 1{y2d,l
i =c} +

∑N3d,l

j=1 1{y3d,l
j =c}

,

(2)
where h2d,l

i and h3d,l
i denote the representations of x2d,l

i

and x3d,l
i , respectively. 1{·} denotes an indicator returning

1 when the condition is satisfied. Then, we enforce each
labeled sample to approach its corresponding centroid [25].
In formulation, we have:

Lsup =

N2d,l∑
i=1

∥h2d,l
i − zy2d,l

i
∥22 +

N3d,l∑
j=1

∥h3d,l
j − zy3d,l

j
∥22.

(3)
By utilizing the centroid of each class to align labeled data,
we are capable of generating discriminative representations
for multimodal data. To make use of abundant unlabeled
samples, an intuitive strategy is to find their nearest cen-
troid. Nevertheless, the unlabeled data could not be around
the centroid since each class in the hidden space always has
a large distribution variance under label scarcity. In partic-
ular, the unlabeled samples at the boundary of the distribu-
tion could be wrongly annotated. To address these issues,
we introduce a number of prototypes initialized using clus-
tering to model fine-grained semantics in each class. Here,
K-means is adopted to generate K clusters, i.e., I1c , · · · , IKc
for 2D samples from each class c with the superscript omit-
ted and then utilize the average as the fine-grained proto-
types:

z′k
c =

1

|Ikc |
∑

xi∈Ik
c

hi, (4)

where xi is a 2D sample with deep features hi. The
total fine-grained prototypes can be collected as P =
∪Cc=1{z′1

c , · · · , z′K
c }. Then, we view each unlabeled

sample as a query xi and retrieve M prototypes as
z′

i1 , · · · , z′
iM from P by ranking the Euclidean distance

in the embedding space. These retrieved prototypes would
vote for the pseudo-label of xi as:

ŷi = argmaxC
c=1

M∑
m=1

1{y′im = c}, (5)

where y′im denotes the class of the prototype z′
im . Simi-

larly, we can also generate pseudo-labels for 3D samples.
With pseudo-labels, we can enforce each unlabeled sample
to approach its pseudo-centroid as:

Lpse =
∑

xi∈D2d,u∪D3d,u

||hi − zŷi
||22, (6)

where zŷi
denotes the centroid corresponding to ŷi. After

training the network for a while, we would include all these
samples to update the centroids using the momentum strat-
egy as:

zupdate
c = µzc + (1− µ)

∑
xi∈D 1{ȳi=c}hi∑
xi∈D 1{ȳi=c}

, (7)

where µ is a momentum coefficient set to 0.99 empiri-
cally [16] and ȳi can be labels or pseudo-labels for xi.
Compared with previous pseudo-labeling approaches [3, 4,
20], our FIVE does not rely on the classifier, which is more
suitable for our similarity learning framework. Moreover,
our FIVE can explore the semantic distribution in each class
to benefit fine-grained cross-modal retrieval. Incorporat-
ing multiple prototypes rather than one centroid for each
class can produce smoother pseudo-labels at the distribu-
tion boundaries for robust discriminative learning.

3.4. Heterogeneous Mixup for Cross-modal Dis-
crepancy Reduction

Although 2D and 3D samples share identical centroids in
the embedding space, their distributions could still vary due
to an intrinsic heterogeneous gap, which hinders from ef-
fective cross-modal retrieval [12, 25, 34]. To tackle this,
we propose heterogeneous Mixup which fuses deep fea-
tures from different modalities and maximizes the simi-
larity between virtual samples with the same semantics
in the projected embedding space for discrepancy reduc-
tion [16, 26, 55].

In particular, we fuse samples with the same semantics
for simplification. Given two cross-modal samples x2d

i and
x3d
j with ȳ2di = ȳ3dj , we first generate their deep represen-

tations, h2d
i and h3d

j , respectively. Then, we sample a coef-
ficient from the Beta distribution for Mixup:

λ ∼ Beta(α, β), (8)

where α and β are two coefficients set to 2 as in previous
works [54, 64]. Then, the fused virtual samples have repre-
sentations as:

h+
t = λh2d

i + (1− λ)h3d
j . (9)
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The label remains the same with y+t = ȳ2di = ȳ3dj . Note
that there could be noisy pseudo-labels to influence mixed
samples. Therefore, we utilize a soft manner for similarity
learning. In particular, we project the fused samples into a
new hidden space, and encourage the consistency of hidden
embeddings from the same class. In formulation, the index
set of positives for h+

t in the mini-batch B can be written
as:

Π(t) =
{
t | ht′ ∈ B, y+t′ = y+t

}
. (10)

Then, the similarity learning objective for mixed samples
can be formulated as:

Lsim = −
∑
ht∈B

1

|Π(t)|
∑

t′∈Π(t)

log
exp

(
r+t · r+t′ /τ

)∑
r
t
′′ ∈B exp

(
r+t · r+t′′ /τ

) ,
(11)

where r+t = H(h+
t ) denotes the representations in the hid-

den space and τ is a temperature parameter set to 0.5 em-
pirically [55]. Compared with previous methods [9, 54, 67],
our FIVE makes full use of both labeled and unlabeled
samples to generate mixed samples and conduct similarity
learning of fused multimodal data for cross-modal discrep-
ancy reduction, which provides a Mixup strategy under la-
bel scarcity. Even if pseudo-labels of a sample pair are both
not correct, they still could be a positive pair, which proves
our pairwise similarity learning can provide more accurate
supervision. Moreover, we project the representations of
different modalities into a new shared embedding space and
conduct similarity learning, which can mitigate the influ-
ence of wrong pseudo-labels in a soft manner.

3.5. Framework Optimization

In summary, the final objective can be summarized by
combining three loss terms as follows:

L = Lsup + Lpse + Lsim. (12)

To mitigate the potential label noise resulting from pseudo-
labeling with more generalization capacity, we adopt a bi-
level optimization paradigm [13, 28, 45] for robustness,
which models the sharpness of the loss using the maximum
difference after perturbation:

LS = max
∥ϵ∥2≤ρ

L(Θ + ϵ)− L(Θ), (13)

where ϵ denotes a small perturbation to model parameters
and ρ define the radius. Θ denotes the whole network
parameters. Intuitively, a small loss sharpness can pro-
vide more robust optimization against potential label noise.
Therefore, we simultaneously minimize the total loss and
its sharpness as:

LF (Θ) ≜ LS + L = max
∥ϵ∥2≤ρ

L(Θ + ϵ). (14)

Algorithm 1 Training Algorithm of FIVE

Require: DatasetsD2d andD3d; Number of prototypes for
every class K; Number of retrieved prototypes M .

Ensure: Parameters Θ of ϕ2d(·) and ϕ3d(·).
1: Warm up the 2D and 3D encoders;
2: Initialize the fine-grained prototypes P;
3: repeat
4: for e=1,· · · ,E do
5: Sample labeled and unlabeled data to construct a

mini-batch;
6: Retrieve relevant prototypes for every unlabeled

sample;
7: Generate mixed representations using Eqn. 9;
8: Generate pseudo-labels using Eqn. 5
9: Compute the whole loss by Eqn. 12;

10: Conduct inner optimization using Eqn. 17;
11: Conduct outer optimization using Eqn. 19;
12: end for
13: Update centroids using Eqn. 7;
14: Update prototypes with clustering;
15: until convergence

To minimize Eqn. 14, we adopt a bi-level paradigm with
inner and outer optimization steps. In particular, we first
conduct the inner optimization step as:

ϵ∗(Θ) ≜ argmax
∥ϵ∥2≤ρ

L(Θ + ϵ). (15)

With first-order Taylor expansion, we have:

argmax
∥ϵ∥2≤ρ

L(Θ + ϵ) ≈ argmax
∥ϵ∥2≤ρ

L(Θ) + ϵT∇ΘL(Θ)

= argmax
∥ϵ∥2≤ρ

ϵT∇ΘL(Θ)
(16)

As a classical dual norm problem, Eqn. 16 has the closed
solution:

ϵ̂(Θ) = ρ
sign (∇ΘL(Θ)) |∇ΘL(Θ)|

∥∇ΘL(Θ)∥2
. (17)

Then, for the outer optimization step, we need to calculate
the derivative as:

∇ΘL(Θ + ϵ̂(Θ)) =
d(Θ + ϵ̂(Θ))

dΘ
∇ΘL(Θ)|Θ+ϵ̂(Θ)

= ∇ΘL(Θ)|Θ+ϵ̂(Θ) +
dϵ̂(Θ)

dΘ
∇ΘL(Θ)|Θ+ϵ̂(Θ)

≈ ∇ΘL(Θ)|Θ+ϵ̂(Θ),

(18)

where the last approximation aims to drop the high-order
term when the perturbation is small. Finally, we can get the
gradient update rule for the outer optimization step as:

Θ← Θ− η∇ΘL(Θ)|Θ+ϵ̂(Θ), (19)
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Table 1. Performance comparison on different datasets and various amounts of labels. The best results are shown in boldface and the
second best results are underlined.

Task
Dataset 3D MNIST ModelNet10 ModelNet40

Label 200 400 600 800 Avg 200 400 600 800 Avg 800 1600 2400 3200 Avg

2D→ 3D

MRL 46.06 65.05 71.66 78.71 65.37 45.23 53.38 57.92 62.89 54.86 26.30 26.96 32.62 35.94 30.46
DSCMR 68.26 86.26 91.10 92.34 84.49 49.26 72.69 74.23 80.90 69.27 46.56 56.21 62.13 67.24 58.04
ALGCN 83.30 89.55 91.13 92.40 89.10 70.92 76.21 79.97 81.73 77.21 53.77 58.53 60.41 63.28 59.00
DA-I-GCN 75.75 86.45 88.40 90.08 85.17 44.51 52.52 55.59 60.74 53.34 30.65 44.19 49.09 58.19 45.53
DA-P-GCN 79.02 86.47 89.10 90.49 86.27 49.08 61.74 63.94 68.09 60.71 34.63 40.13 54.10 58.37 46.81
DA-I-GAT 77.43 86.23 86.92 90.34 85.23 44.86 50.04 55.72 59.99 52.65 31.22 44.31 45.22 54.46 43.80
DA-P-GAT 77.14 86.63 88.74 89.77 85.57 50.19 61.09 65.03 69.13 61.36 34.39 48.37 51.63 60.17 48.64
CLF 67.44 86.54 89.77 91.12 83.72 50.60 71.65 76.78 82.33 70.34 50.42 59.74 66.57 70.72 61.86
RONO 60.40 81.08 85.66 88.85 79.00 57.45 72.80 79.66 81.09 72.75 46.39 62.13 65.07 72.93 61.63
Ours 91.68 93.51 94.03 94.78 93.50 83.97 84.22 84.37 85.18 84.44 71.32 72.18 72.86 75.40 72.94

3D→ 2D

MRL 46.46 64.45 70.88 78.69 65.12 44.90 52.21 55.50 60.99 53.40 25.96 27.29 32.80 36.94 30.75
DSCMR 67.74 82.51 88.17 89.11 81.88 46.01 68.28 72.22 79.16 66.42 28.05 46.24 54.96 59.70 47.24
ALGCN 82.57 88.19 89.67 90.83 87.82 64.14 70.66 73.94 78.82 71.89 35.03 48.25 51.12 53.67 47.02
DA-I-GCN 75.61 85.89 87.18 88.92 84.40 42.87 51.86 55.91 60.64 52.82 32.08 42.92 47.96 56.94 44.98
DA-P-GCN 80.14 86.51 88.03 89.39 86.02 47.47 60.02 63.37 67.40 59.57 35.03 39.82 52.56 56.08 45.87
DA-I-GAT 77.81 85.61 86.45 89.39 84.82 43.09 50.77 57.96 59.92 52.94 32.14 42.25 44.88 53.64 43.23
DA-P-GAT 79.51 86.59 87.66 88.91 85.67 48.12 61.30 63.98 68.22 60.41 34.11 46.85 50.17 58.53 47.42
CLF 65.65 86.26 88.53 89.61 82.51 46.50 69.11 72.58 81.23 67.36 41.93 54.22 63.21 67.03 56.60
RONO 65.75 82.24 84.95 88.57 80.38 49.56 68.86 75.33 78.98 68.18 35.08 54.58 59.37 69.40 54.61
Ours 89.92 91.82 92.31 93.13 91.80 83.22 83.62 84.01 84.18 83.76 70.24 71.22 71.49 72.97 71.48

where η denotes the learning rate. We first warm up the neu-
ral network using labeled data and then gradually conduct
fine-grained prototypical voting and heterogeneous Mixup.
After sampling the mini-batch for E times, we would up-
date the centroids and prototypes. The whole algorithm for
learning our FIVE is summarized in Algorithm 1.

4. Experiments
4.1. Experimental Settings

Datasets. To verify the effectiveness of FIVE, we con-
duct comprehensive experiments on several public datasets.
The brief introduction of the datasets is as follows: 3D
MNIST [61] is collected from Kaggle. The entire dataset
consists of 6, 000 image-point cloud pairs from 10 different
categories. The dataset is split into a training set with 5, 000
pairs and a testing set with 1, 000 pairs. ModelNet10 [58]
contains approximately 5, 000 3D CAD objects across 10
categories. We split the dataset into two subsets: 3, 991
samples for training and 908 samples for testing. Model-
Net40 [58] and ModelNet10 are similar in nature, consist-
ing of approximately 12, 000 3D CAD objects from 40 cat-
egories. Similarly, the dataset is divided into two subsets:
9, 840 samples for training and 2, 468 samples for testing.
Baselines. We compare our FIVE with nine state-of-the-
art (SOTA) cross-modal retrieval methods. These methods
consist of seven text-image retrieval approaches (MRL [18],
DSCMR [70], ALGCN [47], DA-I-GCN [48], DA-P-
GCN [48], DA-I-GAT [48], DA-P-GAT [48]) and two 2D-
3D retrieval methods (CLF [25], RONO [12]). As limited
options are available for 2D-3D retrieval, we reproduce the

text-image retrieval methods according to the correspond-
ing papers and adapt them for the 2D-3D retrieval task.

Evaluation Protocols. We employ the mean average pre-
cision (MAP) as the evaluation metric, which is a com-
monly used criterion for assessing retrieval performance. A
higher MAP score indicates enhanced retrieval accuracy.

Implementation Details. All experiments are conducted
using the PyTorch framework. To ensure a fair compari-
son, we employ pre-trained ResNet-18 and DGCNN as the
backbone for the image and point cloud networks, respec-
tively, in all approaches. The output feature dimension is
consistently set to 256. The networks are optimized using
the Adam optimizer with a weight decay of 1e − 5. The
learning rate is set to 5e − 5 for the image network and
1e− 4 for the point cloud network. The batch size is set to
50, and the training process is terminated after 50 epochs.

4.2. Experimental Results

Quantitative Comparisons. Table 1 illustrates the com-
parison between our FIVE and various SOTA cross-
modal retrieval approaches on three datasets, with different
amounts of labeled data. Based on these results, the fol-
lowing conclusions can be drawn: First, previous research
on cross-modal retrieval has focused on effectively utilizing
a large amount of labeled data while overlooking the po-
tential of unlabeled data. This has resulted in performance
degradation when only a portion of labeled data is available.
2D-3D retrieval methods such as RONO [12] and CLF [25]
often outperform the modified text-image retrieval meth-
ods, except for ALGCN [47]. The superior performance
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Figure 3. The Precision-Recall curve with various amounts of labels on the 3D MNIST dataset. 2D-to-3D results are plotted in the first
row, and 3D-to-2D results are plotted in the second row.

of ALGCN [47] mainly stems from the use of an additional
graph neural network (GNN) as guidance. Second, FIVE
opens the door to utilizing a small amount of labeled data
and a large amount of unlabeled data together to enhance
2D-3D retrieval performance. We achieve performance im-
provement across all three datasets and various scenarios
with different amounts of labeled data, surpassing all cur-
rent SOTA approaches. Furthermore, unlike methods like
ALGCN [47] that incorporate additional GNN structures,
we do not introduce extra parameters to the network but
rather make improvements in algorithm design and train-
ing strategies. This indicates the effectiveness of our ap-
proach in addressing the challenge of semi-supervised 2D-
3D cross-modal retrieval. Particularly when the amount of
labeled data is extremely scarce (e.g., 200 labels), our FIVE
outperforms other methods with a greater improvement.

Qualitative Comparisons. In addition, we make quali-
tative comparisons between our FIVE and the other three
top-performing methods (i.e., ALGCN [47], RONO [12],
CLF [25]) by plotting the Precision-Recall curves in sce-
narios with the number of labeled data varying from 200 to
800 in Figure 3. More comprehensive comparisons can be
found in the supplementary material. Precision and recall
are a pair of contradictory metrics, where an increase in one
often results in a decrease in the other. In the precision-
recall curve plot, methods represented by curves located
higher on the graph are generally considered to have bet-
ter performance. From the results, it can be observed that
our FIVE consistently outperforms the other approaches in
both 2D-to-3D and 3D-to-2D retrieval tasks across the four
scenarios with varying amounts of labeled data. The fewer

labeled data there are, the more pronounced the advantage
of our FIVE compared to other approaches. This further
confirms the effectiveness and robustness of our approach.

Ablation Study. In this section, we examine the contri-
bution of each proposed component in Table 2. FIVE w/o
SL refers to the removal of supervised learning for both 2D
and 3D modalities, resulting in no semantic information in-
jected into the two modalities. From the results, we can
observe that without this module, the performance experi-
ences a significant decline. FIVE w/o PV indicates the ab-
sence of prototypical voting, instead using the single cen-
troid to generate pseudo-labels. We can observe that using
a single centroid can lead to erroneous proximity between
features and low-confident centroids, resulting in incorrect
predictions. Therefore, the retrieval performance is signif-
icantly affected. FIVE w/o BO signifies the exclusion of
bi-level optimization, opting for the conventional Adam op-
timizer. The results confirm that by simultaneously opti-
mizing the loss value and loss sharpness, the model exhibits
better generalization performance while providing robust-
ness to certain low-confidence samples. FIVE w/o HM
denotes the removal of the heterogeneous Mixup module.
Heterogeneous Mixup can be seen as a cross-modal data
augmentation strategy in the feature space, which intro-
duces more diverse samples. As a result, it brings about
some performance improvement. Lastly, by incorporating
all the components, Full Model demonstrates the best per-
formance. The results of ablation experiments confirm that
each proposed component contributes to addressing the 2D-
3D cross-modal retrieval problem under label scarcity con-
ditions. Additionally, the individual contributions of these
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Table 2. Ablation study on each proposed component with 200
labels, 200 labels, and 800 labels on three datasets.

Dataset 3D MNIST ModelNet10 ModelNet40

Task I2P P2I I2P P2I I2P P2I

FIVE w/o SL 19.47 17.42 19.71 18.19 5.39 4.76
FIVE w/o PV 84.62 82.53 74.50 73.14 65.66 64.80
FIVE w/o BO 89.91 88.47 76.95 76.48 68.81 67.13
FIVE w/o HM 90.91 89.10 82.18 81.81 70.34 70.02
Full Model 91.68 89.92 83.97 83.22 71.32 70.24

Figure 4. Sensitivity analysis of hyper-parameters M and K with
200 labels on 3D MNIST.

modules complement and promote each other, and their
combination leads to maximum performance improvement.

Sensitivity Analysis. In Figure 4, we investigate the im-
pact of two hyperparameters, K and M , on the 3D MNIST
dataset. K represents the number of confident prototypes
generated per class, while M represents the number of pro-
totypes with the highest occurrence in a single retrieval pro-
cess. Both hyperparameters directly affect feature classi-
fication and alignment, thus influencing the final retrieval
performance. First, we gradually increase K from 1 to 6.
When K = 1, the prototype approximation is similar to the
intra-class centroid feature. Increasing K gradually adds
more tolerance to the model. We can observe that the model
exhibits the best performance when K = 5. Next, with K
fixed at 5, we increase M from 1 to 6. M represents the
range of retrieval within a single process. Values of M that
are too large or too small can harm performance. For a class
with K prototypes, when M = K, the ideal scenario within
the sampling range is that all prototypes belong to the same
class. As M increases further, erroneous prototypes will
inevitably be sampled. From the experimental results, the
optimal value for M is 5, validating our hypothesis.

4.3. Visualization

t-SNE Visualization. In Figure 5, we present t-SNE [53]
visualizations of four methods on the 3D MNIST dataset.
The dispersion of individual modalities reflects the discrim-
inability of features for different classes, while the overlap
degree between the two modalities indicates the degree of
modality-invariant features. Compared to the other three

Figure 5. The t-SNE visualization with 200 labels on 3D MNIST.
2D modality is colored red, and 3D modality is colored blue.
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Figure 6. Top 10 retrieved results with 800 labels on ModelNet10.
Green boxes signify accurate retrieval, whereas red boxes signify
erroneous retrieval.

methods, the features of FIVE are significantly dispersed
into 10 clusters, representing the 10 classes of 3D MNIST.
Additionally, our FIVE exhibits the highest overlap degree
between the two modalities, indicating successful align-
ment of the 2D and 3D modalities in the feature space.

Case Study. We visualize the top 10 retrieved results of
our FIVE and the compared baseline RONO [12] in Fig-
ure 6. It is evident that FIVE retrieves more relevant objects
for both the 2D-to-3D and 3D-to-2D tasks. For instance,
when given a 2D query ‘Table’, RONO [12] retrieves unre-
lated results such as ‘Desk’, ‘Chair’, and ‘Dresser’. Simi-
larly, when given a 3D query ‘Sofa’, RONO [12] retrieves
unrelated objects like ‘Bed’, ‘Dresser’, and ‘Desk’. In con-
trast, FIVE exhibits significantly lower error rates and more
balanced results, whether using 2D or 3D data as the query.

5. Conclusion
This paper investigates the problem of semi-supervised 2D-
3D retrieval and proposes a novel approach FIVE, which
maps both 2D and 3D data into a common embedding
space. FIVE introduces fine-grained prototypes and then
retrieves relevant prototypes to vote for reliable pseudo-
labels, which accomplish discriminative learning under la-
bel scarcity. Additionally, FIVE combines cross-modal
pairs with comparable semantics in the embedding space
and then performs soft similarity learning for effective
cross-modal discrepancy reduction. Extensive experiments
on benchmark datasets validate the advantage of FIVE over
a variety of baselines. In future works, we would extend our
approach to more complicated scenarios such as zero-shot
cross-modal retrieval and 3D object understanding.
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[15] Can Gümeli, Angela Dai, and Matthias Nießner. Roca: Ro-
bust cad model retrieval and alignment from a single image.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4022–4031, 2022. 1

[16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020.
4

[17] Xinwei He, Tengteng Huang, Song Bai, and Xiang Bai. View
n-gram network for 3d object retrieval. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 7515–7524, 2019. 1

[18] Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, and Jie
Lin. Learning cross-modal retrieval with noisy labels. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5403–5413, 2021. 6

[19] Peng Hu, Zhenyu Huang, Dezhong Peng, Xu Wang, and Xi
Peng. Cross-modal retrieval with partially mismatched pairs.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2023. 2

[20] Zijian Hu, Zhengyu Yang, Xuefeng Hu, and Ram Neva-
tia. Simple: Similar pseudo label exploitation for semi-
supervised classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15099–15108, 2021. 2, 3, 4

[21] Wei Hua, Dingkang Liang, Jingyu Li, Xiaolong Liu, Zhikang
Zou, Xiaoqing Ye, and Xiang Bai. Sood: Towards semi-
supervised oriented object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15558–15567, 2023. 2

[22] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object genera-
tion with dream fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
867–876, 2022. 2

[23] Maximilian Jaritz, Tuan-Hung Vu, Raoul De Charette,
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