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Abstract
Knowledge distillation (KD) has been applied to vari-

ous tasks successfully, and mainstream methods typically
boost the student model via spatial imitation losses. How-
ever, the consecutive downsamplings induced in the spatial
domain of teacher model is a type of corruption, hinder-
ing the student from analyzing what specific information
needs to be imitated, which results in accuracy degrada-
tion. To better understand the underlying pattern of cor-
rupted feature maps, we shift our attention to the frequency
domain. During frequency distillation, we encounter a
new challenge: the low-frequency bands convey general
but minimal context, while the high are more informative
but also introduce noise. Not each pixel within the fre-
quency bands contributes equally to the performance. To
address the above problem: (1) We propose the Frequency
Prompt plugged into the teacher model, absorbing the se-
mantic frequency context during finetuning. (2) During the
distillation period, a pixel-wise frequency mask is generated
via Frequency Prompt, to localize those pixel of interests
(PoIs) in various frequency bands. Additionally, we employ
a position-aware relational frequency loss for dense pre-
diction tasks, delivering a high-order spatial enhancement
to the student model. We dub our Frequency Knowledge
Distillation method as FreeKD, which determines the opti-
mal localization and extent for the frequency distillation.
Extensive experiments demonstrate that FreeKD not only
outperforms spatial-based distillation methods consistently
on dense prediction tasks (e.g., FreeKD brings 3.8 AP gains
for RepPoints-R50 on COCO2017 and 4.55 mIoU gains for
PSPNet-R18 on Cityscapes), but also conveys more robust-
ness to the student. Notably, we also validate the general-
ization of our approach on large-scale vision models (e.g.,
DINO and SAM).

1. Introduction
In the quest for significant advancements, recent deep learn-
ing models have witnessed a substantial increase in both
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Figure 1. Comparison of the presentation of the bear at differ-
ent downsampling ratios on spatial and frequency domain.

depth and width, as exemplified by notable works such as
[16, 23, 28]. However, pursuing larger and more power-
ful models results in unwieldy and inefficient deployments
on resource-limited edge devices. To address this dilemma,
knowledge distillation (KD) [8, 11, 17, 20, 50] has emerged
as a promising solution to transfer the knowledge encapsu-
lated within a heavy model (teacher) to a more compact,
pocket-size model (student).

Among diverse computer vision tasks, the transfer of
dark knowledge for dense prediction tasks poses unique
challenges, particularly requiring fine-grained distillation at
the feature level. Recent distillation methods have aimed
to enhance performance through spatial-level distillation
losses, refining valuable information within the features.
However, the sequential downsampling applied in the spa-
tial domain of the teacher model introduces a form of cor-
ruption. This corruption hampers the student’s ability to
discern specific information that should be mimicked, re-
sulting in a decline in accuracy.

As illustrated in Figure 1, downsampling operations
prominently remove high-frequency image details in the
frequency domain, revealing underlying patterns not eas-
ily discernible from raw pixel values [3, 45, 47]. This
observation prompts us to explore the potential of lever-
aging frequency signals for knowledge distillation. How-
ever, directly employing this approach raises two significant
challenges: (a) The low-frequency bands from the teacher
model convey general yet minimal contextual information,
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characterized by smooth variations [44, 58]. If the student
is forced to imitate all pixels of low-frequency bands di-
rectly, it tends to focus on easy but less informative samples,
aiming to reduce loss. (b) The high-frequency range pro-
vides more fine-grained and distinctive signals, with salient
transitions enhancing the student’s robustness and gener-
alizability [54]. However, when the student mimics high-
frequency pixels, it also captures noise, leading to undesired
degradation. Therefore, the challenge lies in localizing wor-
thy pixels of interest (PoIs) in both frequency bands.

To address these challenges, we introduce the semantic
Frequency Prompt as depicted in Figure 2 (c). Initially, a
set of Points of Interest (PoIs) masks is generated by en-
coding similarities between prompts and frequency bands.
Subsequently, the masked frequency bands, rather than the
vanilla ones, are supervised by task loss. This approach
provides precise guidance for the student in reconstructing
the teacher’s frequency bands — a crucial aspect of knowl-
edge distillation. Importantly, the Frequency Prompt dif-
fers from previous spatial prompts in both insertion method
and the transferred substance. In Figure 2, Prompt To-
kens (VPTs) [21, 57] are inserted as tokens for transformer
series tasks, while Contrastive Texture Attention Prompts
(CTAP) [13] are summed point by point on the input im-
age, avoiding occlusion. In contrast, the localization of
our Frequency Prompts is flexible, depending on where the
student intends to imitate. This involves incorporating a
position-aware relational frequency loss, where positional
channel-wise weights are derived from cross-layer informa-
tion. These weights act as an adaptive gating operation, se-
lectively choosing relevant channels from frequency bands.

With the above key designs, we propose a Frequency
Knowledge Distillation pipeline called FreeKD, where the
student is under fine-grained frequency imitation principle.
Extensive experimental results show that our method sur-
passes current state-of-the-art spatial-based methods con-
sistently in standard settings of object detection and seman-
tic segmentation tasks. For instance, FreeKD obtains 42.4
AP with RepPoints-R50 student on the COCO dataset, sur-
passing DiffKD [20] by 0.7 AP; while on semantic seg-
mentation, FreeKD outperforms MGD [51] by 0.8% with
PSPNet-R18 student on Cityscapes test set. Moreover,
we implement FreeKD on large-scale vision model set-
tings, and our method significantly outperforms the baseline
method. Finally, we are surprised that the student distilled
by FreeKD exhibits better domain generalization capabili-
ties (e.g., FreeKD outperforms DiffKD by 1.0% rPC [39]).

In a nutshell, the contributions of this paper are threefold:
1. We introduce a novel knowledge distillation manner

(FreeKD) from the frequency domain, and make the first
attempt to explore its potential for distillation on dense
prediction tasks, which breaks the bottleneck of spatial-
based methods.
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Figure 2. Comparisons with other insertion methods of spatial
prompts. (a) Prompts are inserted into the encoder layer as tokens.
(b) Sum-wise on RGB channels of input image. (c) Ours interact
with intermediate features. Best view in color.

2. To the best of our knowledge, we are the first to pro-
pose Frequency Prompt especially for frequency knowl-
edge distillation, eliminating unfavorable information
from frequency bands, and a position-aware relational
frequency loss for dense prediction enhancement.

3. We validate the effectiveness of our method through
extensive experiments on various benchmarks, includ-
ing large-scale vision model settings. Our approach
consistently outperforms existing spatial-based methods,
demonstrating significant improvements and enhanced
robustness in students distilled by FreeKD.

2. Related Work
2.1. KD on Dense Prediction Tasks

In recent years, knowledge distillation for dense predic-
tion tasks such as object detection and semantic segmen-
tation has garnered significant attention, owing to its prac-
tical applications and the inherent challenges of distilling
fine-grained pixel-level recognition and localization fea-
tures. Early approaches [2, 24] primarily concentrated on
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distilling classification and regression outputs or intermedi-
ate features using traditional loss functions such as Kull-
back–Leibler divergence and mean square error. How-
ever, recent research has shifted its focus towards mim-
icking valuable information while filtering out noisy fea-
tures in the intermediate dense representations. This shift
is driven by the observation that dense features often con-
tain redundant information, which can burden the student
model. To address this, contemporary works employ tech-
niques like generating pixel-level masks based on ground-
truth boxes [14, 40], leveraging feature attentions [37, 49],
and introducing learnable mask tokens [19] for feature re-
finement. Besides, some approaches propose to reducing
the representation gap between teacher and student via nor-
malizing the features with Pearson correlation [1] or denois-
ing the features with diffusion models [20]. However, the
consecutive downsamplings induced in the spatial domain
of the teacher model is a type of corruption, hindering the
student from analyzing what specific information needs to
be imitated, which results in accuracy degradation. To bet-
ter understand the underlying pattern of corrupted feature
maps, we shift our attention to the frequency domain.

2.2. Frequency Analysis Methods

Frequency domain analysis has found extensive application
in various computer vision tasks, including image classifi-
cation [42, 47], image generation [22], and image super-
resolution [32]. Early studies [15, 31, 33] indicate that in
the frequency domain, the phase component predominantly
captures high-level semantics of the original signals, while
the amplitude component retains low-level statistics. Con-
sequently, underlying image patterns are more conveniently
observed in the frequency representation compared to raw
pixel values in the spatial domain. In this context, wavelet
analysis stands out as a particularly effective method in im-
age processing [12, 29, 54], as it can capture multiscale
frequency domain information in a compact representation.
Unlike other frequency analysis methods like Fourier analy-
sis, wavelet analysis offers a more comprehensive perspec-
tive. Leveraging wavelet analysis, our method is tailored for
dense prediction tasks, demonstrating superior distillation
on image patterns when compared to distilling raw pixel
values in the spatial domain.

3. Proposed Approach: FreeKD

In this section, we first demonstrate vanilla knowledge dis-
tillation via frequency loss. To further provide more precise
PoIs, we design a novel Frequency Prompt to generate pixel
imitation principles. Finally, we propose a position-aware
relational loss to enhance the sensitivity to dense prediction.
The architecture of FreeKD is illustrated in Figure 3.

3.1. Distillation with Frequency

Dilations and translations of the Mother function Φ(t), de-
fine an orthogonal wavelet basis:

Φ(s,d)(t) = 2
s
2Φ(2st− d), s, d ∈ Z (1)

where Z is the set of all integers and the factor s
2 main-

tains a constant norm independent of scale s. The variables
s and d, scales and dilates the mother function Φ to gener-
ate wavelets in L2 spaces. To create frequency representa-
tions, Discrete Wavelet Transformation (DWT) ξ is applied
for frequency bands decomposition via Φ to each channel
as follows:

Bl = ξ(x), (2)

where l is the decomposition level. When the level is set to
1, the feature map F ∈ RC×H×W can be split into four
bands, and B1 = {LL,HL,LH,HH}, where LL indicates
the low-frequency band (RLL ∈ RC×HLL×WLL represents
its corresponding tensor), and the others are high-frequency
bands. When l is 2, the LL band can be further decomposed
into LL2, HL2, LH2 and HH2. In this paper, we set l = 3
for all distillation experiments.

In order to learn dark knowledge of the teacher, one typ-
ical manner is to mimic the tensor pixel-wisely. Regularly,
F (t) ∈ RC×H×W and F (s) ∈ RCs×H×W denote the fea-
ture maps of teacher and student networks respectively, and
the frequency bands imitation can be fulfilled via:

LFKD =

L∑
k=1

∥ak − bk∥1 ,

ak ∈ ξ(F (t)), bk ∈ ξ(ϕ(F (s))), (3)

where L is the number of frequency bands, and ϕ is a lin-
ear projection layer to adapt F (s) to the same resolution
as F (t). The student model studies general laws via low-
frequency imitation, and salient pattern (including fine tex-
tures, edges, and noise) from the high-frequency.

3.2. Semantic Frequency Prompt

Therefore, we introduce a learnable frequency prompt P ∈
RB×T×C to deliver T pixel imitation principles in C chan-
nels of B frequency bands, and it will finetune the teacher
model first. For simplicity, we choose the frequency band
HH fromB bands and its corresponding prompt P ∈ RT×C

as an example, and the rest are the same.
Unlike previous insertion methods of spatial-based

prompts, our approach requests the frequency prompt to in-
teract with the band, a better way to know the manifolds
embedded in frequency spaces. In this paper, we adopt the
matrix multiplication manner to calculate the mutual infor-
mation M ∈ RC×HHHWHH between prompt P and frequency
pixels R(t) in the teacher band:

M = P ×R(t), (4)
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Figure 3. Overview of our FreeKD pipeline. The pipeline includes two stages. Stage 1: Frequency prompts make interaction with
intermediate frequency bands, and are supervised by the teacher task loss. Stage 2: First, the distillation feature maps of student and
teacher transform into the frequency domain, respectively. Then, receiving frequency prompts from stage 1, we request the frozen ones
multiply with teacher frequency bands, and generate the PoIs of bands. Finally, a channel-wise positional-aware weight is determined by
the teacher spatial gate and student gate together. The flow (1) in the figure decides where to distill and flow (2) indicates the extent of the
distillation.

where we flatten the band HH into shape (C,HHH×WHH) to
fit matrix multiplication.

Then, to connect with the task loss Lfinetune supervi-
sion and support stochastic gradient descent, a masked fre-
quency band is utilized to substitute the original band HH:

R̂(t) =

T∑
i=1

σ(Mi)⊛R(t), (5)

where we turn the mutual information M into a probability
space to function as the masks. The symbol σ denotes the
sigmoid function and ⊛ means element-wise multiplication.

After collecting all B masked frequency bands, we per-
form an Inverse Discrete Wavelet Transformation (IDWT)
ξ̃ on them to the spatial domain:

ˆF (t) = ξ̃(B̂l), (6)

and we send the new feature map ˆF (t) back to the teacher
model. The finetune loss can be treated as an observation of
mask quality, and minimize to force the frequency prompts
to focus on the substantial pixels of the band.

However, simply minimizing Lfinetune would lead to an
undesired collapse of the T sets of masks generated by the
frequency prompt. Specifically, some masks will be learned
to directly recover all the bands, filled with 1 everywhere.
To make the prompt represent T sets PoIs of the band, we
propose a Prompt-Dissimilarity loss based on the Jaccard
coefficient:

Ldis =
1

T 2

T∑
i=1

T∑
j=1

ΘJaccard(Mi,Mj) (7)

with

ΘJaccard(m,n) =
|m ∩ n|
|m ∪ n|

, (8)

where m ∈ RN and n ∈ RN are two vectors. Jaccard loss
is widely used to measure the degree of overlap between
two masks in segmentation tasks. By minimizing the coef-
ficients of each mask pair, we can make masks associated
with different PoIs. As a result, the training loss of prompt
is composed of finetune loss and dissimilarity loss:

Lprompt = Lfinetune + λLdis, (9)

where λ is a factor for balancing the loss. In this paper,
we set λ = 1 for all distillation experiments and allocate
T = 2 imitation principles for each frequency band, as
the frequency prompt is easier to converge (e.g., the teacher
FCOS ResNet101 has 40.8 mAP on COCO val set, and the
finetuned one is 39.9). Notably, we still utilize the original
teacher instead of the finetuned one to distill for the students
for the fairness.

3.3. Position-aware Relational Loss

With the help of frequency prompt, we can already local-
ize the PoIs of bands to improve the performance of fre-
quency distillation. As frequency responses come from a lo-
cal region, encoding original features with positional impor-
tance is thus necessary to distinguish the objects for dense
prediction. Hence we introduce the Position-aware Rela-
tional Loss to provide high-order spatial enhancement for
the student model. First, the relational attention from multi-
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receptive fields can be represented as:

A = Softmax(ψ(F )F T ), (10)

where ψ(F ) denotes the spatial feature of the latter layer
than F . Thus A ∈ RC×C serves as a bridge to find the
position-aware correlations across different layers. Then,
the gating operation is generated based on the spatial per-
ceptions to form the position-aware loss relation weight:

ω = G(A) ∈ R1×C , (11)

where G denotes the gating weight generated by a Multi-
layer Perceptron (MLP). Therefore, Eq. 3 can be reformu-
lated as:

LFKD =

L∑
k=1

ω(r) ∥ak − bk∥1 , (12)

with ω(r) = ω(t)⊛ω(s) generated by the teacher and student
position-aware relation weight. The reason is that the chan-
nels in distillation should consist of the ones both mean-
ingful to the teacher and student. Our eventual frequency
distillation loss can be formulated as:

LFreeKD =

L∑
k=1

ω(r) ∥M⊛ak −M ⊛ bk∥1 . (13)

3.4. Overall loss

To sum up, we train the student detector with the total loss
formulated as:

Lstudent = Ltask + µLFreeKD, (14)

where µ is a factor for balancing the losses. The distillation
loss is applied to intermediate feature maps (e.g., the feature
pyramid network [26] (FPN) in object detection tasks), so it
can be easily applied to different architectures.

4. Experiments
In this paper, to validate the superiority of our method,
we conduct extensive experiments on object detection and
semantic segmentation tasks, with various model architec-
tures (including CNN-based and Transformer-based). Fur-
thermore, we evaluate the robustness of detectors trained
with FreeKD on the COCO-C benchmark, to exhibit its bet-
ter domain generalization capabilities.

4.1. Object Detection

4.1.1 Datasets.

We experiment on MS COCO detection dataset [25], which
contains 80 object classes. We train the student models on
COCO train2017 set and evaluate them with average
precision (AP) on val2017 set.

4.1.2 Network Architectures.

Our evaluation includes two-stage models [35], anchor-
based one-stage models [27], as well as anchor-free one-
stage models [38, 48], to validate the efficacy of FreeKD
across diverse detection architectures.

4.1.3 Implementation Details.

For the object detection task, we conduct feature distilla-
tion on the predicted feature maps sourced from teacher’s
neck. We adopt ImageNet pretrained backbones and in-
heriting strategy following previous KD works [20, 51, 55]
during training. All the models are trained with the offi-
cial strategies (SGD, weight decay of 1e-4) of 2X sched-
ule in MMDetection [4]. We train the student with our
FreeKD loss LFreeKD, regression KD loss, and task loss for
the object detection task. Concretely, the loss weights µ of
LFreeKD in Eq.14 on Faster RCNN, RetinaNet, FCOS, and
RepPoints are 1, 5, 10, and 10.

4.1.4 Experimental Results.

Results on baseline settings. Our results compared with
previous methods are summarized in Table 1, where we
take ResNet-101 (R101) [16] backbone as the teacher net-
work, and ResNet-50 (R50) as the student. Our FreeKD
can significantly improve the performance of student mod-
els over their teachers on various network architectures. For
instance, FreeKD improves FCOS-R50 by 4.4 AP and sur-
passes DiffKD [20] by 0.5 AP. Besides, FreeKD benefits
more to detecting large-size objects (APL), as larger objects
would involve more frequency bands and cross-domain in-
formation.

Results on stronger settings. We further investigate our
efficacy on stronger teachers whose backbones are replaced
by stronger ResNeXt (X101) [46]. The results in Table 2
demonstrate that student detectors achieve more enhance-
ments with our FreeKD, especially when with a RepPoints-
X101 teacher, FreeKD gains a substantial improvement of
3.8 AP over the RepPoints-R50. Additionally, our method
outperforms existing KD methods by a large margin, and
the improvement of FreeKD compared to DiffKD [20] is
greater for all cases than the improvement of DiffKD [20]
compared to FGD [50].

4.2. Semantic segmentation

4.2.1 Datasets.

We conduct experiments on Cityscapes dataset [7] to valid
the effects of our method, which contains 5000 high-quality
images (2975, 500, and 1525 images for the training, val-
idation, and testing). We evaluate all the student networks
with mean Intersection-over-Union (mIoU).
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Table 1. Object detection performance via FreeKD in baseline
settings on COCO val set.

Method AP APS APM APL

One-stage detectors

T: RetinaNet-R101 38.9 21.0 42.8 52.4

S: RetinaNet-R50 37.4 20.0 40.7 49.7

FRS [10] NeurlPS21 39.3 (1.9↑) 21.5 43.3 52.6

FGD [49] CVPR22 39.6 (2.2↑) 22.9 43.7 53.6

DiffKD [20] NeurlPS23 39.7 (2.3↑) 21.6 43.8 53.3

FreeKD 39.9 (2.5↑) 21.2 44.0 53.7
Two-stage detectors

T: Faster RCNN-R101 39.8 22.5 43.6 52.8

S: Faster RCNN-R50 38.4 21.5 42.1 50.3

FRS [10] NeurlPS21 39.5 (1.1↑) 22.3 43.6 51.7

FGD [49] CVPR22 40.4 (2.0↑) 22.8 44.5 53.5

DiffKD [20] NeurlPS23 40.6 (2.2↑) 23.0 44.5 54.0

FreeKD 40.8 (2.4↑) 23.1 44.7 54.0
Anchor-free detectors

T: FCOS-R101 40.8 24.2 44.3 52.4

S: FCOS-R50 38.5 21.9 42.8 48.6

FRS [10] NeurlPS21 40.9 (2.4↑) 25.7 45.2 51.2

FGD [49] CVPR22 42.1 (3.6↑) 27.0 46.0 54.6

DiffKD [20] NeurlPS23 42.4 (3.9↑) 26.6 45.9 54.8

FreeKD 42.9 (4.4↑) 26.8 46.8 55.4

Table 2. Object detection performance via FreeKD in stronger
settings on COCO val set. CM RCNN: Cascade Mask RCNN.

Method AP APS APM APL

One-stage detectors

T: RetinaNet-X101 41.2 24.0 45.5 53.5

S: RetinaNet-R50 37.4 20.0 40.7 49.7

FRS [10] NeurlPS21 40.1 (2.7↑) 21.9 43.7 54.3

FGD [49] CVPR22 40.7 (3.3↑) 22.9 45.0 54.7

DiffKD [20] NeurlPS23 40.7 (3.3↑) 22.2 45.0 55.2

FreeKD 41.0 (3.6↑) 22.3 45.1 55.7
Two-stage detectors

T: CM RCNN-X101 45.6 26.2 49.6 60.0

S: Faster RCNN-R50 38.4 21.5 42.1 50.3

CWD [37] ICCV21 41.7 (3.3↑) 23.3 45.5 55.5

FGD [49] CVPR22 42.0 (3.6↑) 23.7 46.4 55.5

DiffKD [20] NeurlPS23 42.2 (3.8↑) 24.2 46.6 55.3

FreeKD 42.4 (4.0↑) 24.1 46.7 55.9
Anchor-free detectors

T: RepPoints-X101 44.2 26.2 48.4 58.5

S: RepPoints-R50 38.6 22.5 42.2 50.4

FKD [53] ICLR20 40.6 (2.0↑) 23.4 44.6 53.0

FGD [49] CVPR22 41.3 (2.7↑) 24.5 45.2 54.0

DiffKD [20] NeurlPS23 41.7 (3.1↑) 23.6 45.4 55.9

FreeKD 42.4 (3.8↑) 24.3 46.4 56.6

Table 3. Semantic segmentation performance via FreeKD on
Cityscapes val set. FLOPs is measured based on an input image
size of 512 × 512.

Method Params (M) FLOPs (G) mIoU (%)

T: PSPNet-R101 70.43 574.9 78.34

S: PSPNet-R18

13.1 125.8

69.85

CWD [37] ICCV21 73.53

MGD [51] ECCV22 73.63

FreeKD 74.40

S: DeepLabV3-R18

12.6 123.9

73.20

CWD [37] ICCV21 75.93

MGD [51] ECCV22 76.02

FreeKD 76.45

4.2.2 Network architectures.

For all segmentation experiments, we take PSPNet-R101
[56] as the teacher network. While for the students, we
use various frameworks (DeepLabV3 [5] and PSPNet) with
ResNet-18 (R18) to demonstrate the efficacy of our method.

4.2.3 Implementation Details.

For the semantic segmentation task, we conduct feature dis-
tillation on the predicted segmentation maps. All the mod-

Table 4. Performance of robust object detection via FreeKD on
COCO-C dataset. Each experiment is averaged over 6 trials.

Method mAPclean mPC rPC

Source (Retina-R50) 37.4 18.3 48.9

FGD [49] 39.6 20.3 51.3

DiffKD [20] 39.7 20.3 51.1

FreeKD (Ours) 39.9 20.8 52.1

els are trained with the official strategies of 40K iterations
schedule with 512 × 512 input size in MMSegmentation [6],
where the optimizer is SGD and the weight decay is 5e-4.
A polynomial annealing learning rate scheduler is adopted
with an initial value of 0.02.

4.2.4 Experimental results.

The experimental results are summarized in 3. FreeKD fur-
ther improves the performance of state-of-the-art MGD [51]
on both homogeneous and heterogeneous settings. For in-
stance, the ResNet-18-based PSPNet gets 0.77 mIoU gain
and that based DeepLabV3 gets 0.43 mIoU.

4.3. Natural Corrupted Augmentation

We evaluate the robustness of student detector RetinaNet-
R50, trained with FreeKD on the COCO-C dataset [30].
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Table 5. The performance of DETR-like models via FreeKD on
COCO. De-DETR: Deformable DETR, MBv2: MobileNetV2.

Teacher Student Backbone AP APS APM APL

De-DETR
R101

47.1 (50e)

De-DETR
MBv2

33.5 16.9 36.4 46.6

+ FreeKD 36.2 (2.7↑) 19.3 38.9 49.0

De-DETR
R18

36.4 19.6 39.0 49.3

+ FreeKD 38.9 (2.5↑) 22.0 41.2 51.9

DINO
Swin-L

56.6 (12e)

DINO
R50

48.4 30.9 51.3 63.4

+ FreeKD 50.4 (2.0↑) 33.1 53.6 64.9

DINO
R18

45.1 28.7 48.0 59.1

+ FreeKD 47.3 (2.2↑) 30.0 50.4 61.3

Table 6. The performance of SAM via FreeKD on SA-1B.

Teacher Students Steps mIoU

SAM
ViT-H

SAM ViT-Tiny 20K 40.12

+ MSE 20K 42.42

+ FreeKD 20K 44.63

COCO-C is derived from val2017 set of COCO, enriched
with four types† of image corruption, and each type further
comprises several fine-grained corruptions. The results on
corrupted images compared in Table 4, the mPC improve-
ment of FreeKD compared to DiffKD [20] is greater than
mAPclean, and FreeKD outperforms DiffKD [20] by 1.0%
rPC†. Our method is beneficial to enhancing the extra ro-
bustness and domain generalization abilities of the student.

4.4. Large-Scale Vision Models Distillation

To fully investigate the efficacy of FreeKD, we further con-
duct experiments on much stronger large-scale teachers.

DETR-like Model. For the object detection task, we
apply FreeKD for two popular DETR-based models (De-
formable DETR [59] and DINO [52]) with various stu-
dent backbones (R18, R50, and MobileNetV2 [36]). For
De-DETR, FreeKD brings 2.5+ AP improvement for both
De-DETR-R18 and De-DETR-MBv2 students. While for
DINO model, it still has a 2.0+ AP gain for stronger stu-
dents, e.g., DINO-R50 breaks the limit of 50 AP with the
help of FreeKD. Notably, we only distill the output of the
final encoder layer and train the students in 12 epochs (1X).

Segment Anything Model (SAM). For the semantic
segmentation task, SAM [23] is our first choice to validate
the generality of FreeKD. We take the original SAM as the
teacher, and its default image encoder is based on the heavy-
weight ViT-H [9]. Therefore, we replace the ViT-H with
ViT-Tiny as the student and transfer the dark knowledge

†including noise, blurring, weather, and digital corruption.
†rPC = mPC / mAPclean

Annotations Student + FreeKD Teacher

Figure 4. Visualization of student features, student distilled
with FreeKD features and teacher features on COCO dataset.
The cases are randomly selected from val set and the heatmaps are
generated with AblationCAM [34].

Table 7. Ablation study on Frequency Prompts (FP). We use
RepPoints-R50 student and RepPoints-X101 teacher on COCO
with various frequency bands.

Frequency Bands AP

Distill w/o FP.

Low High
✓ ✗ 40.7
✗ ✓ 41.8
✓ ✓ 41.3

Frequency Bands AP

Distill w/ FP.

Low High
✓ ✗ 41.0
✗ ✓ 42.3
✓ ✓ 42.4

from image embeddings, which are generated by the im-
age encoder. The student is trained with the SA-1B dataset
[23] for 20K iterations (The image encoder is distilled for
10, 000 steps with 1024 × 1024 input size, and then the
mask decoder is fine-tuned for 10, 000 steps) and evaluated
with mIoU between the original SAM and itself. We run all
the experiments on 8 A100 GPUs. For comparisons with
our baseline one spatial-level feature distillation, we also
report the mean square error (MSE) results with the same
distillation location as FreeKD. As summarized in Table 6,
FreeKD obviously outperforms the MSE results by 2.21%
on SAM ViT-Tiny and improves the student by 4.51%.

The above cases indicate that our precise frequency
information in FreeKD is generic to large-scale vision
models. Besides, sourced from Parameter-Efficient Fine-
Tuning, the Prompt-guided distillation method thus is more
fit for foundation vision teacher models, and effectively pol-
ishes up the performance of the students.

5. Analysis

5.1. Effects of Frequency Prompts

We propose a semantic Frequency Prompt (FP) to local-
ize the PoIs of both high and low-frequency bands to com-
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Table 8. The comparison of attention weights on COCO (AP)
via FreeKD. Teacher: RepPoints-X101. Student: RepPoints-R50.

Student SE Non-local CBAM Ours

37.4 42.2 41.9 42.1 42.4

Table 9. Various Frequency Transformation Manners for
FreeKD. We use RepPoints-R50 student and RepPoints-X101
teacher on COCO.

Method Mother Function AP

DCT Cosine 41.9

DFT Sine and Cosine 42.0

DWT Wavelet 42.4

pensate for their own limitations in the distillation. Here
we conduct experiments to compare the effects of FP on
different frequency bands in Table 7. We can see that:
(a) Only low-frequency distillation cannot help polish up
the student, and even impair the performance (−0.5 AP)
when combined with high-frequency bands. (b) When Fre-
quency Prompt provides accurate PoIs, the low-frequency
band eliminates harmful samples with 0.3 AP gain, and the
high filters extra noise by 0.5 AP improvement. (c) In gen-
eral, FP has improved frequency distillation by 0.6 AP and
unified the distillation framework of frequency bands.

5.2. Effects of Position-aware Weight

To validate our Position-aware weight effectiveness, we
choose several spatial attention (Squeeze and Excitation
(SE) [18], Non-local Module [41], and Convolutional Block
Attention Module (CBAM) [43]) to watch Frequency distil-
lation. The results are reported on Table 8. We find that
enhancing frequency distillation from channel dimension
is a more effective method (SE and ours), compared with
the other two. Besides, our position-aware weight includes
distinguished object information with multi-scale receptive
fields, which is more urgent to the frequency domain.

5.3. Effects of Frequency Transformation Manner

In terms of which frequency transformation is more suit-
able for distillation, we conduct detailed experiments on
three methods (Discrete Cosine Transform (DCT), Discrete
Fourier Transform (DFT), and Discrete Wavelet Transform
(DWT)). As shown in Table 9, DWT based on Wavelet is
significantly superior to DCT and DFT, whose mother func-
tions are trigonometric functions. The reason is that wavelet
provides frequency domain information at different scales,
facilitating the analysis of local signal features, while the
trigonometric function only provides global frequency do-
main information.

Figure 5. Visualization of high-frequency pixels of interests on
COCO dataset via RepPoints-X101.

5.4. Visualization

We visualize the prediction results and heatmaps of the
detector in Figure 4 to further investigate the efficacy of
FreeKD. We utilize RepPoints-R50 student and RepPoints-
X101 teacher as an example. In general, FreeKD yields
more clear contrast between low-frequency pixels and high-
frequency pixels in heat maps, and it provides more distinc-
tive observation. For instance, in the third case, the stu-
dent trained by FreeKD performs better than the teacher
(e.g., it detects the bottle successfully). The reason is that:
Firstly, the high-frequency imitation principle in FreeKD,
with shorter wavelengths, enables the student to effectively
capture details, edges, and richer textures, thereby focusing
on small but crucial regions. Secondly, position-aware re-
lational loss enhances the student’s sensitivity to positional
information, particularly for small objects. Lastly, the com-
bination of ground truth and soft labels provides the student
with robust supervision signals.

Meanwhile, FreeKD effectively avoid generating redun-
dant bounding boxes in the first two cases, due to its spa-
tial perception of objects. Besides, we visualize the two
PoIs (masks) generated by frequency prompt in the high-
frequency band HH in Figure 5. We find that the distinc-
tive details in the band are marked out, while the noise is
avoided to prevent performance degradation. This verifies
our frequency prompt is effective in practice.

6. Conclusion
This research shifts the attention to frequency domain, and
highlights its potential for knowledge distillation on dense
prediction tasks. Meanwhile, to tackle the natural short-
comings of high and low frequency during mimicking, we
introduce a novel pipeline named FreeKD, which deter-
mines both the optimal localization and extent for the fre-
quency distillation. Specifically, we first propose Frequency
Prompt to generate pixel-wise imitation principles. Besides,
we design a channel-wise position-aware relational loss to
enhance the sensitivity to objects for dense prediction. Ex-
tensive experiments demonstrated that FreeKD outperforms
spatial-based distillation methods and provides more ro-
bustness to the student model.
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